linux/kernel/irq/Makefile

21 lines
778 B
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
# SPDX-License-Identifier: GPL-2.0
obj-y := irqdesc.o handle.o manage.o spurious.o resend.o chip.o dummychip.o devres.o
genirq/timings: Add infrastructure to track the interrupt timings The interrupt framework gives a lot of information about each interrupt. It does not keep track of when those interrupts occur though, which is a prerequisite for estimating the next interrupt arrival for power management purposes. Add a mechanism to record the timestamp for each interrupt occurrences in a per-CPU circular buffer to help with the prediction of the next occurrence using a statistical model. Each CPU can store up to IRQ_TIMINGS_SIZE events <irq, timestamp>, the current value of IRQ_TIMINGS_SIZE is 32. Each event is encoded into a single u64, where the high 48 bits are used for the timestamp and the low 16 bits are for the irq number. A static key is introduced so when the irq prediction is switched off at runtime, the overhead is near to zero. It results in most of the code in internals.h for inline reasons and a very few in the new file timings.c. The latter will contain more in the next patch which will provide the statistical model for the next event prediction. Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Hannes Reinecke <hare@suse.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: "Rafael J . Wysocki" <rafael@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: http://lkml.kernel.org/r/1498227072-5980-1-git-send-email-daniel.lezcano@linaro.org
2017-06-23 22:11:07 +08:00
obj-$(CONFIG_IRQ_TIMINGS) += timings.o
ifeq ($(CONFIG_TEST_IRQ_TIMINGS),y)
CFLAGS_timings.o += -DDEBUG
endif
obj-$(CONFIG_GENERIC_IRQ_CHIP) += generic-chip.o
obj-$(CONFIG_GENERIC_IRQ_PROBE) += autoprobe.o
obj-$(CONFIG_IRQ_DOMAIN) += irqdomain.o
obj-$(CONFIG_IRQ_SIM) += irq_sim.o
obj-$(CONFIG_PROC_FS) += proc.o
obj-$(CONFIG_GENERIC_PENDING_IRQ) += migration.o
obj-$(CONFIG_GENERIC_IRQ_MIGRATION) += cpuhotplug.o
obj-$(CONFIG_PM_SLEEP) += pm.o
obj-$(CONFIG_GENERIC_MSI_IRQ) += msi.o
obj-$(CONFIG_GENERIC_IRQ_IPI) += ipi.o
obj-$(CONFIG_SMP) += affinity.o
genirq/debugfs: Add proper debugfs interface Debugging (hierarchical) interupt domains is tedious as there is no information about the hierarchy and no information about states of interrupts in the various domain levels. Add a debugfs directory 'irq' and subdirectories 'domains' and 'irqs'. The domains directory contains the domain files. The content is information about the domain. If the domain is part of a hierarchy then the parent domains are printed as well. # ls /sys/kernel/debug/irq/domains/ default INTEL-IR-2 INTEL-IR-MSI-2 IO-APIC-IR-2 PCI-MSI DMAR-MSI INTEL-IR-3 INTEL-IR-MSI-3 IO-APIC-IR-3 unknown-1 INTEL-IR-0 INTEL-IR-MSI-0 IO-APIC-IR-0 IO-APIC-IR-4 VECTOR INTEL-IR-1 INTEL-IR-MSI-1 IO-APIC-IR-1 PCI-HT # cat /sys/kernel/debug/irq/domains/VECTOR name: VECTOR size: 0 mapped: 216 flags: 0x00000041 # cat /sys/kernel/debug/irq/domains/IO-APIC-IR-0 name: IO-APIC-IR-0 size: 24 mapped: 19 flags: 0x00000041 parent: INTEL-IR-3 name: INTEL-IR-3 size: 65536 mapped: 167 flags: 0x00000041 parent: VECTOR name: VECTOR size: 0 mapped: 216 flags: 0x00000041 Unfortunately there is no per cpu information about the VECTOR domain (yet). The irqs directory contains detailed information about mapped interrupts. # cat /sys/kernel/debug/irq/irqs/3 handler: handle_edge_irq status: 0x00004000 istate: 0x00000000 ddepth: 1 wdepth: 0 dstate: 0x01018000 IRQD_IRQ_DISABLED IRQD_SINGLE_TARGET IRQD_MOVE_PCNTXT node: 0 affinity: 0-143 effectiv: 0 pending: domain: IO-APIC-IR-0 hwirq: 0x3 chip: IR-IO-APIC flags: 0x10 IRQCHIP_SKIP_SET_WAKE parent: domain: INTEL-IR-3 hwirq: 0x20000 chip: INTEL-IR flags: 0x0 parent: domain: VECTOR hwirq: 0x3 chip: APIC flags: 0x0 This was developed to simplify the debugging of the managed affinity changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Link: http://lkml.kernel.org/r/20170619235444.537566163@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-06-20 07:37:17 +08:00
obj-$(CONFIG_GENERIC_IRQ_DEBUGFS) += debugfs.o
genirq: Implement bitmap matrix allocator Implement the infrastructure for a simple bitmap based allocator, which will replace the x86 vector allocator. It's in the core code as other architectures might be able to reuse/extend it. For now it only implements allocations for single CPUs, but it's simple to add multi CPU allocation support if required. The concept is rather simple: Global information: system_vector bitmap global accounting PerCPU information: allocation bitmap managed allocation bitmap local accounting The system vector bitmap is used to exclude vectors system wide from the allocation space. The allocation bitmap is used to keep track of per cpu used vectors. The managed allocation bitmap is used to reserve vectors for managed interrupts. When a regular (non managed) interrupt allocation happens then the following rule applies: tmpmap = system_map | alloc_map | managed_map find_zero_bit(tmpmap) Oring the bitmaps together gives the real available space. The same rule applies for reserving a managed interrupt vector. But contrary to the regular interrupts the reservation only marks the bit in the managed map and therefor excludes it from the regular allocations. The managed map is only cleaned out when the a managed interrupt is completely released and it stays alive accross CPU offline/online operations. For managed interrupt allocations the rule is: tmpmap = managed_map & ~alloc_map find_first_bit(tmpmap) This returns the first bit which is in the managed map, but not yet allocated in the allocation map. The allocation marks it in the allocation map and hands it back to the caller for use. The rest of the code are helper functions to handle the various requirements and the accounting which are necessary to replace the x86 vector allocation code. The result is a single patch as the evolution of this infrastructure cannot be represented in bits and pieces. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Yu Chen <yu.c.chen@intel.com> Acked-by: Juergen Gross <jgross@suse.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Alok Kataria <akataria@vmware.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rui Zhang <rui.zhang@intel.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Len Brown <lenb@kernel.org> Link: https://lkml.kernel.org/r/20170913213153.185437174@linutronix.de
2017-09-14 05:29:14 +08:00
obj-$(CONFIG_GENERIC_IRQ_MATRIX_ALLOCATOR) += matrix.o