linux/drivers/net/wireless/rt2x00/rt2800pci.c

3351 lines
106 KiB
C
Raw Normal View History

/*
Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2800pci
Abstract: rt2800pci device specific routines.
Supported chipsets: RT2800E & RT2800ED.
*/
#include <linux/crc-ccitt.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>
#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
#include "rt2800pci.h"
#ifdef CONFIG_RT2800PCI_PCI_MODULE
#define CONFIG_RT2800PCI_PCI
#endif
#ifdef CONFIG_RT2800PCI_WISOC_MODULE
#define CONFIG_RT2800PCI_WISOC
#endif
/*
* Allow hardware encryption to be disabled.
*/
static int modparam_nohwcrypt = 1;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
/*
* Register access.
* All access to the CSR registers will go through the methods
* rt2800_register_read and rt2800_register_write.
* BBP and RF register require indirect register access,
* and use the CSR registers BBPCSR and RFCSR to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attampt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
* The _lock versions must be used if you already hold the csr_mutex
*/
#define WAIT_FOR_BBP(__dev, __reg) \
rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RFCSR(__dev, __reg) \
rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
H2M_MAILBOX_CSR_OWNER, (__reg))
static void rt2800pci_bbp_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the BBP becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800pci_bbp_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the BBP becomes available, afterwards we
* can safely write the read request into the register.
* After the data has been written, we wait until hardware
* returns the correct value, if at any time the register
* doesn't become available in time, reg will be 0xffffffff
* which means we return 0xff to the caller.
*/
if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
WAIT_FOR_BBP(rt2x00dev, &reg);
}
*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
mutex_unlock(&rt2x00dev->csr_mutex);
}
static inline void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
rt2800pci_bbp_write(rt2x00dev, word, value);
}
static inline void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
rt2800pci_bbp_read(rt2x00dev, word, value);
}
static void rt2800pci_rfcsr_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RFCSR becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800pci_rfcsr_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RFCSR becomes available, afterwards we
* can safely write the read request into the register.
* After the data has been written, we wait until hardware
* returns the correct value, if at any time the register
* doesn't become available in time, reg will be 0xffffffff
* which means we return 0xff to the caller.
*/
if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
WAIT_FOR_RFCSR(rt2x00dev, &reg);
}
*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
mutex_unlock(&rt2x00dev->csr_mutex);
}
static inline void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
rt2800pci_rfcsr_write(rt2x00dev, word, value);
}
static inline void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
rt2800pci_rfcsr_read(rt2x00dev, word, value);
}
static void rt2800pci_rf_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u32 value)
{
u32 reg;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the RF becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_RF(rt2x00dev, &reg)) {
reg = 0;
rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
rt2x00_rf_write(rt2x00dev, word, value);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800pci_mcu_request(struct rt2x00_dev *rt2x00dev,
const u8 command, const u8 token,
const u8 arg0, const u8 arg1)
{
u32 reg;
/*
* RT2880 and RT3052 don't support MCU requests.
*/
if (rt2x00_rt(&rt2x00dev->chip, RT2880) ||
rt2x00_rt(&rt2x00dev->chip, RT3052))
return;
mutex_lock(&rt2x00dev->csr_mutex);
/*
* Wait until the MCU becomes available, afterwards we
* can safely write the new data into the register.
*/
if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
reg = 0;
rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
}
mutex_unlock(&rt2x00dev->csr_mutex);
}
static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
unsigned int i;
u32 reg;
for (i = 0; i < 200; i++) {
rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
break;
udelay(REGISTER_BUSY_DELAY);
}
if (i == 200)
ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
}
#ifdef CONFIG_RT2800PCI_WISOC
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_WISOC */
#ifdef CONFIG_RT2800PCI_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg;
rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
eeprom->reg_data_clock =
!!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
eeprom->reg_chip_select =
!!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}
static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg = 0;
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
!!eeprom->reg_data_clock);
rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
!!eeprom->reg_chip_select);
rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
}
static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
struct eeprom_93cx6 eeprom;
u32 reg;
rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom.data = rt2x00dev;
eeprom.register_read = rt2800pci_eepromregister_read;
eeprom.register_write = rt2800pci_eepromregister_write;
eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
eeprom.reg_data_in = 0;
eeprom.reg_data_out = 0;
eeprom.reg_data_clock = 0;
eeprom.reg_chip_select = 0;
eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
EEPROM_SIZE / sizeof(u16));
}
static void rt2800pci_efuse_read(struct rt2x00_dev *rt2x00dev,
unsigned int i)
{
u32 reg;
rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
rt2800_register_write(rt2x00dev, EFUSE_CTRL, reg);
/* Wait until the EEPROM has been loaded */
rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
/* Apparently the data is read from end to start */
rt2800_register_read(rt2x00dev, EFUSE_DATA3,
(u32 *)&rt2x00dev->eeprom[i]);
rt2800_register_read(rt2x00dev, EFUSE_DATA2,
(u32 *)&rt2x00dev->eeprom[i + 2]);
rt2800_register_read(rt2x00dev, EFUSE_DATA1,
(u32 *)&rt2x00dev->eeprom[i + 4]);
rt2800_register_read(rt2x00dev, EFUSE_DATA0,
(u32 *)&rt2x00dev->eeprom[i + 6]);
}
static void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
rt2800pci_efuse_read(rt2x00dev, i);
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_PCI */
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2800pci_rt2x00debug = {
.owner = THIS_MODULE,
.csr = {
.read = rt2800_register_read,
.write = rt2800_register_write,
.flags = RT2X00DEBUGFS_OFFSET,
.word_base = CSR_REG_BASE,
.word_size = sizeof(u32),
.word_count = CSR_REG_SIZE / sizeof(u32),
},
.eeprom = {
.read = rt2x00_eeprom_read,
.write = rt2x00_eeprom_write,
.word_base = EEPROM_BASE,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.bbp = {
.read = rt2800_bbp_read,
.write = rt2800_bbp_write,
.word_base = BBP_BASE,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
.rf = {
.read = rt2x00_rf_read,
.write = rt2800pci_rf_write,
.word_base = RF_BASE,
.word_size = sizeof(u32),
.word_count = RF_SIZE / sizeof(u32),
},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
static int rt2800pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
}
#ifdef CONFIG_RT2X00_LIB_LEDS
static void rt2800pci_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
unsigned int enabled = brightness != LED_OFF;
unsigned int bg_mode =
(enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
unsigned int polarity =
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
EEPROM_FREQ_LED_POLARITY);
unsigned int ledmode =
rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
EEPROM_FREQ_LED_MODE);
if (led->type == LED_TYPE_RADIO) {
rt2800pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
enabled ? 0x20 : 0);
} else if (led->type == LED_TYPE_ASSOC) {
rt2800pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
} else if (led->type == LED_TYPE_QUALITY) {
/*
* The brightness is divided into 6 levels (0 - 5),
* The specs tell us the following levels:
* 0, 1 ,3, 7, 15, 31
* to determine the level in a simple way we can simply
* work with bitshifting:
* (1 << level) - 1
*/
rt2800pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
(1 << brightness / (LED_FULL / 6)) - 1,
polarity);
}
}
static int rt2800pci_blink_set(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
u32 reg;
rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 12);
rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
return 0;
}
static void rt2800pci_init_led(struct rt2x00_dev *rt2x00dev,
struct rt2x00_led *led,
enum led_type type)
{
led->rt2x00dev = rt2x00dev;
led->type = type;
led->led_dev.brightness_set = rt2800pci_brightness_set;
led->led_dev.blink_set = rt2800pci_blink_set;
led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2X00_LIB_LEDS */
/*
* Configuration handlers.
*/
static void rt2800pci_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct mac_wcid_entry wcid_entry;
struct mac_iveiv_entry iveiv_entry;
u32 offset;
u32 reg;
offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
!!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
(crypto->cmd == SET_KEY) * crypto->cipher);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
(crypto->cmd == SET_KEY) * crypto->bssidx);
rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
rt2800_register_write(rt2x00dev, offset, reg);
offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
memset(&iveiv_entry, 0, sizeof(iveiv_entry));
if ((crypto->cipher == CIPHER_TKIP) ||
(crypto->cipher == CIPHER_TKIP_NO_MIC) ||
(crypto->cipher == CIPHER_AES))
iveiv_entry.iv[3] |= 0x20;
iveiv_entry.iv[3] |= key->keyidx << 6;
rt2800_register_multiwrite(rt2x00dev, offset,
&iveiv_entry, sizeof(iveiv_entry));
offset = MAC_WCID_ENTRY(key->hw_key_idx);
memset(&wcid_entry, 0, sizeof(wcid_entry));
if (crypto->cmd == SET_KEY)
memcpy(&wcid_entry, crypto->address, ETH_ALEN);
rt2800_register_multiwrite(rt2x00dev, offset,
&wcid_entry, sizeof(wcid_entry));
}
static int rt2800pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_key_entry key_entry;
struct rt2x00_field32 field;
u32 offset;
u32 reg;
if (crypto->cmd == SET_KEY) {
key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
offset = SHARED_KEY_ENTRY(key->hw_key_idx);
rt2800_register_multiwrite(rt2x00dev, offset,
&key_entry, sizeof(key_entry));
}
/*
* The cipher types are stored over multiple registers
* starting with SHARED_KEY_MODE_BASE each word will have
* 32 bits and contains the cipher types for 2 bssidx each.
* Using the correct defines correctly will cause overhead,
* so just calculate the correct offset.
*/
field.bit_offset = 4 * (key->hw_key_idx % 8);
field.bit_mask = 0x7 << field.bit_offset;
offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, field,
(crypto->cmd == SET_KEY) * crypto->cipher);
rt2800_register_write(rt2x00dev, offset, reg);
/*
* Update WCID information
*/
rt2800pci_config_wcid_attr(rt2x00dev, crypto, key);
return 0;
}
static int rt2800pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_crypto *crypto,
struct ieee80211_key_conf *key)
{
struct hw_key_entry key_entry;
u32 offset;
if (crypto->cmd == SET_KEY) {
/*
* 1 pairwise key is possible per AID, this means that the AID
* equals our hw_key_idx. Make sure the WCID starts _after_ the
* last possible shared key entry.
*/
if (crypto->aid > (256 - 32))
return -ENOSPC;
key->hw_key_idx = 32 + crypto->aid;
memcpy(key_entry.key, crypto->key,
sizeof(key_entry.key));
memcpy(key_entry.tx_mic, crypto->tx_mic,
sizeof(key_entry.tx_mic));
memcpy(key_entry.rx_mic, crypto->rx_mic,
sizeof(key_entry.rx_mic));
offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
rt2800_register_multiwrite(rt2x00dev, offset,
&key_entry, sizeof(key_entry));
}
/*
* Update WCID information
*/
rt2800pci_config_wcid_attr(rt2x00dev, crypto, key);
return 0;
}
static void rt2800pci_config_filter(struct rt2x00_dev *rt2x00dev,
const unsigned int filter_flags)
{
u32 reg;
/*
* Start configuration steps.
* Note that the version error will always be dropped
* and broadcast frames will always be accepted since
* there is no filter for it at this time.
*/
rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
!(filter_flags & FIF_FCSFAIL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
!(filter_flags & FIF_PLCPFAIL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
!(filter_flags & FIF_PROMISC_IN_BSS));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
!(filter_flags & FIF_ALLMULTI));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
!(filter_flags & FIF_PSPOLL));
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
!(filter_flags & FIF_CONTROL));
rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
}
static void rt2800pci_config_intf(struct rt2x00_dev *rt2x00dev,
struct rt2x00_intf *intf,
struct rt2x00intf_conf *conf,
const unsigned int flags)
{
unsigned int beacon_base;
u32 reg;
if (flags & CONFIG_UPDATE_TYPE) {
/*
* Clear current synchronisation setup.
* For the Beacon base registers we only need to clear
* the first byte since that byte contains the VALID and OWNER
* bits which (when set to 0) will invalidate the entire beacon.
*/
beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
rt2800_register_write(rt2x00dev, beacon_base, 0);
/*
* Enable synchronisation.
*/
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
if (flags & CONFIG_UPDATE_MAC) {
reg = le32_to_cpu(conf->mac[1]);
rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
conf->mac[1] = cpu_to_le32(reg);
rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
conf->mac, sizeof(conf->mac));
}
if (flags & CONFIG_UPDATE_BSSID) {
reg = le32_to_cpu(conf->bssid[1]);
rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 0);
rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 0);
conf->bssid[1] = cpu_to_le32(reg);
rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
conf->bssid, sizeof(conf->bssid));
}
}
static void rt2800pci_config_erp(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_erp *erp)
{
u32 reg;
rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 0x20);
rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
!!erp->short_preamble);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
!!erp->short_preamble);
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
erp->cts_protection ? 2 : 0);
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
erp->basic_rates);
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time);
rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, erp->sifs);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, erp->sifs);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
erp->beacon_int * 16);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
static void rt2800pci_config_ant(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
u8 r1;
u8 r3;
rt2800_bbp_read(rt2x00dev, 1, &r1);
rt2800_bbp_read(rt2x00dev, 3, &r3);
/*
* Configure the TX antenna.
*/
switch ((int)ant->tx) {
case 1:
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
break;
case 2:
rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
break;
case 3:
/* Do nothing */
break;
}
/*
* Configure the RX antenna.
*/
switch ((int)ant->rx) {
case 1:
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
break;
case 2:
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
break;
case 3:
rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
break;
}
rt2800_bbp_write(rt2x00dev, 3, r3);
rt2800_bbp_write(rt2x00dev, 1, r1);
}
static void rt2800pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u16 eeprom;
short lna_gain;
if (libconf->rf.channel <= 14) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
} else if (libconf->rf.channel <= 64) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
} else if (libconf->rf.channel <= 128) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
} else {
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
}
rt2x00dev->lna_gain = lna_gain;
}
static void rt2800pci_config_channel_rt2x(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
if (rt2x00dev->default_ant.tx == 1)
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
if (rt2x00dev->default_ant.rx == 1) {
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
} else if (rt2x00dev->default_ant.rx == 2)
rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
if (rf->channel > 14) {
/*
* When TX power is below 0, we should increase it by 7 to
* make it a positive value (Minumum value is -7).
* However this means that values between 0 and 7 have
* double meaning, and we should set a 7DBm boost flag.
*/
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
(info->tx_power1 >= 0));
if (info->tx_power1 < 0)
info->tx_power1 += 7;
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A,
TXPOWER_A_TO_DEV(info->tx_power1));
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
(info->tx_power2 >= 0));
if (info->tx_power2 < 0)
info->tx_power2 += 7;
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A,
TXPOWER_A_TO_DEV(info->tx_power2));
} else {
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G,
TXPOWER_G_TO_DEV(info->tx_power1));
rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G,
TXPOWER_G_TO_DEV(info->tx_power2));
}
rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
rt2800pci_rf_write(rt2x00dev, 1, rf->rf1);
rt2800pci_rf_write(rt2x00dev, 2, rf->rf2);
rt2800pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt2800pci_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt2800pci_rf_write(rt2x00dev, 1, rf->rf1);
rt2800pci_rf_write(rt2x00dev, 2, rf->rf2);
rt2800pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
rt2800pci_rf_write(rt2x00dev, 4, rf->rf4);
udelay(200);
rt2800pci_rf_write(rt2x00dev, 1, rf->rf1);
rt2800pci_rf_write(rt2x00dev, 2, rf->rf2);
rt2800pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
rt2800pci_rf_write(rt2x00dev, 4, rf->rf4);
}
static void rt2800pci_config_channel_rt3x(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u8 rfcsr;
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
rt2800_rfcsr_write(rt2x00dev, 2, rf->rf3);
rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR6_R, rf->rf2);
rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
TXPOWER_G_TO_DEV(info->tx_power1));
rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 24,
rt2x00dev->calibration[conf_is_ht40(conf)]);
rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
}
static void rt2800pci_config_channel(struct rt2x00_dev *rt2x00dev,
struct ieee80211_conf *conf,
struct rf_channel *rf,
struct channel_info *info)
{
u32 reg;
unsigned int tx_pin;
u8 bbp;
if (rt2x00_rev(&rt2x00dev->chip) != RT3070_VERSION)
rt2800pci_config_channel_rt2x(rt2x00dev, conf, rf, info);
else
rt2800pci_config_channel_rt3x(rt2x00dev, conf, rf, info);
/*
* Change BBP settings
*/
rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
rt2800_bbp_write(rt2x00dev, 86, 0);
if (rf->channel <= 14) {
if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
rt2800_bbp_write(rt2x00dev, 82, 0x62);
rt2800_bbp_write(rt2x00dev, 75, 0x46);
} else {
rt2800_bbp_write(rt2x00dev, 82, 0x84);
rt2800_bbp_write(rt2x00dev, 75, 0x50);
}
} else {
rt2800_bbp_write(rt2x00dev, 82, 0xf2);
if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
rt2800_bbp_write(rt2x00dev, 75, 0x46);
else
rt2800_bbp_write(rt2x00dev, 75, 0x50);
}
rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_PLUS, conf_is_ht40_plus(conf));
rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
tx_pin = 0;
/* Turn on unused PA or LNA when not using 1T or 1R */
if (rt2x00dev->default_ant.tx != 1) {
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
}
/* Turn on unused PA or LNA when not using 1T or 1R */
if (rt2x00dev->default_ant.rx != 1) {
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
}
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
rt2800_bbp_read(rt2x00dev, 4, &bbp);
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
rt2800_bbp_write(rt2x00dev, 4, bbp);
rt2800_bbp_read(rt2x00dev, 3, &bbp);
rt2x00_set_field8(&bbp, BBP3_HT40_PLUS, conf_is_ht40_plus(conf));
rt2800_bbp_write(rt2x00dev, 3, bbp);
if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
if (conf_is_ht40(conf)) {
rt2800_bbp_write(rt2x00dev, 69, 0x1a);
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
rt2800_bbp_write(rt2x00dev, 73, 0x16);
} else {
rt2800_bbp_write(rt2x00dev, 69, 0x16);
rt2800_bbp_write(rt2x00dev, 70, 0x08);
rt2800_bbp_write(rt2x00dev, 73, 0x11);
}
}
msleep(1);
}
static void rt2800pci_config_txpower(struct rt2x00_dev *rt2x00dev,
const int txpower)
{
u32 reg;
u32 value = TXPOWER_G_TO_DEV(txpower);
u8 r1;
rt2800_bbp_read(rt2x00dev, 1, &r1);
rt2x00_set_field8(&reg, BBP1_TX_POWER, 0);
rt2800_bbp_write(rt2x00dev, 1, r1);
rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, &reg);
rt2x00_set_field32(&reg, TX_PWR_CFG_0_1MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_0_2MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_0_55MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_0_11MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_0_6MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_0_9MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_0_12MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_0_18MBS, value);
rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, reg);
rt2800_register_read(rt2x00dev, TX_PWR_CFG_1, &reg);
rt2x00_set_field32(&reg, TX_PWR_CFG_1_24MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_1_36MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_1_48MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_1_54MBS, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS0, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS1, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS2, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_1_MCS3, value);
rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, reg);
rt2800_register_read(rt2x00dev, TX_PWR_CFG_2, &reg);
rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS4, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS5, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS6, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS7, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS8, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS9, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS10, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_2_MCS11, value);
rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, reg);
rt2800_register_read(rt2x00dev, TX_PWR_CFG_3, &reg);
rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS12, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS13, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS14, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_3_MCS15, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN1, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN2, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN3, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_3_UKNOWN4, value);
rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, reg);
rt2800_register_read(rt2x00dev, TX_PWR_CFG_4, &reg);
rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN5, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN6, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN7, value);
rt2x00_set_field32(&reg, TX_PWR_CFG_4_UKNOWN8, value);
rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, reg);
}
static void rt2800pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u32 reg;
rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
libconf->conf->short_frame_max_tx_count);
rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
libconf->conf->long_frame_max_tx_count);
rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
}
static void rt2800pci_config_ps(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
enum dev_state state =
(libconf->conf->flags & IEEE80211_CONF_PS) ?
STATE_SLEEP : STATE_AWAKE;
u32 reg;
if (state == STATE_SLEEP) {
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
libconf->conf->listen_interval - 1);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
} else {
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
}
}
static void rt2800pci_config(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf,
const unsigned int flags)
{
/* Always recalculate LNA gain before changing configuration */
rt2800pci_config_lna_gain(rt2x00dev, libconf);
if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
rt2800pci_config_channel(rt2x00dev, libconf->conf,
&libconf->rf, &libconf->channel);
if (flags & IEEE80211_CONF_CHANGE_POWER)
rt2800pci_config_txpower(rt2x00dev, libconf->conf->power_level);
if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
rt2800pci_config_retry_limit(rt2x00dev, libconf);
if (flags & IEEE80211_CONF_CHANGE_PS)
rt2800pci_config_ps(rt2x00dev, libconf);
}
/*
* Link tuning
*/
static void rt2800pci_link_stats(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual)
{
u32 reg;
/*
* Update FCS error count from register.
*/
rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
}
static u8 rt2800pci_get_default_vgc(struct rt2x00_dev *rt2x00dev)
{
if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)
return 0x2e + rt2x00dev->lna_gain;
if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
else
return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
}
static inline void rt2800pci_set_vgc(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual, u8 vgc_level)
{
if (qual->vgc_level != vgc_level) {
rt2800_bbp_write(rt2x00dev, 66, vgc_level);
qual->vgc_level = vgc_level;
qual->vgc_level_reg = vgc_level;
}
}
static void rt2800pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual)
{
rt2800pci_set_vgc(rt2x00dev, qual,
rt2800pci_get_default_vgc(rt2x00dev));
}
static void rt2800pci_link_tuner(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual, const u32 count)
{
if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION)
return;
/*
* When RSSI is better then -80 increase VGC level with 0x10
*/
rt2800pci_set_vgc(rt2x00dev, qual,
rt2800pci_get_default_vgc(rt2x00dev) +
((qual->rssi > -80) * 0x10));
}
/*
* Firmware functions
*/
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
return FIRMWARE_RT2860;
}
static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
u16 fw_crc;
u16 crc;
/*
* Only support 8kb firmware files.
*/
if (len != 8192)
return FW_BAD_LENGTH;
/*
* The last 2 bytes in the firmware array are the crc checksum itself,
* this means that we should never pass those 2 bytes to the crc
* algorithm.
*/
fw_crc = (data[len - 2] << 8 | data[len - 1]);
/*
* Use the crc ccitt algorithm.
* This will return the same value as the legacy driver which
* used bit ordering reversion on the both the firmware bytes
* before input input as well as on the final output.
* Obviously using crc ccitt directly is much more efficient.
*/
crc = crc_ccitt(~0, data, len - 2);
/*
* There is a small difference between the crc-itu-t + bitrev and
* the crc-ccitt crc calculation. In the latter method the 2 bytes
* will be swapped, use swab16 to convert the crc to the correct
* value.
*/
crc = swab16(crc);
return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
}
static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
unsigned int i;
u32 reg;
/*
* Wait for stable hardware.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
if (reg && reg != ~0)
break;
msleep(1);
}
if (i == REGISTER_BUSY_COUNT) {
ERROR(rt2x00dev, "Unstable hardware.\n");
return -EBUSY;
}
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
/*
* Disable DMA, will be reenabled later when enabling
* the radio.
*/
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
/*
* enable Host program ram write selection
*/
reg = 0;
rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
/*
* Write firmware to device.
*/
rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
data, len);
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
/*
* Wait for device to stabilize.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
break;
msleep(1);
}
if (i == REGISTER_BUSY_COUNT) {
ERROR(rt2x00dev, "PBF system register not ready.\n");
return -EBUSY;
}
/*
* Disable interrupts
*/
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
/*
* Initialize BBP R/W access agent
*/
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
return 0;
}
/*
* Initialization functions.
*/
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
u32 word;
if (entry->queue->qid == QID_RX) {
rt2x00_desc_read(entry_priv->desc, 1, &word);
return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
} else {
rt2x00_desc_read(entry_priv->desc, 1, &word);
return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
}
}
static void rt2800pci_clear_entry(struct queue_entry *entry)
{
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
u32 word;
if (entry->queue->qid == QID_RX) {
rt2x00_desc_read(entry_priv->desc, 0, &word);
rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
rt2x00_desc_write(entry_priv->desc, 0, word);
rt2x00_desc_read(entry_priv->desc, 1, &word);
rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
rt2x00_desc_write(entry_priv->desc, 1, word);
} else {
rt2x00_desc_read(entry_priv->desc, 1, &word);
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
rt2x00_desc_write(entry_priv->desc, 1, word);
}
}
static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
struct queue_entry_priv_pci *entry_priv;
u32 reg;
rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
/*
* Initialize registers.
*/
entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
entry_priv = rt2x00dev->rx->entries[0].priv_data;
rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
/*
* Enable global DMA configuration
*/
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
return 0;
}
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
unsigned int i;
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
if (rt2x00_rev(&rt2x00dev->chip) >= RT2880E_VERSION &&
rt2x00_rev(&rt2x00dev->chip) < RT3070_VERSION)
rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
else
rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 8);
rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 1);
rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 8);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 1);
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f);
rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
IEEE80211_MAX_RTS_THRESHOLD);
rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
/*
* ASIC will keep garbage value after boot, clear encryption keys.
*/
for (i = 0; i < 4; i++)
rt2800_register_write(rt2x00dev,
SHARED_KEY_MODE_ENTRY(i), 0);
for (i = 0; i < 256; i++) {
u32 wcid[2] = { 0xffffffff, 0x00ffffff };
rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
wcid, sizeof(wcid));
rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1);
rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
}
/*
* Clear all beacons
* For the Beacon base registers we only need to clear
* the first byte since that byte contains the VALID and OWNER
* bits which (when set to 0) will invalidate the entire beacon.
*/
rt2800_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
rt2800_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
rt2800_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
rt2800_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
rt2800_register_write(rt2x00dev, HW_BEACON_BASE4, 0);
rt2800_register_write(rt2x00dev, HW_BEACON_BASE5, 0);
rt2800_register_write(rt2x00dev, HW_BEACON_BASE6, 0);
rt2800_register_write(rt2x00dev, HW_BEACON_BASE7, 0);
rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
/*
* We must clear the error counters.
* These registers are cleared on read,
* so we may pass a useless variable to store the value.
*/
rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
return 0;
}
static int rt2800pci_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u32 reg;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
return 0;
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
return -EACCES;
}
static int rt2800pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u8 value;
/*
* BBP was enabled after firmware was loaded,
* but we need to reactivate it now.
*/
rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
msleep(1);
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_bbp_read(rt2x00dev, 0, &value);
if ((value != 0xff) && (value != 0x00))
return 0;
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
return -EACCES;
}
static int rt2800pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u16 eeprom;
u8 reg_id;
u8 value;
if (unlikely(rt2800pci_wait_bbp_rf_ready(rt2x00dev) ||
rt2800pci_wait_bbp_ready(rt2x00dev)))
return -EACCES;
rt2800_bbp_write(rt2x00dev, 65, 0x2c);
rt2800_bbp_write(rt2x00dev, 66, 0x38);
rt2800_bbp_write(rt2x00dev, 69, 0x12);
rt2800_bbp_write(rt2x00dev, 70, 0x0a);
rt2800_bbp_write(rt2x00dev, 73, 0x10);
rt2800_bbp_write(rt2x00dev, 81, 0x37);
rt2800_bbp_write(rt2x00dev, 82, 0x62);
rt2800_bbp_write(rt2x00dev, 83, 0x6a);
rt2800_bbp_write(rt2x00dev, 84, 0x99);
rt2800_bbp_write(rt2x00dev, 86, 0x00);
rt2800_bbp_write(rt2x00dev, 91, 0x04);
rt2800_bbp_write(rt2x00dev, 92, 0x00);
rt2800_bbp_write(rt2x00dev, 103, 0x00);
rt2800_bbp_write(rt2x00dev, 105, 0x05);
if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) {
rt2800_bbp_write(rt2x00dev, 69, 0x16);
rt2800_bbp_write(rt2x00dev, 73, 0x12);
}
if (rt2x00_rev(&rt2x00dev->chip) > RT2860D_VERSION)
rt2800_bbp_write(rt2x00dev, 84, 0x19);
if (rt2x00_rt(&rt2x00dev->chip, RT3052)) {
rt2800_bbp_write(rt2x00dev, 31, 0x08);
rt2800_bbp_write(rt2x00dev, 78, 0x0e);
rt2800_bbp_write(rt2x00dev, 80, 0x08);
}
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
if (eeprom != 0xffff && eeprom != 0x0000) {
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
rt2800_bbp_write(rt2x00dev, reg_id, value);
}
}
return 0;
}
static u8 rt2800pci_init_rx_filter(struct rt2x00_dev *rt2x00dev,
bool bw40, u8 rfcsr24, u8 filter_target)
{
unsigned int i;
u8 bbp;
u8 rfcsr;
u8 passband;
u8 stopband;
u8 overtuned = 0;
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
rt2800_bbp_read(rt2x00dev, 4, &bbp);
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
rt2800_bbp_write(rt2x00dev, 4, bbp);
rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
/*
* Set power & frequency of passband test tone
*/
rt2800_bbp_write(rt2x00dev, 24, 0);
for (i = 0; i < 100; i++) {
rt2800_bbp_write(rt2x00dev, 25, 0x90);
msleep(1);
rt2800_bbp_read(rt2x00dev, 55, &passband);
if (passband)
break;
}
/*
* Set power & frequency of stopband test tone
*/
rt2800_bbp_write(rt2x00dev, 24, 0x06);
for (i = 0; i < 100; i++) {
rt2800_bbp_write(rt2x00dev, 25, 0x90);
msleep(1);
rt2800_bbp_read(rt2x00dev, 55, &stopband);
if ((passband - stopband) <= filter_target) {
rfcsr24++;
overtuned += ((passband - stopband) == filter_target);
} else
break;
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
}
rfcsr24 -= !!overtuned;
rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
return rfcsr24;
}
static int rt2800pci_init_rfcsr(struct rt2x00_dev *rt2x00dev)
{
u8 rfcsr;
u8 bbp;
if (!rt2x00_rf(&rt2x00dev->chip, RF3020) &&
!rt2x00_rf(&rt2x00dev->chip, RF3021) &&
!rt2x00_rf(&rt2x00dev->chip, RF3022))
return 0;
/*
* Init RF calibration.
*/
rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
msleep(1);
rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
/*
* Set RX Filter calibration for 20MHz and 40MHz
*/
rt2x00dev->calibration[0] =
rt2800pci_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
rt2x00dev->calibration[1] =
rt2800pci_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
/*
* Set back to initial state
*/
rt2800_bbp_write(rt2x00dev, 24, 0);
rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
/*
* set BBP back to BW20
*/
rt2800_bbp_read(rt2x00dev, 4, &bbp);
rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
rt2800_bbp_write(rt2x00dev, 4, bbp);
return 0;
}
/*
* Device state switch handlers.
*/
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u32 reg;
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
(state == STATE_RADIO_RX_ON) ||
(state == STATE_RADIO_RX_ON_LINK));
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
}
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int mask = (state == STATE_RADIO_IRQ_ON);
u32 reg;
/*
* When interrupts are being enabled, the interrupt registers
* should clear the register to assure a clean state.
*/
if (state == STATE_RADIO_IRQ_ON) {
rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
}
rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
}
static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u32 reg;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
!rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
return 0;
msleep(1);
}
ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
return -EACCES;
}
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 word;
/*
* Initialize all registers.
*/
if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
rt2800pci_init_queues(rt2x00dev) ||
rt2800pci_init_registers(rt2x00dev) ||
rt2800pci_wait_wpdma_ready(rt2x00dev) ||
rt2800pci_init_bbp(rt2x00dev) ||
rt2800pci_init_rfcsr(rt2x00dev)))
return -EIO;
/*
* Send signal to firmware during boot time.
*/
rt2800pci_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
/*
* Enable RX.
*/
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
/*
* Initialize LED control
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
rt2800pci_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
word & 0xff, (word >> 8) & 0xff);
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
rt2800pci_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
word & 0xff, (word >> 8) & 0xff);
rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
rt2800pci_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
word & 0xff, (word >> 8) & 0xff);
return 0;
}
static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
/* Wait for DMA, ignore error */
rt2800pci_wait_wpdma_ready(rt2x00dev);
}
static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
/*
* Always put the device to sleep (even when we intend to wakeup!)
* if the device is booting and wasn't asleep it will return
* failure when attempting to wakeup.
*/
rt2800pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
if (state == STATE_AWAKE) {
rt2800pci_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
}
return 0;
}
static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int retval = 0;
switch (state) {
case STATE_RADIO_ON:
/*
* Before the radio can be enabled, the device first has
* to be woken up. After that it needs a bit of time
* to be fully awake and then the radio can be enabled.
*/
rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
msleep(1);
retval = rt2800pci_enable_radio(rt2x00dev);
break;
case STATE_RADIO_OFF:
/*
* After the radio has been disabled, the device should
* be put to sleep for powersaving.
*/
rt2800pci_disable_radio(rt2x00dev);
rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
break;
case STATE_RADIO_RX_ON:
case STATE_RADIO_RX_ON_LINK:
case STATE_RADIO_RX_OFF:
case STATE_RADIO_RX_OFF_LINK:
rt2800pci_toggle_rx(rt2x00dev, state);
break;
case STATE_RADIO_IRQ_ON:
case STATE_RADIO_IRQ_OFF:
rt2800pci_toggle_irq(rt2x00dev, state);
break;
case STATE_DEEP_SLEEP:
case STATE_SLEEP:
case STATE_STANDBY:
case STATE_AWAKE:
retval = rt2800pci_set_state(rt2x00dev, state);
break;
default:
retval = -ENOTSUPP;
break;
}
if (unlikely(retval))
ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
state, retval);
return retval;
}
/*
* TX descriptor initialization
*/
static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct txentry_desc *txdesc)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
__le32 *txd = skbdesc->desc;
__le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom);
u32 word;
/*
* Initialize TX Info descriptor
*/
rt2x00_desc_read(txwi, 0, &word);
rt2x00_set_field32(&word, TXWI_W0_FRAG,
test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
rt2x00_set_field32(&word, TXWI_W0_TS,
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_AMPDU,
test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
rt2x00_set_field32(&word, TXWI_W0_BW,
test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
rt2x00_desc_write(txwi, 0, word);
rt2x00_desc_read(txwi, 1, &word);
rt2x00_set_field32(&word, TXWI_W1_ACK,
test_bit(ENTRY_TXD_ACK, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W1_NSEQ,
test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
txdesc->key_idx : 0xff);
rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
skb->len - txdesc->l2pad);
rt2x00_set_field32(&word, TXWI_W1_PACKETID,
skbdesc->entry->queue->qid + 1);
rt2x00_desc_write(txwi, 1, word);
/*
* Always write 0 to IV/EIV fields, hardware will insert the IV
* from the IVEIV register when TXD_W3_WIV is set to 0.
* When TXD_W3_WIV is set to 1 it will use the IV data
* from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
* crypto entry in the registers should be used to encrypt the frame.
*/
_rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
_rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
/*
* The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
* must contains a TXWI structure + 802.11 header + padding + 802.11
* data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
* SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
* data. It means that LAST_SEC0 is always 0.
*/
/*
* Initialize TX descriptor
*/
rt2x00_desc_read(txd, 0, &word);
rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
rt2x00_desc_write(txd, 0, word);
rt2x00_desc_read(txd, 1, &word);
rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
!test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_BURST,
test_bit(ENTRY_TXD_BURST, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
rt2x00dev->hw->extra_tx_headroom);
rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
rt2x00_desc_write(txd, 1, word);
rt2x00_desc_read(txd, 2, &word);
rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom);
rt2x00_desc_write(txd, 2, word);
rt2x00_desc_read(txd, 3, &word);
rt2x00_set_field32(&word, TXD_W3_WIV,
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
rt2x00_desc_write(txd, 3, word);
}
/*
* TX data initialization
*/
static void rt2800pci_write_beacon(struct queue_entry *entry)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
unsigned int beacon_base;
u32 reg;
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
/*
* Write entire beacon with descriptor to register.
*/
beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
rt2800_register_multiwrite(rt2x00dev,
beacon_base,
skbdesc->desc, skbdesc->desc_len);
rt2800_register_multiwrite(rt2x00dev,
beacon_base + skbdesc->desc_len,
entry->skb->data, entry->skb->len);
/*
* Clean up beacon skb.
*/
dev_kfree_skb_any(entry->skb);
entry->skb = NULL;
}
static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
const enum data_queue_qid queue_idx)
{
struct data_queue *queue;
unsigned int idx, qidx = 0;
u32 reg;
if (queue_idx == QID_BEACON) {
rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
return;
}
if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
return;
queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
idx = queue->index[Q_INDEX];
if (queue_idx == QID_MGMT)
qidx = 5;
else
qidx = queue_idx;
rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
}
static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
const enum data_queue_qid qid)
{
u32 reg;
if (qid == QID_BEACON) {
rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
return;
}
rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
}
/*
* RX control handlers
*/
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct queue_entry_priv_pci *entry_priv = entry->priv_data;
__le32 *rxd = entry_priv->desc;
__le32 *rxwi = (__le32 *)entry->skb->data;
u32 rxd3;
u32 rxwi0;
u32 rxwi1;
u32 rxwi2;
u32 rxwi3;
rt2x00_desc_read(rxd, 3, &rxd3);
rt2x00_desc_read(rxwi, 0, &rxwi0);
rt2x00_desc_read(rxwi, 1, &rxwi1);
rt2x00_desc_read(rxwi, 2, &rxwi2);
rt2x00_desc_read(rxwi, 3, &rxwi3);
if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
/*
* Unfortunately we don't know the cipher type used during
* decryption. This prevents us from correct providing
* correct statistics through debugfs.
*/
rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
rxdesc->cipher_status =
rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
}
if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
/*
* Hardware has stripped IV/EIV data from 802.11 frame during
* decryption. Unfortunately the descriptor doesn't contain
* any fields with the EIV/IV data either, so they can't
* be restored by rt2x00lib.
*/
rxdesc->flags |= RX_FLAG_IV_STRIPPED;
if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
rxdesc->flags |= RX_FLAG_DECRYPTED;
else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
rxdesc->flags |= RX_FLAG_MMIC_ERROR;
}
if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
rxdesc->dev_flags |= RXDONE_MY_BSS;
if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) {
rxdesc->dev_flags |= RXDONE_L2PAD;
skbdesc->flags |= SKBDESC_L2_PADDED;
}
if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
rxdesc->flags |= RX_FLAG_SHORT_GI;
if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
rxdesc->flags |= RX_FLAG_40MHZ;
/*
* Detect RX rate, always use MCS as signal type.
*/
rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
/*
* Mask of 0x8 bit to remove the short preamble flag.
*/
if (rxdesc->rate_mode == RATE_MODE_CCK)
rxdesc->signal &= ~0x8;
rxdesc->rssi =
(rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
rxdesc->noise =
(rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
/*
* Set RX IDX in register to inform hardware that we have handled
* this entry and it is available for reuse again.
*/
rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
/*
* Remove TXWI descriptor from start of buffer.
*/
skb_pull(entry->skb, RXWI_DESC_SIZE);
skb_trim(entry->skb, rxdesc->size);
}
/*
* Interrupt functions.
*/
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
struct queue_entry *entry;
struct queue_entry *entry_done;
struct queue_entry_priv_pci *entry_priv;
struct txdone_entry_desc txdesc;
u32 word;
u32 reg;
u32 old_reg;
unsigned int type;
unsigned int index;
u16 mcs, real_mcs;
/*
* During each loop we will compare the freshly read
* TX_STA_FIFO register value with the value read from
* the previous loop. If the 2 values are equal then
* we should stop processing because the chance it
* quite big that the device has been unplugged and
* we risk going into an endless loop.
*/
old_reg = 0;
while (1) {
rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
break;
if (old_reg == reg)
break;
old_reg = reg;
/*
* Skip this entry when it contains an invalid
* queue identication number.
*/
type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
if (type >= QID_RX)
continue;
queue = rt2x00queue_get_queue(rt2x00dev, type);
if (unlikely(!queue))
continue;
/*
* Skip this entry when it contains an invalid
* index number.
*/
index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
if (unlikely(index >= queue->limit))
continue;
entry = &queue->entries[index];
entry_priv = entry->priv_data;
rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
while (entry != entry_done) {
/*
* Catch up.
* Just report any entries we missed as failed.
*/
WARNING(rt2x00dev,
"TX status report missed for entry %d\n",
entry_done->entry_idx);
txdesc.flags = 0;
__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
txdesc.retry = 0;
rt2x00lib_txdone(entry_done, &txdesc);
entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
}
/*
* Obtain the status about this packet.
*/
txdesc.flags = 0;
if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
__set_bit(TXDONE_SUCCESS, &txdesc.flags);
else
__set_bit(TXDONE_FAILURE, &txdesc.flags);
/*
* Ralink has a retry mechanism using a global fallback
* table. We setup this fallback table to try immediate
* lower rate for all rates. In the TX_STA_FIFO,
* the MCS field contains the MCS used for the successfull
* transmission. If the first transmission succeed,
* we have mcs == tx_mcs. On the second transmission,
* we have mcs = tx_mcs - 1. So the number of
* retry is (tx_mcs - mcs).
*/
mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
__set_bit(TXDONE_FALLBACK, &txdesc.flags);
txdesc.retry = mcs - min(mcs, real_mcs);
rt2x00lib_txdone(entry, &txdesc);
}
}
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
struct rt2x00_dev *rt2x00dev = dev_instance;
u32 reg;
/* Read status and ACK all interrupts */
rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
if (!reg)
return IRQ_NONE;
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return IRQ_HANDLED;
/*
* 1 - Rx ring done interrupt.
*/
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
rt2x00pci_rxdone(rt2x00dev);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
rt2800pci_txdone(rt2x00dev);
return IRQ_HANDLED;
}
/*
* Device probe functions.
*/
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
u16 word;
u8 *mac;
u8 default_lna_gain;
/*
* Read EEPROM into buffer
*/
switch(rt2x00dev->chip.rt) {
case RT2880:
case RT3052:
rt2800pci_read_eeprom_soc(rt2x00dev);
break;
case RT3090:
rt2800pci_read_eeprom_efuse(rt2x00dev);
break;
default:
rt2800pci_read_eeprom_pci(rt2x00dev);
break;
}
/*
* Start validation of the data that has been read.
*/
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
if (!is_valid_ether_addr(mac)) {
random_ether_addr(mac);
EEPROM(rt2x00dev, "MAC: %pM\n", mac);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
} else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
/*
* There is a max of 2 RX streams for RT2860 series
*/
if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
if ((word & 0x00ff) == 0x00ff) {
rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
LED_MODE_TXRX_ACTIVITY);
rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
}
/*
* During the LNA validation we are going to use
* lna0 as correct value. Note that EEPROM_LNA
* is never validated.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
default_lna_gain);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
default_lna_gain);
rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
return 0;
}
static int rt2800pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
u16 value;
u16 eeprom;
/*
* Read EEPROM word for configuration.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
/*
* Identify RF chipset.
*/
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
rt2x00_set_chip_rf(rt2x00dev, value, reg);
if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
!rt2x00_rf(&rt2x00dev->chip, RF2850) &&
!rt2x00_rf(&rt2x00dev->chip, RF2720) &&
!rt2x00_rf(&rt2x00dev->chip, RF2750) &&
!rt2x00_rf(&rt2x00dev->chip, RF3020) &&
!rt2x00_rf(&rt2x00dev->chip, RF2020) &&
!rt2x00_rf(&rt2x00dev->chip, RF3021) &&
!rt2x00_rf(&rt2x00dev->chip, RF3022)) {
ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
return -ENODEV;
}
/*
* Identify default antenna configuration.
*/
rt2x00dev->default_ant.tx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
rt2x00dev->default_ant.rx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
/*
* Read frequency offset and RF programming sequence.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
/*
* Read external LNA informations.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
/*
* Detect if this device has an hardware controlled radio.
*/
if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
/*
* Store led settings, for correct led behaviour.
*/
#ifdef CONFIG_RT2X00_LIB_LEDS
rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
rt2800pci_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
#endif /* CONFIG_RT2X00_LIB_LEDS */
return 0;
}
/*
* RF value list for rt2860
* Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
*/
static const struct rf_channel rf_vals[] = {
{ 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
{ 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
{ 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
{ 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
{ 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
{ 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
{ 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
{ 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
{ 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
/* 802.11 UNI / HyperLan 2 */
{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
/* 802.11 HyperLan 2 */
{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
/* 802.11 UNII */
{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
/* 802.11 Japan */
{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
};
static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
struct channel_info *info;
char *tx_power1;
char *tx_power2;
unsigned int i;
u16 eeprom;
/*
* Initialize all hw fields.
*/
rt2x00dev->hw->flags =
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK;
rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE;
SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
rt2x00_eeprom_addr(rt2x00dev,
EEPROM_MAC_ADDR_0));
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
/*
* Initialize hw_mode information.
*/
spec->supported_bands = SUPPORT_BAND_2GHZ;
spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
if (rt2x00_rf(&rt2x00dev->chip, RF2820) ||
rt2x00_rf(&rt2x00dev->chip, RF2720) ||
rt2x00_rf(&rt2x00dev->chip, RF3020) ||
rt2x00_rf(&rt2x00dev->chip, RF3021) ||
rt2x00_rf(&rt2x00dev->chip, RF3022) ||
rt2x00_rf(&rt2x00dev->chip, RF2020) ||
rt2x00_rf(&rt2x00dev->chip, RF3052)) {
spec->num_channels = 14;
spec->channels = rf_vals;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2850) ||
rt2x00_rf(&rt2x00dev->chip, RF2750)) {
spec->supported_bands |= SUPPORT_BAND_5GHZ;
spec->num_channels = ARRAY_SIZE(rf_vals);
spec->channels = rf_vals;
}
/*
* Initialize HT information.
*/
spec->ht.ht_supported = true;
spec->ht.cap =
IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_GRN_FLD |
IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_TX_STBC |
IEEE80211_HT_CAP_RX_STBC |
IEEE80211_HT_CAP_PSMP_SUPPORT;
spec->ht.ampdu_factor = 3;
spec->ht.ampdu_density = 4;
spec->ht.mcs.tx_params =
IEEE80211_HT_MCS_TX_DEFINED |
IEEE80211_HT_MCS_TX_RX_DIFF |
((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
case 3:
spec->ht.mcs.rx_mask[2] = 0xff;
case 2:
spec->ht.mcs.rx_mask[1] = 0xff;
case 1:
spec->ht.mcs.rx_mask[0] = 0xff;
spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
break;
}
/*
* Create channel information array
*/
info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
spec->channels_info = info;
tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
for (i = 0; i < 14; i++) {
info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
}
if (spec->num_channels > 14) {
tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
for (i = 14; i < spec->num_channels; i++) {
info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
}
}
return 0;
}
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
int retval;
/*
* Allocate eeprom data.
*/
retval = rt2800pci_validate_eeprom(rt2x00dev);
if (retval)
return retval;
retval = rt2800pci_init_eeprom(rt2x00dev);
if (retval)
return retval;
/*
* Initialize hw specifications.
*/
retval = rt2800pci_probe_hw_mode(rt2x00dev);
if (retval)
return retval;
/*
* This device has multiple filters for control frames
* and has a separate filter for PS Poll frames.
*/
__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
/*
* This device requires firmware.
*/
if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
!rt2x00_rt(&rt2x00dev->chip, RT3052))
__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
if (!modparam_nohwcrypt)
__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
/*
* Set the rssi offset.
*/
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
return 0;
}
/*
* IEEE80211 stack callback functions.
*/
static void rt2800pci_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx,
u32 *iv32, u16 *iv16)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
struct mac_iveiv_entry iveiv_entry;
u32 offset;
offset = MAC_IVEIV_ENTRY(hw_key_idx);
rt2800_register_multiread(rt2x00dev, offset,
&iveiv_entry, sizeof(iveiv_entry));
memcpy(&iveiv_entry.iv[0], iv16, sizeof(iv16));
memcpy(&iveiv_entry.iv[4], iv32, sizeof(iv32));
}
static int rt2800pci_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
u32 reg;
bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
return 0;
}
static int rt2800pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
const struct ieee80211_tx_queue_params *params)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
struct data_queue *queue;
struct rt2x00_field32 field;
int retval;
u32 reg;
u32 offset;
/*
* First pass the configuration through rt2x00lib, that will
* update the queue settings and validate the input. After that
* we are free to update the registers based on the value
* in the queue parameter.
*/
retval = rt2x00mac_conf_tx(hw, queue_idx, params);
if (retval)
return retval;
/*
* We only need to perform additional register initialization
* for WMM queues/
*/
if (queue_idx >= 4)
return 0;
queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
/* Update WMM TXOP register */
offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
field.bit_offset = (queue_idx & 1) * 16;
field.bit_mask = 0xffff << field.bit_offset;
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, field, queue->txop);
rt2800_register_write(rt2x00dev, offset, reg);
/* Update WMM registers */
field.bit_offset = queue_idx * 4;
field.bit_mask = 0xf << field.bit_offset;
rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
rt2x00_set_field32(&reg, field, queue->aifs);
rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
rt2x00_set_field32(&reg, field, queue->cw_min);
rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
rt2x00_set_field32(&reg, field, queue->cw_max);
rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
/* Update EDCA registers */
offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
rt2800_register_read(rt2x00dev, offset, &reg);
rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
rt2800_register_write(rt2x00dev, offset, reg);
return 0;
}
static u64 rt2800pci_get_tsf(struct ieee80211_hw *hw)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
u64 tsf;
u32 reg;
rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
return tsf;
}
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
.tx = rt2x00mac_tx,
.start = rt2x00mac_start,
.stop = rt2x00mac_stop,
.add_interface = rt2x00mac_add_interface,
.remove_interface = rt2x00mac_remove_interface,
.config = rt2x00mac_config,
.configure_filter = rt2x00mac_configure_filter,
.set_key = rt2x00mac_set_key,
.get_stats = rt2x00mac_get_stats,
.get_tkip_seq = rt2800pci_get_tkip_seq,
.set_rts_threshold = rt2800pci_set_rts_threshold,
.bss_info_changed = rt2x00mac_bss_info_changed,
.conf_tx = rt2800pci_conf_tx,
.get_tx_stats = rt2x00mac_get_tx_stats,
.get_tsf = rt2800pci_get_tsf,
.rfkill_poll = rt2x00mac_rfkill_poll,
};
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
.irq_handler = rt2800pci_interrupt,
.probe_hw = rt2800pci_probe_hw,
.get_firmware_name = rt2800pci_get_firmware_name,
.check_firmware = rt2800pci_check_firmware,
.load_firmware = rt2800pci_load_firmware,
.initialize = rt2x00pci_initialize,
.uninitialize = rt2x00pci_uninitialize,
.get_entry_state = rt2800pci_get_entry_state,
.clear_entry = rt2800pci_clear_entry,
.set_device_state = rt2800pci_set_device_state,
.rfkill_poll = rt2800pci_rfkill_poll,
.link_stats = rt2800pci_link_stats,
.reset_tuner = rt2800pci_reset_tuner,
.link_tuner = rt2800pci_link_tuner,
.write_tx_desc = rt2800pci_write_tx_desc,
.write_tx_data = rt2x00pci_write_tx_data,
.write_beacon = rt2800pci_write_beacon,
.kick_tx_queue = rt2800pci_kick_tx_queue,
.kill_tx_queue = rt2800pci_kill_tx_queue,
.fill_rxdone = rt2800pci_fill_rxdone,
.config_shared_key = rt2800pci_config_shared_key,
.config_pairwise_key = rt2800pci_config_pairwise_key,
.config_filter = rt2800pci_config_filter,
.config_intf = rt2800pci_config_intf,
.config_erp = rt2800pci_config_erp,
.config_ant = rt2800pci_config_ant,
.config = rt2800pci_config,
};
static const struct data_queue_desc rt2800pci_queue_rx = {
.entry_num = RX_ENTRIES,
.data_size = AGGREGATION_SIZE,
.desc_size = RXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_pci),
};
static const struct data_queue_desc rt2800pci_queue_tx = {
.entry_num = TX_ENTRIES,
.data_size = AGGREGATION_SIZE,
.desc_size = TXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_pci),
};
static const struct data_queue_desc rt2800pci_queue_bcn = {
.entry_num = 8 * BEACON_ENTRIES,
.data_size = 0, /* No DMA required for beacons */
.desc_size = TXWI_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_pci),
};
static const struct rt2x00_ops rt2800pci_ops = {
.name = KBUILD_MODNAME,
.max_sta_intf = 1,
.max_ap_intf = 8,
.eeprom_size = EEPROM_SIZE,
.rf_size = RF_SIZE,
.tx_queues = NUM_TX_QUEUES,
.rx = &rt2800pci_queue_rx,
.tx = &rt2800pci_queue_tx,
.bcn = &rt2800pci_queue_bcn,
.lib = &rt2800pci_rt2x00_ops,
.hw = &rt2800pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
.debugfs = &rt2800pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* RT2800pci module information.
*/
static struct pci_device_id rt2800pci_device_table[] = {
{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
{ 0, }
};
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_RT2800PCI_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_RT2800PCI_PCI */
MODULE_LICENSE("GPL");
#ifdef CONFIG_RT2800PCI_WISOC
#if defined(CONFIG_RALINK_RT288X)
__rt2x00soc_probe(RT2880, &rt2800pci_ops);
#elif defined(CONFIG_RALINK_RT305X)
__rt2x00soc_probe(RT3052, &rt2800pci_ops);
#endif
static struct platform_driver rt2800soc_driver = {
.driver = {
.name = "rt2800_wmac",
.owner = THIS_MODULE,
.mod_name = KBUILD_MODNAME,
},
.probe = __rt2x00soc_probe,
.remove = __devexit_p(rt2x00soc_remove),
.suspend = rt2x00soc_suspend,
.resume = rt2x00soc_resume,
};
#endif /* CONFIG_RT2800PCI_WISOC */
#ifdef CONFIG_RT2800PCI_PCI
static struct pci_driver rt2800pci_driver = {
.name = KBUILD_MODNAME,
.id_table = rt2800pci_device_table,
.probe = rt2x00pci_probe,
.remove = __devexit_p(rt2x00pci_remove),
.suspend = rt2x00pci_suspend,
.resume = rt2x00pci_resume,
};
#endif /* CONFIG_RT2800PCI_PCI */
static int __init rt2800pci_init(void)
{
int ret = 0;
#ifdef CONFIG_RT2800PCI_WISOC
ret = platform_driver_register(&rt2800soc_driver);
if (ret)
return ret;
#endif
#ifdef CONFIG_RT2800PCI_PCI
ret = pci_register_driver(&rt2800pci_driver);
if (ret) {
#ifdef CONFIG_RT2800PCI_WISOC
platform_driver_unregister(&rt2800soc_driver);
#endif
return ret;
}
#endif
return ret;
}
static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_RT2800PCI_PCI
pci_unregister_driver(&rt2800pci_driver);
#endif
#ifdef CONFIG_RT2800PCI_WISOC
platform_driver_unregister(&rt2800soc_driver);
#endif
}
module_init(rt2800pci_init);
module_exit(rt2800pci_exit);