linux/mm/migrate_device.c

976 lines
27 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Device Memory Migration functionality.
*
* Originally written by Jérôme Glisse.
*/
#include <linux/export.h>
#include <linux/memremap.h>
#include <linux/migrate.h>
mm/migrate_device.c: copy pte dirty bit to page migrate_vma_setup() has a fast path in migrate_vma_collect_pmd() that installs migration entries directly if it can lock the migrating page. When removing a dirty pte the dirty bit is supposed to be carried over to the underlying page to prevent it being lost. Currently migrate_vma_*() can only be used for private anonymous mappings. That means loss of the dirty bit usually doesn't result in data loss because these pages are typically not file-backed. However pages may be backed by swap storage which can result in data loss if an attempt is made to migrate a dirty page that doesn't yet have the PageDirty flag set. In this case migration will fail due to unexpected references but the dirty pte bit will be lost. If the page is subsequently reclaimed data won't be written back to swap storage as it is considered uptodate, resulting in data loss if the page is subsequently accessed. Prevent this by copying the dirty bit to the page when removing the pte to match what try_to_migrate_one() does. Link: https://lkml.kernel.org/r/dd48e4882ce859c295c1a77612f66d198b0403f9.1662078528.git-series.apopple@nvidia.com Fixes: 8c3328f1f36a ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reported-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: huang ying <huang.ying.caritas@gmail.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-02 08:35:53 +08:00
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/mmu_notifier.h>
#include <linux/oom.h>
#include <linux/pagewalk.h>
#include <linux/rmap.h>
#include <linux/swapops.h>
#include <asm/tlbflush.h>
#include "internal.h"
static int migrate_vma_collect_skip(unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
unsigned long addr;
for (addr = start; addr < end; addr += PAGE_SIZE) {
migrate->dst[migrate->npages] = 0;
migrate->src[migrate->npages++] = 0;
}
return 0;
}
static int migrate_vma_collect_hole(unsigned long start,
unsigned long end,
__always_unused int depth,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
unsigned long addr;
/* Only allow populating anonymous memory. */
if (!vma_is_anonymous(walk->vma))
return migrate_vma_collect_skip(start, end, walk);
for (addr = start; addr < end; addr += PAGE_SIZE) {
migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
migrate->dst[migrate->npages] = 0;
migrate->npages++;
migrate->cpages++;
}
return 0;
}
static int migrate_vma_collect_pmd(pmd_t *pmdp,
unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
struct vm_area_struct *vma = walk->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = start, unmapped = 0;
spinlock_t *ptl;
pte_t *ptep;
again:
if (pmd_none(*pmdp))
return migrate_vma_collect_hole(start, end, -1, walk);
if (pmd_trans_huge(*pmdp)) {
struct page *page;
ptl = pmd_lock(mm, pmdp);
if (unlikely(!pmd_trans_huge(*pmdp))) {
spin_unlock(ptl);
goto again;
}
page = pmd_page(*pmdp);
if (is_huge_zero_page(page)) {
spin_unlock(ptl);
split_huge_pmd(vma, pmdp, addr);
if (pmd_trans_unstable(pmdp))
return migrate_vma_collect_skip(start, end,
walk);
} else {
int ret;
get_page(page);
spin_unlock(ptl);
if (unlikely(!trylock_page(page)))
return migrate_vma_collect_skip(start, end,
walk);
ret = split_huge_page(page);
unlock_page(page);
put_page(page);
if (ret)
return migrate_vma_collect_skip(start, end,
walk);
if (pmd_none(*pmdp))
return migrate_vma_collect_hole(start, end, -1,
walk);
}
}
if (unlikely(pmd_bad(*pmdp)))
return migrate_vma_collect_skip(start, end, walk);
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
arch_enter_lazy_mmu_mode();
for (; addr < end; addr += PAGE_SIZE, ptep++) {
unsigned long mpfn = 0, pfn;
struct page *page;
swp_entry_t entry;
pte_t pte;
pte = *ptep;
if (pte_none(pte)) {
if (vma_is_anonymous(vma)) {
mpfn = MIGRATE_PFN_MIGRATE;
migrate->cpages++;
}
goto next;
}
if (!pte_present(pte)) {
/*
* Only care about unaddressable device page special
* page table entry. Other special swap entries are not
* migratable, and we ignore regular swapped page.
*/
entry = pte_to_swp_entry(pte);
if (!is_device_private_entry(entry))
goto next;
page = pfn_swap_entry_to_page(entry);
if (!(migrate->flags &
MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
page->pgmap->owner != migrate->pgmap_owner)
goto next;
mpfn = migrate_pfn(page_to_pfn(page)) |
MIGRATE_PFN_MIGRATE;
if (is_writable_device_private_entry(entry))
mpfn |= MIGRATE_PFN_WRITE;
} else {
pfn = pte_pfn(pte);
if (is_zero_pfn(pfn) &&
(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
mpfn = MIGRATE_PFN_MIGRATE;
migrate->cpages++;
goto next;
}
page = vm_normal_page(migrate->vma, addr, pte);
if (page && !is_zone_device_page(page) &&
!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
goto next;
else if (page && is_device_coherent_page(page) &&
(!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
page->pgmap->owner != migrate->pgmap_owner))
goto next;
mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
}
/* FIXME support THP */
if (!page || !page->mapping || PageTransCompound(page)) {
mpfn = 0;
goto next;
}
/*
* By getting a reference on the page we pin it and that blocks
* any kind of migration. Side effect is that it "freezes" the
* pte.
*
* We drop this reference after isolating the page from the lru
* for non device page (device page are not on the lru and thus
* can't be dropped from it).
*/
get_page(page);
/*
* We rely on trylock_page() to avoid deadlock between
* concurrent migrations where each is waiting on the others
* page lock. If we can't immediately lock the page we fail this
* migration as it is only best effort anyway.
*
* If we can lock the page it's safe to set up a migration entry
* now. In the common case where the page is mapped once in a
* single process setting up the migration entry now is an
* optimisation to avoid walking the rmap later with
* try_to_migrate().
*/
if (trylock_page(page)) {
mm: remember exclusively mapped anonymous pages with PG_anon_exclusive Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as exclusive, and use that information to make GUP pins reliable and stay consistent with the page mapped into the page table even if the page table entry gets write-protected. With that information at hand, we can extend our COW logic to always reuse anonymous pages that are exclusive. For anonymous pages that might be shared, the existing logic applies. As already documented, PG_anon_exclusive is usually only expressive in combination with a page table entry. Especially PTE vs. PMD-mapped anonymous pages require more thought, some examples: due to mremap() we can easily have a single compound page PTE-mapped into multiple page tables exclusively in a single process -- multiple page table locks apply. Further, due to MADV_WIPEONFORK we might not necessarily write-protect all PTEs, and only some subpages might be pinned. Long story short: once PTE-mapped, we have to track information about exclusivity per sub-page, but until then, we can just track it for the compound page in the head page and not having to update a whole bunch of subpages all of the time for a simple PMD mapping of a THP. For simplicity, this commit mostly talks about "anonymous pages", while it's for THP actually "the part of an anonymous folio referenced via a page table entry". To not spill PG_anon_exclusive code all over the mm code-base, we let the anon rmap code to handle all PG_anon_exclusive logic it can easily handle. If a writable, present page table entry points at an anonymous (sub)page, that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably pin (FOLL_PIN) on an anonymous page references via a present page table entry, it must only pin if PG_anon_exclusive is set for the mapped (sub)page. This commit doesn't adjust GUP, so this is only implicitly handled for FOLL_WRITE, follow-up commits will teach GUP to also respect it for FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully reliable. Whenever an anonymous page is to be shared (fork(), KSM), or when temporarily unmapping an anonymous page (swap, migration), the relevant PG_anon_exclusive bit has to be cleared to mark the anonymous page possibly shared. Clearing will fail if there are GUP pins on the page: * For fork(), this means having to copy the page and not being able to share it. fork() protects against concurrent GUP using the PT lock and the src_mm->write_protect_seq. * For KSM, this means sharing will fail. For swap this means, unmapping will fail, For migration this means, migration will fail early. All three cases protect against concurrent GUP using the PT lock and a proper clear/invalidate+flush of the relevant page table entry. This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a pinned page gets mapped R/O and the successive write fault ends up replacing the page instead of reusing it. It improves the situation for O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if fork() is *not* involved, however swapout and fork() are still problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP users will fix the issue for them. I. Details about basic handling I.1. Fresh anonymous pages page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the given page exclusive via __page_set_anon_rmap(exclusive=1). As that is the mechanism fresh anonymous pages come into life (besides migration code where we copy the page->mapping), all fresh anonymous pages will start out as exclusive. I.2. COW reuse handling of anonymous pages When a COW handler stumbles over a (sub)page that's marked exclusive, it simply reuses it. Otherwise, the handler tries harder under page lock to detect if the (sub)page is exclusive and can be reused. If exclusive, page_move_anon_rmap() will mark the given (sub)page exclusive. Note that hugetlb code does not yet check for PageAnonExclusive(), as it still uses the old COW logic that is prone to the COW security issue because hugetlb code cannot really tolerate unnecessary/wrong COW as huge pages are a scarce resource. I.3. Migration handling try_to_migrate() has to try marking an exclusive anonymous page shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. migrate_vma_collect_pmd() and __split_huge_pmd_locked() are handled similarly. Writable migration entries implicitly point at shared anonymous pages. For readable migration entries that information is stored via a new "readable-exclusive" migration entry, specific to anonymous pages. When restoring a migration entry in remove_migration_pte(), information about exlusivity is detected via the migration entry type, and RMAP_EXCLUSIVE is set accordingly for page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information. I.4. Swapout handling try_to_unmap() has to try marking the mapped page possibly shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. For now, information about exclusivity is lost. In the future, we might want to remember that information in the swap entry in some cases, however, it requires more thought, care, and a way to store that information in swap entries. I.5. Swapin handling do_swap_page() will never stumble over exclusive anonymous pages in the swap cache, as try_to_migrate() prohibits that. do_swap_page() always has to detect manually if an anonymous page is exclusive and has to set RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly. I.6. THP handling __split_huge_pmd_locked() has to move the information about exclusivity from the PMD to the PTEs. a) In case we have a readable-exclusive PMD migration entry, simply insert readable-exclusive PTE migration entries. b) In case we have a present PMD entry and we don't want to freeze ("convert to migration entries"), simply forward PG_anon_exclusive to all sub-pages, no need to temporarily clear the bit. c) In case we have a present PMD entry and want to freeze, handle it similar to try_to_migrate(): try marking the page shared first. In case we fail, we ignore the "freeze" instruction and simply split ordinarily. try_to_migrate() will properly fail because the THP is still mapped via PTEs. When splitting a compound anonymous folio (THP), the information about exclusivity is implicitly handled via the migration entries: no need to replicate PG_anon_exclusive manually. I.7. fork() handling fork() handling is relatively easy, because PG_anon_exclusive is only expressive for some page table entry types. a) Present anonymous pages page_try_dup_anon_rmap() will mark the given subpage shared -- which will fail if the page is pinned. If it failed, we have to copy (or PTE-map a PMD to handle it on the PTE level). Note that device exclusive entries are just a pointer at a PageAnon() page. fork() will first convert a device exclusive entry to a present page table and handle it just like present anonymous pages. b) Device private entry Device private entries point at PageAnon() pages that cannot be mapped directly and, therefore, cannot get pinned. page_try_dup_anon_rmap() will mark the given subpage shared, which cannot fail because they cannot get pinned. c) HW poison entries PG_anon_exclusive will remain untouched and is stale -- the page table entry is just a placeholder after all. d) Migration entries Writable and readable-exclusive entries are converted to readable entries: possibly shared. I.8. mprotect() handling mprotect() only has to properly handle the new readable-exclusive migration entry: When write-protecting a migration entry that points at an anonymous page, remember the information about exclusivity via the "readable-exclusive" migration entry type. II. Migration and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a migration entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_migrate() places a migration entry after checking for GUP pins and marks the page possibly shared. 2. GUP-fast pins the page due to lack of synchronization 3. fork() converts the "writable/readable-exclusive" migration entry into a readable migration entry 4. Migration fails due to the GUP pin (failing to freeze the refcount) 5. Migration entries are restored. PG_anon_exclusive is lost -> We have a pinned page that is not marked exclusive anymore. Note that we move information about exclusivity from the page to the migration entry as it otherwise highly overcomplicates fork() and PTE-mapping a THP. III. Swapout and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a swap entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_unmap() places a swap entry after checking for GUP pins and clears exclusivity information on the page. 2. GUP-fast pins the page due to lack of synchronization. -> We have a pinned page that is not marked exclusive anymore. If we'd ever store information about exclusivity in the swap entry, similar to migration handling, the same considerations as in II would apply. This is future work. Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 09:20:44 +08:00
bool anon_exclusive;
pte_t swp_pte;
flush_cache_page(vma, addr, pte_pfn(*ptep));
mm: remember exclusively mapped anonymous pages with PG_anon_exclusive Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as exclusive, and use that information to make GUP pins reliable and stay consistent with the page mapped into the page table even if the page table entry gets write-protected. With that information at hand, we can extend our COW logic to always reuse anonymous pages that are exclusive. For anonymous pages that might be shared, the existing logic applies. As already documented, PG_anon_exclusive is usually only expressive in combination with a page table entry. Especially PTE vs. PMD-mapped anonymous pages require more thought, some examples: due to mremap() we can easily have a single compound page PTE-mapped into multiple page tables exclusively in a single process -- multiple page table locks apply. Further, due to MADV_WIPEONFORK we might not necessarily write-protect all PTEs, and only some subpages might be pinned. Long story short: once PTE-mapped, we have to track information about exclusivity per sub-page, but until then, we can just track it for the compound page in the head page and not having to update a whole bunch of subpages all of the time for a simple PMD mapping of a THP. For simplicity, this commit mostly talks about "anonymous pages", while it's for THP actually "the part of an anonymous folio referenced via a page table entry". To not spill PG_anon_exclusive code all over the mm code-base, we let the anon rmap code to handle all PG_anon_exclusive logic it can easily handle. If a writable, present page table entry points at an anonymous (sub)page, that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably pin (FOLL_PIN) on an anonymous page references via a present page table entry, it must only pin if PG_anon_exclusive is set for the mapped (sub)page. This commit doesn't adjust GUP, so this is only implicitly handled for FOLL_WRITE, follow-up commits will teach GUP to also respect it for FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully reliable. Whenever an anonymous page is to be shared (fork(), KSM), or when temporarily unmapping an anonymous page (swap, migration), the relevant PG_anon_exclusive bit has to be cleared to mark the anonymous page possibly shared. Clearing will fail if there are GUP pins on the page: * For fork(), this means having to copy the page and not being able to share it. fork() protects against concurrent GUP using the PT lock and the src_mm->write_protect_seq. * For KSM, this means sharing will fail. For swap this means, unmapping will fail, For migration this means, migration will fail early. All three cases protect against concurrent GUP using the PT lock and a proper clear/invalidate+flush of the relevant page table entry. This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a pinned page gets mapped R/O and the successive write fault ends up replacing the page instead of reusing it. It improves the situation for O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if fork() is *not* involved, however swapout and fork() are still problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP users will fix the issue for them. I. Details about basic handling I.1. Fresh anonymous pages page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the given page exclusive via __page_set_anon_rmap(exclusive=1). As that is the mechanism fresh anonymous pages come into life (besides migration code where we copy the page->mapping), all fresh anonymous pages will start out as exclusive. I.2. COW reuse handling of anonymous pages When a COW handler stumbles over a (sub)page that's marked exclusive, it simply reuses it. Otherwise, the handler tries harder under page lock to detect if the (sub)page is exclusive and can be reused. If exclusive, page_move_anon_rmap() will mark the given (sub)page exclusive. Note that hugetlb code does not yet check for PageAnonExclusive(), as it still uses the old COW logic that is prone to the COW security issue because hugetlb code cannot really tolerate unnecessary/wrong COW as huge pages are a scarce resource. I.3. Migration handling try_to_migrate() has to try marking an exclusive anonymous page shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. migrate_vma_collect_pmd() and __split_huge_pmd_locked() are handled similarly. Writable migration entries implicitly point at shared anonymous pages. For readable migration entries that information is stored via a new "readable-exclusive" migration entry, specific to anonymous pages. When restoring a migration entry in remove_migration_pte(), information about exlusivity is detected via the migration entry type, and RMAP_EXCLUSIVE is set accordingly for page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information. I.4. Swapout handling try_to_unmap() has to try marking the mapped page possibly shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. For now, information about exclusivity is lost. In the future, we might want to remember that information in the swap entry in some cases, however, it requires more thought, care, and a way to store that information in swap entries. I.5. Swapin handling do_swap_page() will never stumble over exclusive anonymous pages in the swap cache, as try_to_migrate() prohibits that. do_swap_page() always has to detect manually if an anonymous page is exclusive and has to set RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly. I.6. THP handling __split_huge_pmd_locked() has to move the information about exclusivity from the PMD to the PTEs. a) In case we have a readable-exclusive PMD migration entry, simply insert readable-exclusive PTE migration entries. b) In case we have a present PMD entry and we don't want to freeze ("convert to migration entries"), simply forward PG_anon_exclusive to all sub-pages, no need to temporarily clear the bit. c) In case we have a present PMD entry and want to freeze, handle it similar to try_to_migrate(): try marking the page shared first. In case we fail, we ignore the "freeze" instruction and simply split ordinarily. try_to_migrate() will properly fail because the THP is still mapped via PTEs. When splitting a compound anonymous folio (THP), the information about exclusivity is implicitly handled via the migration entries: no need to replicate PG_anon_exclusive manually. I.7. fork() handling fork() handling is relatively easy, because PG_anon_exclusive is only expressive for some page table entry types. a) Present anonymous pages page_try_dup_anon_rmap() will mark the given subpage shared -- which will fail if the page is pinned. If it failed, we have to copy (or PTE-map a PMD to handle it on the PTE level). Note that device exclusive entries are just a pointer at a PageAnon() page. fork() will first convert a device exclusive entry to a present page table and handle it just like present anonymous pages. b) Device private entry Device private entries point at PageAnon() pages that cannot be mapped directly and, therefore, cannot get pinned. page_try_dup_anon_rmap() will mark the given subpage shared, which cannot fail because they cannot get pinned. c) HW poison entries PG_anon_exclusive will remain untouched and is stale -- the page table entry is just a placeholder after all. d) Migration entries Writable and readable-exclusive entries are converted to readable entries: possibly shared. I.8. mprotect() handling mprotect() only has to properly handle the new readable-exclusive migration entry: When write-protecting a migration entry that points at an anonymous page, remember the information about exclusivity via the "readable-exclusive" migration entry type. II. Migration and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a migration entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_migrate() places a migration entry after checking for GUP pins and marks the page possibly shared. 2. GUP-fast pins the page due to lack of synchronization 3. fork() converts the "writable/readable-exclusive" migration entry into a readable migration entry 4. Migration fails due to the GUP pin (failing to freeze the refcount) 5. Migration entries are restored. PG_anon_exclusive is lost -> We have a pinned page that is not marked exclusive anymore. Note that we move information about exclusivity from the page to the migration entry as it otherwise highly overcomplicates fork() and PTE-mapping a THP. III. Swapout and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a swap entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_unmap() places a swap entry after checking for GUP pins and clears exclusivity information on the page. 2. GUP-fast pins the page due to lack of synchronization. -> We have a pinned page that is not marked exclusive anymore. If we'd ever store information about exclusivity in the swap entry, similar to migration handling, the same considerations as in II would apply. This is future work. Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 09:20:44 +08:00
anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
if (anon_exclusive) {
mm/migrate_device.c: copy pte dirty bit to page migrate_vma_setup() has a fast path in migrate_vma_collect_pmd() that installs migration entries directly if it can lock the migrating page. When removing a dirty pte the dirty bit is supposed to be carried over to the underlying page to prevent it being lost. Currently migrate_vma_*() can only be used for private anonymous mappings. That means loss of the dirty bit usually doesn't result in data loss because these pages are typically not file-backed. However pages may be backed by swap storage which can result in data loss if an attempt is made to migrate a dirty page that doesn't yet have the PageDirty flag set. In this case migration will fail due to unexpected references but the dirty pte bit will be lost. If the page is subsequently reclaimed data won't be written back to swap storage as it is considered uptodate, resulting in data loss if the page is subsequently accessed. Prevent this by copying the dirty bit to the page when removing the pte to match what try_to_migrate_one() does. Link: https://lkml.kernel.org/r/dd48e4882ce859c295c1a77612f66d198b0403f9.1662078528.git-series.apopple@nvidia.com Fixes: 8c3328f1f36a ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reported-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: huang ying <huang.ying.caritas@gmail.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-02 08:35:53 +08:00
pte = ptep_clear_flush(vma, addr, ptep);
mm: remember exclusively mapped anonymous pages with PG_anon_exclusive Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as exclusive, and use that information to make GUP pins reliable and stay consistent with the page mapped into the page table even if the page table entry gets write-protected. With that information at hand, we can extend our COW logic to always reuse anonymous pages that are exclusive. For anonymous pages that might be shared, the existing logic applies. As already documented, PG_anon_exclusive is usually only expressive in combination with a page table entry. Especially PTE vs. PMD-mapped anonymous pages require more thought, some examples: due to mremap() we can easily have a single compound page PTE-mapped into multiple page tables exclusively in a single process -- multiple page table locks apply. Further, due to MADV_WIPEONFORK we might not necessarily write-protect all PTEs, and only some subpages might be pinned. Long story short: once PTE-mapped, we have to track information about exclusivity per sub-page, but until then, we can just track it for the compound page in the head page and not having to update a whole bunch of subpages all of the time for a simple PMD mapping of a THP. For simplicity, this commit mostly talks about "anonymous pages", while it's for THP actually "the part of an anonymous folio referenced via a page table entry". To not spill PG_anon_exclusive code all over the mm code-base, we let the anon rmap code to handle all PG_anon_exclusive logic it can easily handle. If a writable, present page table entry points at an anonymous (sub)page, that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably pin (FOLL_PIN) on an anonymous page references via a present page table entry, it must only pin if PG_anon_exclusive is set for the mapped (sub)page. This commit doesn't adjust GUP, so this is only implicitly handled for FOLL_WRITE, follow-up commits will teach GUP to also respect it for FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully reliable. Whenever an anonymous page is to be shared (fork(), KSM), or when temporarily unmapping an anonymous page (swap, migration), the relevant PG_anon_exclusive bit has to be cleared to mark the anonymous page possibly shared. Clearing will fail if there are GUP pins on the page: * For fork(), this means having to copy the page and not being able to share it. fork() protects against concurrent GUP using the PT lock and the src_mm->write_protect_seq. * For KSM, this means sharing will fail. For swap this means, unmapping will fail, For migration this means, migration will fail early. All three cases protect against concurrent GUP using the PT lock and a proper clear/invalidate+flush of the relevant page table entry. This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a pinned page gets mapped R/O and the successive write fault ends up replacing the page instead of reusing it. It improves the situation for O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if fork() is *not* involved, however swapout and fork() are still problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP users will fix the issue for them. I. Details about basic handling I.1. Fresh anonymous pages page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the given page exclusive via __page_set_anon_rmap(exclusive=1). As that is the mechanism fresh anonymous pages come into life (besides migration code where we copy the page->mapping), all fresh anonymous pages will start out as exclusive. I.2. COW reuse handling of anonymous pages When a COW handler stumbles over a (sub)page that's marked exclusive, it simply reuses it. Otherwise, the handler tries harder under page lock to detect if the (sub)page is exclusive and can be reused. If exclusive, page_move_anon_rmap() will mark the given (sub)page exclusive. Note that hugetlb code does not yet check for PageAnonExclusive(), as it still uses the old COW logic that is prone to the COW security issue because hugetlb code cannot really tolerate unnecessary/wrong COW as huge pages are a scarce resource. I.3. Migration handling try_to_migrate() has to try marking an exclusive anonymous page shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. migrate_vma_collect_pmd() and __split_huge_pmd_locked() are handled similarly. Writable migration entries implicitly point at shared anonymous pages. For readable migration entries that information is stored via a new "readable-exclusive" migration entry, specific to anonymous pages. When restoring a migration entry in remove_migration_pte(), information about exlusivity is detected via the migration entry type, and RMAP_EXCLUSIVE is set accordingly for page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information. I.4. Swapout handling try_to_unmap() has to try marking the mapped page possibly shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. For now, information about exclusivity is lost. In the future, we might want to remember that information in the swap entry in some cases, however, it requires more thought, care, and a way to store that information in swap entries. I.5. Swapin handling do_swap_page() will never stumble over exclusive anonymous pages in the swap cache, as try_to_migrate() prohibits that. do_swap_page() always has to detect manually if an anonymous page is exclusive and has to set RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly. I.6. THP handling __split_huge_pmd_locked() has to move the information about exclusivity from the PMD to the PTEs. a) In case we have a readable-exclusive PMD migration entry, simply insert readable-exclusive PTE migration entries. b) In case we have a present PMD entry and we don't want to freeze ("convert to migration entries"), simply forward PG_anon_exclusive to all sub-pages, no need to temporarily clear the bit. c) In case we have a present PMD entry and want to freeze, handle it similar to try_to_migrate(): try marking the page shared first. In case we fail, we ignore the "freeze" instruction and simply split ordinarily. try_to_migrate() will properly fail because the THP is still mapped via PTEs. When splitting a compound anonymous folio (THP), the information about exclusivity is implicitly handled via the migration entries: no need to replicate PG_anon_exclusive manually. I.7. fork() handling fork() handling is relatively easy, because PG_anon_exclusive is only expressive for some page table entry types. a) Present anonymous pages page_try_dup_anon_rmap() will mark the given subpage shared -- which will fail if the page is pinned. If it failed, we have to copy (or PTE-map a PMD to handle it on the PTE level). Note that device exclusive entries are just a pointer at a PageAnon() page. fork() will first convert a device exclusive entry to a present page table and handle it just like present anonymous pages. b) Device private entry Device private entries point at PageAnon() pages that cannot be mapped directly and, therefore, cannot get pinned. page_try_dup_anon_rmap() will mark the given subpage shared, which cannot fail because they cannot get pinned. c) HW poison entries PG_anon_exclusive will remain untouched and is stale -- the page table entry is just a placeholder after all. d) Migration entries Writable and readable-exclusive entries are converted to readable entries: possibly shared. I.8. mprotect() handling mprotect() only has to properly handle the new readable-exclusive migration entry: When write-protecting a migration entry that points at an anonymous page, remember the information about exclusivity via the "readable-exclusive" migration entry type. II. Migration and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a migration entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_migrate() places a migration entry after checking for GUP pins and marks the page possibly shared. 2. GUP-fast pins the page due to lack of synchronization 3. fork() converts the "writable/readable-exclusive" migration entry into a readable migration entry 4. Migration fails due to the GUP pin (failing to freeze the refcount) 5. Migration entries are restored. PG_anon_exclusive is lost -> We have a pinned page that is not marked exclusive anymore. Note that we move information about exclusivity from the page to the migration entry as it otherwise highly overcomplicates fork() and PTE-mapping a THP. III. Swapout and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a swap entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_unmap() places a swap entry after checking for GUP pins and clears exclusivity information on the page. 2. GUP-fast pins the page due to lack of synchronization. -> We have a pinned page that is not marked exclusive anymore. If we'd ever store information about exclusivity in the swap entry, similar to migration handling, the same considerations as in II would apply. This is future work. Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 09:20:44 +08:00
if (page_try_share_anon_rmap(page)) {
set_pte_at(mm, addr, ptep, pte);
unlock_page(page);
put_page(page);
mpfn = 0;
goto next;
}
} else {
mm/migrate_device.c: copy pte dirty bit to page migrate_vma_setup() has a fast path in migrate_vma_collect_pmd() that installs migration entries directly if it can lock the migrating page. When removing a dirty pte the dirty bit is supposed to be carried over to the underlying page to prevent it being lost. Currently migrate_vma_*() can only be used for private anonymous mappings. That means loss of the dirty bit usually doesn't result in data loss because these pages are typically not file-backed. However pages may be backed by swap storage which can result in data loss if an attempt is made to migrate a dirty page that doesn't yet have the PageDirty flag set. In this case migration will fail due to unexpected references but the dirty pte bit will be lost. If the page is subsequently reclaimed data won't be written back to swap storage as it is considered uptodate, resulting in data loss if the page is subsequently accessed. Prevent this by copying the dirty bit to the page when removing the pte to match what try_to_migrate_one() does. Link: https://lkml.kernel.org/r/dd48e4882ce859c295c1a77612f66d198b0403f9.1662078528.git-series.apopple@nvidia.com Fixes: 8c3328f1f36a ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reported-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: huang ying <huang.ying.caritas@gmail.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-02 08:35:53 +08:00
pte = ptep_get_and_clear(mm, addr, ptep);
mm: remember exclusively mapped anonymous pages with PG_anon_exclusive Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as exclusive, and use that information to make GUP pins reliable and stay consistent with the page mapped into the page table even if the page table entry gets write-protected. With that information at hand, we can extend our COW logic to always reuse anonymous pages that are exclusive. For anonymous pages that might be shared, the existing logic applies. As already documented, PG_anon_exclusive is usually only expressive in combination with a page table entry. Especially PTE vs. PMD-mapped anonymous pages require more thought, some examples: due to mremap() we can easily have a single compound page PTE-mapped into multiple page tables exclusively in a single process -- multiple page table locks apply. Further, due to MADV_WIPEONFORK we might not necessarily write-protect all PTEs, and only some subpages might be pinned. Long story short: once PTE-mapped, we have to track information about exclusivity per sub-page, but until then, we can just track it for the compound page in the head page and not having to update a whole bunch of subpages all of the time for a simple PMD mapping of a THP. For simplicity, this commit mostly talks about "anonymous pages", while it's for THP actually "the part of an anonymous folio referenced via a page table entry". To not spill PG_anon_exclusive code all over the mm code-base, we let the anon rmap code to handle all PG_anon_exclusive logic it can easily handle. If a writable, present page table entry points at an anonymous (sub)page, that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably pin (FOLL_PIN) on an anonymous page references via a present page table entry, it must only pin if PG_anon_exclusive is set for the mapped (sub)page. This commit doesn't adjust GUP, so this is only implicitly handled for FOLL_WRITE, follow-up commits will teach GUP to also respect it for FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully reliable. Whenever an anonymous page is to be shared (fork(), KSM), or when temporarily unmapping an anonymous page (swap, migration), the relevant PG_anon_exclusive bit has to be cleared to mark the anonymous page possibly shared. Clearing will fail if there are GUP pins on the page: * For fork(), this means having to copy the page and not being able to share it. fork() protects against concurrent GUP using the PT lock and the src_mm->write_protect_seq. * For KSM, this means sharing will fail. For swap this means, unmapping will fail, For migration this means, migration will fail early. All three cases protect against concurrent GUP using the PT lock and a proper clear/invalidate+flush of the relevant page table entry. This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a pinned page gets mapped R/O and the successive write fault ends up replacing the page instead of reusing it. It improves the situation for O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if fork() is *not* involved, however swapout and fork() are still problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP users will fix the issue for them. I. Details about basic handling I.1. Fresh anonymous pages page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the given page exclusive via __page_set_anon_rmap(exclusive=1). As that is the mechanism fresh anonymous pages come into life (besides migration code where we copy the page->mapping), all fresh anonymous pages will start out as exclusive. I.2. COW reuse handling of anonymous pages When a COW handler stumbles over a (sub)page that's marked exclusive, it simply reuses it. Otherwise, the handler tries harder under page lock to detect if the (sub)page is exclusive and can be reused. If exclusive, page_move_anon_rmap() will mark the given (sub)page exclusive. Note that hugetlb code does not yet check for PageAnonExclusive(), as it still uses the old COW logic that is prone to the COW security issue because hugetlb code cannot really tolerate unnecessary/wrong COW as huge pages are a scarce resource. I.3. Migration handling try_to_migrate() has to try marking an exclusive anonymous page shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. migrate_vma_collect_pmd() and __split_huge_pmd_locked() are handled similarly. Writable migration entries implicitly point at shared anonymous pages. For readable migration entries that information is stored via a new "readable-exclusive" migration entry, specific to anonymous pages. When restoring a migration entry in remove_migration_pte(), information about exlusivity is detected via the migration entry type, and RMAP_EXCLUSIVE is set accordingly for page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information. I.4. Swapout handling try_to_unmap() has to try marking the mapped page possibly shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. For now, information about exclusivity is lost. In the future, we might want to remember that information in the swap entry in some cases, however, it requires more thought, care, and a way to store that information in swap entries. I.5. Swapin handling do_swap_page() will never stumble over exclusive anonymous pages in the swap cache, as try_to_migrate() prohibits that. do_swap_page() always has to detect manually if an anonymous page is exclusive and has to set RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly. I.6. THP handling __split_huge_pmd_locked() has to move the information about exclusivity from the PMD to the PTEs. a) In case we have a readable-exclusive PMD migration entry, simply insert readable-exclusive PTE migration entries. b) In case we have a present PMD entry and we don't want to freeze ("convert to migration entries"), simply forward PG_anon_exclusive to all sub-pages, no need to temporarily clear the bit. c) In case we have a present PMD entry and want to freeze, handle it similar to try_to_migrate(): try marking the page shared first. In case we fail, we ignore the "freeze" instruction and simply split ordinarily. try_to_migrate() will properly fail because the THP is still mapped via PTEs. When splitting a compound anonymous folio (THP), the information about exclusivity is implicitly handled via the migration entries: no need to replicate PG_anon_exclusive manually. I.7. fork() handling fork() handling is relatively easy, because PG_anon_exclusive is only expressive for some page table entry types. a) Present anonymous pages page_try_dup_anon_rmap() will mark the given subpage shared -- which will fail if the page is pinned. If it failed, we have to copy (or PTE-map a PMD to handle it on the PTE level). Note that device exclusive entries are just a pointer at a PageAnon() page. fork() will first convert a device exclusive entry to a present page table and handle it just like present anonymous pages. b) Device private entry Device private entries point at PageAnon() pages that cannot be mapped directly and, therefore, cannot get pinned. page_try_dup_anon_rmap() will mark the given subpage shared, which cannot fail because they cannot get pinned. c) HW poison entries PG_anon_exclusive will remain untouched and is stale -- the page table entry is just a placeholder after all. d) Migration entries Writable and readable-exclusive entries are converted to readable entries: possibly shared. I.8. mprotect() handling mprotect() only has to properly handle the new readable-exclusive migration entry: When write-protecting a migration entry that points at an anonymous page, remember the information about exclusivity via the "readable-exclusive" migration entry type. II. Migration and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a migration entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_migrate() places a migration entry after checking for GUP pins and marks the page possibly shared. 2. GUP-fast pins the page due to lack of synchronization 3. fork() converts the "writable/readable-exclusive" migration entry into a readable migration entry 4. Migration fails due to the GUP pin (failing to freeze the refcount) 5. Migration entries are restored. PG_anon_exclusive is lost -> We have a pinned page that is not marked exclusive anymore. Note that we move information about exclusivity from the page to the migration entry as it otherwise highly overcomplicates fork() and PTE-mapping a THP. III. Swapout and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a swap entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_unmap() places a swap entry after checking for GUP pins and clears exclusivity information on the page. 2. GUP-fast pins the page due to lack of synchronization. -> We have a pinned page that is not marked exclusive anymore. If we'd ever store information about exclusivity in the swap entry, similar to migration handling, the same considerations as in II would apply. This is future work. Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 09:20:44 +08:00
}
migrate->cpages++;
mm/migrate_device.c: copy pte dirty bit to page migrate_vma_setup() has a fast path in migrate_vma_collect_pmd() that installs migration entries directly if it can lock the migrating page. When removing a dirty pte the dirty bit is supposed to be carried over to the underlying page to prevent it being lost. Currently migrate_vma_*() can only be used for private anonymous mappings. That means loss of the dirty bit usually doesn't result in data loss because these pages are typically not file-backed. However pages may be backed by swap storage which can result in data loss if an attempt is made to migrate a dirty page that doesn't yet have the PageDirty flag set. In this case migration will fail due to unexpected references but the dirty pte bit will be lost. If the page is subsequently reclaimed data won't be written back to swap storage as it is considered uptodate, resulting in data loss if the page is subsequently accessed. Prevent this by copying the dirty bit to the page when removing the pte to match what try_to_migrate_one() does. Link: https://lkml.kernel.org/r/dd48e4882ce859c295c1a77612f66d198b0403f9.1662078528.git-series.apopple@nvidia.com Fixes: 8c3328f1f36a ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reported-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: huang ying <huang.ying.caritas@gmail.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-02 08:35:53 +08:00
/* Set the dirty flag on the folio now the pte is gone. */
if (pte_dirty(pte))
folio_mark_dirty(page_folio(page));
/* Setup special migration page table entry */
if (mpfn & MIGRATE_PFN_WRITE)
entry = make_writable_migration_entry(
page_to_pfn(page));
mm: remember exclusively mapped anonymous pages with PG_anon_exclusive Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as exclusive, and use that information to make GUP pins reliable and stay consistent with the page mapped into the page table even if the page table entry gets write-protected. With that information at hand, we can extend our COW logic to always reuse anonymous pages that are exclusive. For anonymous pages that might be shared, the existing logic applies. As already documented, PG_anon_exclusive is usually only expressive in combination with a page table entry. Especially PTE vs. PMD-mapped anonymous pages require more thought, some examples: due to mremap() we can easily have a single compound page PTE-mapped into multiple page tables exclusively in a single process -- multiple page table locks apply. Further, due to MADV_WIPEONFORK we might not necessarily write-protect all PTEs, and only some subpages might be pinned. Long story short: once PTE-mapped, we have to track information about exclusivity per sub-page, but until then, we can just track it for the compound page in the head page and not having to update a whole bunch of subpages all of the time for a simple PMD mapping of a THP. For simplicity, this commit mostly talks about "anonymous pages", while it's for THP actually "the part of an anonymous folio referenced via a page table entry". To not spill PG_anon_exclusive code all over the mm code-base, we let the anon rmap code to handle all PG_anon_exclusive logic it can easily handle. If a writable, present page table entry points at an anonymous (sub)page, that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably pin (FOLL_PIN) on an anonymous page references via a present page table entry, it must only pin if PG_anon_exclusive is set for the mapped (sub)page. This commit doesn't adjust GUP, so this is only implicitly handled for FOLL_WRITE, follow-up commits will teach GUP to also respect it for FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully reliable. Whenever an anonymous page is to be shared (fork(), KSM), or when temporarily unmapping an anonymous page (swap, migration), the relevant PG_anon_exclusive bit has to be cleared to mark the anonymous page possibly shared. Clearing will fail if there are GUP pins on the page: * For fork(), this means having to copy the page and not being able to share it. fork() protects against concurrent GUP using the PT lock and the src_mm->write_protect_seq. * For KSM, this means sharing will fail. For swap this means, unmapping will fail, For migration this means, migration will fail early. All three cases protect against concurrent GUP using the PT lock and a proper clear/invalidate+flush of the relevant page table entry. This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a pinned page gets mapped R/O and the successive write fault ends up replacing the page instead of reusing it. It improves the situation for O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if fork() is *not* involved, however swapout and fork() are still problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP users will fix the issue for them. I. Details about basic handling I.1. Fresh anonymous pages page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the given page exclusive via __page_set_anon_rmap(exclusive=1). As that is the mechanism fresh anonymous pages come into life (besides migration code where we copy the page->mapping), all fresh anonymous pages will start out as exclusive. I.2. COW reuse handling of anonymous pages When a COW handler stumbles over a (sub)page that's marked exclusive, it simply reuses it. Otherwise, the handler tries harder under page lock to detect if the (sub)page is exclusive and can be reused. If exclusive, page_move_anon_rmap() will mark the given (sub)page exclusive. Note that hugetlb code does not yet check for PageAnonExclusive(), as it still uses the old COW logic that is prone to the COW security issue because hugetlb code cannot really tolerate unnecessary/wrong COW as huge pages are a scarce resource. I.3. Migration handling try_to_migrate() has to try marking an exclusive anonymous page shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. migrate_vma_collect_pmd() and __split_huge_pmd_locked() are handled similarly. Writable migration entries implicitly point at shared anonymous pages. For readable migration entries that information is stored via a new "readable-exclusive" migration entry, specific to anonymous pages. When restoring a migration entry in remove_migration_pte(), information about exlusivity is detected via the migration entry type, and RMAP_EXCLUSIVE is set accordingly for page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information. I.4. Swapout handling try_to_unmap() has to try marking the mapped page possibly shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. For now, information about exclusivity is lost. In the future, we might want to remember that information in the swap entry in some cases, however, it requires more thought, care, and a way to store that information in swap entries. I.5. Swapin handling do_swap_page() will never stumble over exclusive anonymous pages in the swap cache, as try_to_migrate() prohibits that. do_swap_page() always has to detect manually if an anonymous page is exclusive and has to set RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly. I.6. THP handling __split_huge_pmd_locked() has to move the information about exclusivity from the PMD to the PTEs. a) In case we have a readable-exclusive PMD migration entry, simply insert readable-exclusive PTE migration entries. b) In case we have a present PMD entry and we don't want to freeze ("convert to migration entries"), simply forward PG_anon_exclusive to all sub-pages, no need to temporarily clear the bit. c) In case we have a present PMD entry and want to freeze, handle it similar to try_to_migrate(): try marking the page shared first. In case we fail, we ignore the "freeze" instruction and simply split ordinarily. try_to_migrate() will properly fail because the THP is still mapped via PTEs. When splitting a compound anonymous folio (THP), the information about exclusivity is implicitly handled via the migration entries: no need to replicate PG_anon_exclusive manually. I.7. fork() handling fork() handling is relatively easy, because PG_anon_exclusive is only expressive for some page table entry types. a) Present anonymous pages page_try_dup_anon_rmap() will mark the given subpage shared -- which will fail if the page is pinned. If it failed, we have to copy (or PTE-map a PMD to handle it on the PTE level). Note that device exclusive entries are just a pointer at a PageAnon() page. fork() will first convert a device exclusive entry to a present page table and handle it just like present anonymous pages. b) Device private entry Device private entries point at PageAnon() pages that cannot be mapped directly and, therefore, cannot get pinned. page_try_dup_anon_rmap() will mark the given subpage shared, which cannot fail because they cannot get pinned. c) HW poison entries PG_anon_exclusive will remain untouched and is stale -- the page table entry is just a placeholder after all. d) Migration entries Writable and readable-exclusive entries are converted to readable entries: possibly shared. I.8. mprotect() handling mprotect() only has to properly handle the new readable-exclusive migration entry: When write-protecting a migration entry that points at an anonymous page, remember the information about exclusivity via the "readable-exclusive" migration entry type. II. Migration and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a migration entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_migrate() places a migration entry after checking for GUP pins and marks the page possibly shared. 2. GUP-fast pins the page due to lack of synchronization 3. fork() converts the "writable/readable-exclusive" migration entry into a readable migration entry 4. Migration fails due to the GUP pin (failing to freeze the refcount) 5. Migration entries are restored. PG_anon_exclusive is lost -> We have a pinned page that is not marked exclusive anymore. Note that we move information about exclusivity from the page to the migration entry as it otherwise highly overcomplicates fork() and PTE-mapping a THP. III. Swapout and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a swap entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_unmap() places a swap entry after checking for GUP pins and clears exclusivity information on the page. 2. GUP-fast pins the page due to lack of synchronization. -> We have a pinned page that is not marked exclusive anymore. If we'd ever store information about exclusivity in the swap entry, similar to migration handling, the same considerations as in II would apply. This is future work. Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 09:20:44 +08:00
else if (anon_exclusive)
entry = make_readable_exclusive_migration_entry(
page_to_pfn(page));
else
entry = make_readable_migration_entry(
page_to_pfn(page));
mm: remember young/dirty bit for page migrations When page migration happens, we always ignore the young/dirty bit settings in the old pgtable, and marking the page as old in the new page table using either pte_mkold() or pmd_mkold(), and keeping the pte clean. That's fine from functional-wise, but that's not friendly to page reclaim because the moving page can be actively accessed within the procedure. Not to mention hardware setting the young bit can bring quite some overhead on some systems, e.g. x86_64 needs a few hundreds nanoseconds to set the bit. The same slowdown problem to dirty bits when the memory is first written after page migration happened. Actually we can easily remember the A/D bit configuration and recover the information after the page is migrated. To achieve it, define a new set of bits in the migration swap offset field to cache the A/D bits for old pte. Then when removing/recovering the migration entry, we can recover the A/D bits even if the page changed. One thing to mention is that here we used max_swapfile_size() to detect how many swp offset bits we have, and we'll only enable this feature if we know the swp offset is big enough to store both the PFN value and the A/D bits. Otherwise the A/D bits are dropped like before. Link: https://lkml.kernel.org/r/20220811161331.37055-6-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Minchan Kim <minchan@kernel.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-12 00:13:29 +08:00
if (pte_present(pte)) {
if (pte_young(pte))
entry = make_migration_entry_young(entry);
if (pte_dirty(pte))
entry = make_migration_entry_dirty(entry);
}
swp_pte = swp_entry_to_pte(entry);
if (pte_present(pte)) {
if (pte_soft_dirty(pte))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_uffd_wp(pte))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
} else {
if (pte_swp_soft_dirty(pte))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_swp_uffd_wp(pte))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
}
set_pte_at(mm, addr, ptep, swp_pte);
/*
* This is like regular unmap: we remove the rmap and
* drop page refcount. Page won't be freed, as we took
* a reference just above.
*/
page_remove_rmap(page, vma, false);
put_page(page);
if (pte_present(pte))
unmapped++;
} else {
put_page(page);
mpfn = 0;
}
next:
migrate->dst[migrate->npages] = 0;
migrate->src[migrate->npages++] = mpfn;
}
/* Only flush the TLB if we actually modified any entries */
if (unmapped)
flush_tlb_range(walk->vma, start, end);
mm/migrate_device.c: flush TLB while holding PTL When clearing a PTE the TLB should be flushed whilst still holding the PTL to avoid a potential race with madvise/munmap/etc. For example consider the following sequence: CPU0 CPU1 ---- ---- migrate_vma_collect_pmd() pte_unmap_unlock() madvise(MADV_DONTNEED) -> zap_pte_range() pte_offset_map_lock() [ PTE not present, TLB not flushed ] pte_unmap_unlock() [ page is still accessible via stale TLB ] flush_tlb_range() In this case the page may still be accessed via the stale TLB entry after madvise returns. Fix this by flushing the TLB while holding the PTL. Fixes: 8c3328f1f36a ("mm/migrate: migrate_vma() unmap page from vma while collecting pages") Link: https://lkml.kernel.org/r/9f801e9d8d830408f2ca27821f606e09aa856899.1662078528.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reported-by: Nadav Amit <nadav.amit@gmail.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: huang ying <huang.ying.caritas@gmail.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-02 08:35:51 +08:00
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(ptep - 1, ptl);
return 0;
}
static const struct mm_walk_ops migrate_vma_walk_ops = {
.pmd_entry = migrate_vma_collect_pmd,
.pte_hole = migrate_vma_collect_hole,
};
/*
* migrate_vma_collect() - collect pages over a range of virtual addresses
* @migrate: migrate struct containing all migration information
*
* This will walk the CPU page table. For each virtual address backed by a
* valid page, it updates the src array and takes a reference on the page, in
* order to pin the page until we lock it and unmap it.
*/
static void migrate_vma_collect(struct migrate_vma *migrate)
{
struct mmu_notifier_range range;
/*
* Note that the pgmap_owner is passed to the mmu notifier callback so
* that the registered device driver can skip invalidating device
* private page mappings that won't be migrated.
*/
mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
migrate->vma->vm_mm, migrate->start, migrate->end,
migrate->pgmap_owner);
mmu_notifier_invalidate_range_start(&range);
walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
&migrate_vma_walk_ops, migrate);
mmu_notifier_invalidate_range_end(&range);
migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}
/*
* migrate_vma_check_page() - check if page is pinned or not
* @page: struct page to check
*
* Pinned pages cannot be migrated. This is the same test as in
* folio_migrate_mapping(), except that here we allow migration of a
* ZONE_DEVICE page.
*/
mm/memory.c: fix race when faulting a device private page Patch series "Fix several device private page reference counting issues", v2 This series aims to fix a number of page reference counting issues in drivers dealing with device private ZONE_DEVICE pages. These result in use-after-free type bugs, either from accessing a struct page which no longer exists because it has been removed or accessing fields within the struct page which are no longer valid because the page has been freed. During normal usage it is unlikely these will cause any problems. However without these fixes it is possible to crash the kernel from userspace. These crashes can be triggered either by unloading the kernel module or unbinding the device from the driver prior to a userspace task exiting. In modules such as Nouveau it is also possible to trigger some of these issues by explicitly closing the device file-descriptor prior to the task exiting and then accessing device private memory. This involves some minor changes to both PowerPC and AMD GPU code. Unfortunately I lack hardware to test either of those so any help there would be appreciated. The changes mimic what is done in for both Nouveau and hmm-tests though so I doubt they will cause problems. This patch (of 8): When the CPU tries to access a device private page the migrate_to_ram() callback associated with the pgmap for the page is called. However no reference is taken on the faulting page. Therefore a concurrent migration of the device private page can free the page and possibly the underlying pgmap. This results in a race which can crash the kernel due to the migrate_to_ram() function pointer becoming invalid. It also means drivers can't reliably read the zone_device_data field because the page may have been freed with memunmap_pages(). Close the race by getting a reference on the page while holding the ptl to ensure it has not been freed. Unfortunately the elevated reference count will cause the migration required to handle the fault to fail. To avoid this failure pass the faulting page into the migrate_vma functions so that if an elevated reference count is found it can be checked to see if it's expected or not. [mpe@ellerman.id.au: fix build] Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Lyude Paul <lyude@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:15 +08:00
static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
{
/*
* One extra ref because caller holds an extra reference, either from
* isolate_lru_page() for a regular page, or migrate_vma_collect() for
* a device page.
*/
mm/memory.c: fix race when faulting a device private page Patch series "Fix several device private page reference counting issues", v2 This series aims to fix a number of page reference counting issues in drivers dealing with device private ZONE_DEVICE pages. These result in use-after-free type bugs, either from accessing a struct page which no longer exists because it has been removed or accessing fields within the struct page which are no longer valid because the page has been freed. During normal usage it is unlikely these will cause any problems. However without these fixes it is possible to crash the kernel from userspace. These crashes can be triggered either by unloading the kernel module or unbinding the device from the driver prior to a userspace task exiting. In modules such as Nouveau it is also possible to trigger some of these issues by explicitly closing the device file-descriptor prior to the task exiting and then accessing device private memory. This involves some minor changes to both PowerPC and AMD GPU code. Unfortunately I lack hardware to test either of those so any help there would be appreciated. The changes mimic what is done in for both Nouveau and hmm-tests though so I doubt they will cause problems. This patch (of 8): When the CPU tries to access a device private page the migrate_to_ram() callback associated with the pgmap for the page is called. However no reference is taken on the faulting page. Therefore a concurrent migration of the device private page can free the page and possibly the underlying pgmap. This results in a race which can crash the kernel due to the migrate_to_ram() function pointer becoming invalid. It also means drivers can't reliably read the zone_device_data field because the page may have been freed with memunmap_pages(). Close the race by getting a reference on the page while holding the ptl to ensure it has not been freed. Unfortunately the elevated reference count will cause the migration required to handle the fault to fail. To avoid this failure pass the faulting page into the migrate_vma functions so that if an elevated reference count is found it can be checked to see if it's expected or not. [mpe@ellerman.id.au: fix build] Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Lyude Paul <lyude@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:15 +08:00
int extra = 1 + (page == fault_page);
/*
* FIXME support THP (transparent huge page), it is bit more complex to
* check them than regular pages, because they can be mapped with a pmd
* or with a pte (split pte mapping).
*/
if (PageCompound(page))
return false;
/* Page from ZONE_DEVICE have one extra reference */
if (is_zone_device_page(page))
extra++;
/* For file back page */
if (page_mapping(page))
extra += 1 + page_has_private(page);
if ((page_count(page) - extra) > page_mapcount(page))
return false;
return true;
}
/*
* Unmaps pages for migration. Returns number of source pfns marked as
* migrating.
*/
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
static unsigned long migrate_device_unmap(unsigned long *src_pfns,
unsigned long npages,
struct page *fault_page)
{
unsigned long i, restore = 0;
bool allow_drain = true;
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
unsigned long unmapped = 0;
lru_add_drain();
for (i = 0; i < npages; i++) {
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct folio *folio;
if (!page) {
if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
unmapped++;
continue;
}
/* ZONE_DEVICE pages are not on LRU */
if (!is_zone_device_page(page)) {
if (!PageLRU(page) && allow_drain) {
/* Drain CPU's pagevec */
lru_add_drain_all();
allow_drain = false;
}
if (isolate_lru_page(page)) {
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
restore++;
continue;
}
/* Drop the reference we took in collect */
put_page(page);
}
folio = page_folio(page);
if (folio_mapped(folio))
try_to_migrate(folio, 0);
mm/memory.c: fix race when faulting a device private page Patch series "Fix several device private page reference counting issues", v2 This series aims to fix a number of page reference counting issues in drivers dealing with device private ZONE_DEVICE pages. These result in use-after-free type bugs, either from accessing a struct page which no longer exists because it has been removed or accessing fields within the struct page which are no longer valid because the page has been freed. During normal usage it is unlikely these will cause any problems. However without these fixes it is possible to crash the kernel from userspace. These crashes can be triggered either by unloading the kernel module or unbinding the device from the driver prior to a userspace task exiting. In modules such as Nouveau it is also possible to trigger some of these issues by explicitly closing the device file-descriptor prior to the task exiting and then accessing device private memory. This involves some minor changes to both PowerPC and AMD GPU code. Unfortunately I lack hardware to test either of those so any help there would be appreciated. The changes mimic what is done in for both Nouveau and hmm-tests though so I doubt they will cause problems. This patch (of 8): When the CPU tries to access a device private page the migrate_to_ram() callback associated with the pgmap for the page is called. However no reference is taken on the faulting page. Therefore a concurrent migration of the device private page can free the page and possibly the underlying pgmap. This results in a race which can crash the kernel due to the migrate_to_ram() function pointer becoming invalid. It also means drivers can't reliably read the zone_device_data field because the page may have been freed with memunmap_pages(). Close the race by getting a reference on the page while holding the ptl to ensure it has not been freed. Unfortunately the elevated reference count will cause the migration required to handle the fault to fail. To avoid this failure pass the faulting page into the migrate_vma functions so that if an elevated reference count is found it can be checked to see if it's expected or not. [mpe@ellerman.id.au: fix build] Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Lyude Paul <lyude@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:15 +08:00
if (page_mapped(page) ||
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
!migrate_vma_check_page(page, fault_page)) {
if (!is_zone_device_page(page)) {
get_page(page);
putback_lru_page(page);
}
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
restore++;
continue;
}
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
unmapped++;
}
for (i = 0; i < npages && restore; i++) {
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct folio *folio;
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
folio = page_folio(page);
remove_migration_ptes(folio, folio, false);
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
src_pfns[i] = 0;
folio_unlock(folio);
folio_put(folio);
restore--;
}
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
return unmapped;
}
/*
* migrate_vma_unmap() - replace page mapping with special migration pte entry
* @migrate: migrate struct containing all migration information
*
* Isolate pages from the LRU and replace mappings (CPU page table pte) with a
* special migration pte entry and check if it has been pinned. Pinned pages are
* restored because we cannot migrate them.
*
* This is the last step before we call the device driver callback to allocate
* destination memory and copy contents of original page over to new page.
*/
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
migrate->fault_page);
}
/**
* migrate_vma_setup() - prepare to migrate a range of memory
* @args: contains the vma, start, and pfns arrays for the migration
*
* Returns: negative errno on failures, 0 when 0 or more pages were migrated
* without an error.
*
* Prepare to migrate a range of memory virtual address range by collecting all
* the pages backing each virtual address in the range, saving them inside the
* src array. Then lock those pages and unmap them. Once the pages are locked
* and unmapped, check whether each page is pinned or not. Pages that aren't
* pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
* corresponding src array entry. Then restores any pages that are pinned, by
* remapping and unlocking those pages.
*
* The caller should then allocate destination memory and copy source memory to
* it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
* flag set). Once these are allocated and copied, the caller must update each
* corresponding entry in the dst array with the pfn value of the destination
* page and with MIGRATE_PFN_VALID. Destination pages must be locked via
* lock_page().
*
* Note that the caller does not have to migrate all the pages that are marked
* with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
* device memory to system memory. If the caller cannot migrate a device page
* back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
* consequences for the userspace process, so it must be avoided if at all
* possible.
*
* For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
* do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
* allowing the caller to allocate device memory for those unbacked virtual
* addresses. For this the caller simply has to allocate device memory and
* properly set the destination entry like for regular migration. Note that
* this can still fail, and thus inside the device driver you must check if the
* migration was successful for those entries after calling migrate_vma_pages(),
* just like for regular migration.
*
* After that, the callers must call migrate_vma_pages() to go over each entry
* in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
* set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
* then migrate_vma_pages() to migrate struct page information from the source
* struct page to the destination struct page. If it fails to migrate the
* struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
* src array.
*
* At this point all successfully migrated pages have an entry in the src
* array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
* array entry with MIGRATE_PFN_VALID flag set.
*
* Once migrate_vma_pages() returns the caller may inspect which pages were
* successfully migrated, and which were not. Successfully migrated pages will
* have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
*
* It is safe to update device page table after migrate_vma_pages() because
* both destination and source page are still locked, and the mmap_lock is held
* in read mode (hence no one can unmap the range being migrated).
*
* Once the caller is done cleaning up things and updating its page table (if it
* chose to do so, this is not an obligation) it finally calls
* migrate_vma_finalize() to update the CPU page table to point to new pages
* for successfully migrated pages or otherwise restore the CPU page table to
* point to the original source pages.
*/
int migrate_vma_setup(struct migrate_vma *args)
{
long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
args->start &= PAGE_MASK;
args->end &= PAGE_MASK;
if (!args->vma || is_vm_hugetlb_page(args->vma) ||
(args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
return -EINVAL;
if (nr_pages <= 0)
return -EINVAL;
if (args->start < args->vma->vm_start ||
args->start >= args->vma->vm_end)
return -EINVAL;
if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
return -EINVAL;
if (!args->src || !args->dst)
return -EINVAL;
mm/memory.c: fix race when faulting a device private page Patch series "Fix several device private page reference counting issues", v2 This series aims to fix a number of page reference counting issues in drivers dealing with device private ZONE_DEVICE pages. These result in use-after-free type bugs, either from accessing a struct page which no longer exists because it has been removed or accessing fields within the struct page which are no longer valid because the page has been freed. During normal usage it is unlikely these will cause any problems. However without these fixes it is possible to crash the kernel from userspace. These crashes can be triggered either by unloading the kernel module or unbinding the device from the driver prior to a userspace task exiting. In modules such as Nouveau it is also possible to trigger some of these issues by explicitly closing the device file-descriptor prior to the task exiting and then accessing device private memory. This involves some minor changes to both PowerPC and AMD GPU code. Unfortunately I lack hardware to test either of those so any help there would be appreciated. The changes mimic what is done in for both Nouveau and hmm-tests though so I doubt they will cause problems. This patch (of 8): When the CPU tries to access a device private page the migrate_to_ram() callback associated with the pgmap for the page is called. However no reference is taken on the faulting page. Therefore a concurrent migration of the device private page can free the page and possibly the underlying pgmap. This results in a race which can crash the kernel due to the migrate_to_ram() function pointer becoming invalid. It also means drivers can't reliably read the zone_device_data field because the page may have been freed with memunmap_pages(). Close the race by getting a reference on the page while holding the ptl to ensure it has not been freed. Unfortunately the elevated reference count will cause the migration required to handle the fault to fail. To avoid this failure pass the faulting page into the migrate_vma functions so that if an elevated reference count is found it can be checked to see if it's expected or not. [mpe@ellerman.id.au: fix build] Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Lyude Paul <lyude@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:15 +08:00
if (args->fault_page && !is_device_private_page(args->fault_page))
return -EINVAL;
memset(args->src, 0, sizeof(*args->src) * nr_pages);
args->cpages = 0;
args->npages = 0;
migrate_vma_collect(args);
if (args->cpages)
migrate_vma_unmap(args);
/*
* At this point pages are locked and unmapped, and thus they have
* stable content and can safely be copied to destination memory that
* is allocated by the drivers.
*/
return 0;
}
EXPORT_SYMBOL(migrate_vma_setup);
/*
* This code closely matches the code in:
* __handle_mm_fault()
* handle_pte_fault()
* do_anonymous_page()
* to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
* private or coherent page.
*/
static void migrate_vma_insert_page(struct migrate_vma *migrate,
unsigned long addr,
struct page *page,
unsigned long *src)
{
struct vm_area_struct *vma = migrate->vma;
struct mm_struct *mm = vma->vm_mm;
bool flush = false;
spinlock_t *ptl;
pte_t entry;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
/* Only allow populating anonymous memory */
if (!vma_is_anonymous(vma))
goto abort;
pgdp = pgd_offset(mm, addr);
p4dp = p4d_alloc(mm, pgdp, addr);
if (!p4dp)
goto abort;
pudp = pud_alloc(mm, p4dp, addr);
if (!pudp)
goto abort;
pmdp = pmd_alloc(mm, pudp, addr);
if (!pmdp)
goto abort;
if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
goto abort;
/*
* Use pte_alloc() instead of pte_alloc_map(). We can't run
* pte_offset_map() on pmds where a huge pmd might be created
* from a different thread.
*
* pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
* parallel threads are excluded by other means.
*
* Here we only have mmap_read_lock(mm).
*/
if (pte_alloc(mm, pmdp))
goto abort;
/* See the comment in pte_alloc_one_map() */
if (unlikely(pmd_trans_unstable(pmdp)))
goto abort;
if (unlikely(anon_vma_prepare(vma)))
goto abort;
if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
goto abort;
/*
* The memory barrier inside __SetPageUptodate makes sure that
* preceding stores to the page contents become visible before
* the set_pte_at() write.
*/
__SetPageUptodate(page);
if (is_device_private_page(page)) {
swp_entry_t swp_entry;
if (vma->vm_flags & VM_WRITE)
swp_entry = make_writable_device_private_entry(
page_to_pfn(page));
else
swp_entry = make_readable_device_private_entry(
page_to_pfn(page));
entry = swp_entry_to_pte(swp_entry);
} else {
if (is_zone_device_page(page) &&
!is_device_coherent_page(page)) {
pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
goto abort;
}
entry = mk_pte(page, vma->vm_page_prot);
if (vma->vm_flags & VM_WRITE)
entry = pte_mkwrite(pte_mkdirty(entry));
}
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
if (check_stable_address_space(mm))
goto unlock_abort;
if (pte_present(*ptep)) {
unsigned long pfn = pte_pfn(*ptep);
if (!is_zero_pfn(pfn))
goto unlock_abort;
flush = true;
} else if (!pte_none(*ptep))
goto unlock_abort;
/*
* Check for userfaultfd but do not deliver the fault. Instead,
* just back off.
*/
if (userfaultfd_missing(vma))
goto unlock_abort;
inc_mm_counter(mm, MM_ANONPAGES);
mm/rmap: drop "compound" parameter from page_add_new_anon_rmap() New anonymous pages are always mapped natively: only THP/khugepaged code maps a new compound anonymous page and passes "true". Otherwise, we're just dealing with simple, non-compound pages. Let's give the interface clearer semantics and document these. Remove the PageTransCompound() sanity check from page_add_new_anon_rmap(). Link: https://lkml.kernel.org/r/20220428083441.37290-9-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10 09:20:43 +08:00
page_add_new_anon_rmap(page, vma, addr);
if (!is_zone_device_page(page))
lru_cache_add_inactive_or_unevictable(page, vma);
get_page(page);
if (flush) {
flush_cache_page(vma, addr, pte_pfn(*ptep));
ptep_clear_flush_notify(vma, addr, ptep);
set_pte_at_notify(mm, addr, ptep, entry);
update_mmu_cache(vma, addr, ptep);
} else {
/* No need to invalidate - it was non-present before */
set_pte_at(mm, addr, ptep, entry);
update_mmu_cache(vma, addr, ptep);
}
pte_unmap_unlock(ptep, ptl);
*src = MIGRATE_PFN_MIGRATE;
return;
unlock_abort:
pte_unmap_unlock(ptep, ptl);
abort:
*src &= ~MIGRATE_PFN_MIGRATE;
}
mm/migrate_device.c: add migrate_device_range() Device drivers can use the migrate_vma family of functions to migrate existing private anonymous mappings to device private pages. These pages are backed by memory on the device with drivers being responsible for copying data to and from device memory. Device private pages are freed via the pgmap->page_free() callback when they are unmapped and their refcount drops to zero. Alternatively they may be freed indirectly via migration back to CPU memory in response to a pgmap->migrate_to_ram() callback called whenever the CPU accesses an address mapped to a device private page. In other words drivers cannot control the lifetime of data allocated on the devices and must wait until these pages are freed from userspace. This causes issues when memory needs to reclaimed on the device, either because the device is going away due to a ->release() callback or because another user needs to use the memory. Drivers could use the existing migrate_vma functions to migrate data off the device. However this would require them to track the mappings of each page which is both complicated and not always possible. Instead drivers need to be able to migrate device pages directly so they can free up device memory. To allow that this patch introduces the migrate_device family of functions which are functionally similar to migrate_vma but which skips the initial lookup based on mapping. Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:19 +08:00
static void __migrate_device_pages(unsigned long *src_pfns,
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
unsigned long *dst_pfns, unsigned long npages,
struct migrate_vma *migrate)
{
struct mmu_notifier_range range;
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
unsigned long i;
bool notified = false;
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
for (i = 0; i < npages; i++) {
struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct address_space *mapping;
int r;
if (!newpage) {
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
if (!page) {
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
unsigned long addr;
mm/migrate_device.c: add migrate_device_range() Device drivers can use the migrate_vma family of functions to migrate existing private anonymous mappings to device private pages. These pages are backed by memory on the device with drivers being responsible for copying data to and from device memory. Device private pages are freed via the pgmap->page_free() callback when they are unmapped and their refcount drops to zero. Alternatively they may be freed indirectly via migration back to CPU memory in response to a pgmap->migrate_to_ram() callback called whenever the CPU accesses an address mapped to a device private page. In other words drivers cannot control the lifetime of data allocated on the devices and must wait until these pages are freed from userspace. This causes issues when memory needs to reclaimed on the device, either because the device is going away due to a ->release() callback or because another user needs to use the memory. Drivers could use the existing migrate_vma functions to migrate data off the device. However this would require them to track the mappings of each page which is both complicated and not always possible. Instead drivers need to be able to migrate device pages directly so they can free up device memory. To allow that this patch introduces the migrate_device family of functions which are functionally similar to migrate_vma but which skips the initial lookup based on mapping. Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:19 +08:00
if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
/*
* The only time there is no vma is when called from
* migrate_device_coherent_page(). However this isn't
* called if the page could not be unmapped.
*/
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
VM_BUG_ON(!migrate);
addr = migrate->start + i*PAGE_SIZE;
if (!notified) {
notified = true;
mmu_notifier_range_init_owner(&range,
MMU_NOTIFY_MIGRATE, 0,
migrate->vma->vm_mm, addr, migrate->end,
migrate->pgmap_owner);
mmu_notifier_invalidate_range_start(&range);
}
migrate_vma_insert_page(migrate, addr, newpage,
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
&src_pfns[i]);
continue;
}
mapping = page_mapping(page);
if (is_device_private_page(newpage) ||
is_device_coherent_page(newpage)) {
/*
* For now only support anonymous memory migrating to
* device private or coherent memory.
*/
if (mapping) {
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
} else if (is_zone_device_page(newpage)) {
/*
* Other types of ZONE_DEVICE page are not supported.
*/
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
continue;
}
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
if (migrate && migrate->fault_page == page)
mm/memory.c: fix race when faulting a device private page Patch series "Fix several device private page reference counting issues", v2 This series aims to fix a number of page reference counting issues in drivers dealing with device private ZONE_DEVICE pages. These result in use-after-free type bugs, either from accessing a struct page which no longer exists because it has been removed or accessing fields within the struct page which are no longer valid because the page has been freed. During normal usage it is unlikely these will cause any problems. However without these fixes it is possible to crash the kernel from userspace. These crashes can be triggered either by unloading the kernel module or unbinding the device from the driver prior to a userspace task exiting. In modules such as Nouveau it is also possible to trigger some of these issues by explicitly closing the device file-descriptor prior to the task exiting and then accessing device private memory. This involves some minor changes to both PowerPC and AMD GPU code. Unfortunately I lack hardware to test either of those so any help there would be appreciated. The changes mimic what is done in for both Nouveau and hmm-tests though so I doubt they will cause problems. This patch (of 8): When the CPU tries to access a device private page the migrate_to_ram() callback associated with the pgmap for the page is called. However no reference is taken on the faulting page. Therefore a concurrent migration of the device private page can free the page and possibly the underlying pgmap. This results in a race which can crash the kernel due to the migrate_to_ram() function pointer becoming invalid. It also means drivers can't reliably read the zone_device_data field because the page may have been freed with memunmap_pages(). Close the race by getting a reference on the page while holding the ptl to ensure it has not been freed. Unfortunately the elevated reference count will cause the migration required to handle the fault to fail. To avoid this failure pass the faulting page into the migrate_vma functions so that if an elevated reference count is found it can be checked to see if it's expected or not. [mpe@ellerman.id.au: fix build] Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Lyude Paul <lyude@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:15 +08:00
r = migrate_folio_extra(mapping, page_folio(newpage),
page_folio(page),
MIGRATE_SYNC_NO_COPY, 1);
else
r = migrate_folio(mapping, page_folio(newpage),
page_folio(page), MIGRATE_SYNC_NO_COPY);
if (r != MIGRATEPAGE_SUCCESS)
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
}
/*
* No need to double call mmu_notifier->invalidate_range() callback as
* the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
* did already call it.
*/
if (notified)
mmu_notifier_invalidate_range_only_end(&range);
}
mm/migrate_device.c: add migrate_device_range() Device drivers can use the migrate_vma family of functions to migrate existing private anonymous mappings to device private pages. These pages are backed by memory on the device with drivers being responsible for copying data to and from device memory. Device private pages are freed via the pgmap->page_free() callback when they are unmapped and their refcount drops to zero. Alternatively they may be freed indirectly via migration back to CPU memory in response to a pgmap->migrate_to_ram() callback called whenever the CPU accesses an address mapped to a device private page. In other words drivers cannot control the lifetime of data allocated on the devices and must wait until these pages are freed from userspace. This causes issues when memory needs to reclaimed on the device, either because the device is going away due to a ->release() callback or because another user needs to use the memory. Drivers could use the existing migrate_vma functions to migrate data off the device. However this would require them to track the mappings of each page which is both complicated and not always possible. Instead drivers need to be able to migrate device pages directly so they can free up device memory. To allow that this patch introduces the migrate_device family of functions which are functionally similar to migrate_vma but which skips the initial lookup based on mapping. Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:19 +08:00
/**
* migrate_device_pages() - migrate meta-data from src page to dst page
* @src_pfns: src_pfns returned from migrate_device_range()
* @dst_pfns: array of pfns allocated by the driver to migrate memory to
* @npages: number of pages in the range
*
* Equivalent to migrate_vma_pages(). This is called to migrate struct page
* meta-data from source struct page to destination.
*/
void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
unsigned long npages)
{
__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
}
EXPORT_SYMBOL(migrate_device_pages);
/**
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
* migrate_vma_pages() - migrate meta-data from src page to dst page
* @migrate: migrate struct containing all migration information
*
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
* This migrates struct page meta-data from source struct page to destination
* struct page. This effectively finishes the migration from source page to the
* destination page.
*/
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
void migrate_vma_pages(struct migrate_vma *migrate)
{
mm/migrate_device.c: add migrate_device_range() Device drivers can use the migrate_vma family of functions to migrate existing private anonymous mappings to device private pages. These pages are backed by memory on the device with drivers being responsible for copying data to and from device memory. Device private pages are freed via the pgmap->page_free() callback when they are unmapped and their refcount drops to zero. Alternatively they may be freed indirectly via migration back to CPU memory in response to a pgmap->migrate_to_ram() callback called whenever the CPU accesses an address mapped to a device private page. In other words drivers cannot control the lifetime of data allocated on the devices and must wait until these pages are freed from userspace. This causes issues when memory needs to reclaimed on the device, either because the device is going away due to a ->release() callback or because another user needs to use the memory. Drivers could use the existing migrate_vma functions to migrate data off the device. However this would require them to track the mappings of each page which is both complicated and not always possible. Instead drivers need to be able to migrate device pages directly so they can free up device memory. To allow that this patch introduces the migrate_device family of functions which are functionally similar to migrate_vma but which skips the initial lookup based on mapping. Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:19 +08:00
__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
}
EXPORT_SYMBOL(migrate_vma_pages);
mm/migrate_device.c: add migrate_device_range() Device drivers can use the migrate_vma family of functions to migrate existing private anonymous mappings to device private pages. These pages are backed by memory on the device with drivers being responsible for copying data to and from device memory. Device private pages are freed via the pgmap->page_free() callback when they are unmapped and their refcount drops to zero. Alternatively they may be freed indirectly via migration back to CPU memory in response to a pgmap->migrate_to_ram() callback called whenever the CPU accesses an address mapped to a device private page. In other words drivers cannot control the lifetime of data allocated on the devices and must wait until these pages are freed from userspace. This causes issues when memory needs to reclaimed on the device, either because the device is going away due to a ->release() callback or because another user needs to use the memory. Drivers could use the existing migrate_vma functions to migrate data off the device. However this would require them to track the mappings of each page which is both complicated and not always possible. Instead drivers need to be able to migrate device pages directly so they can free up device memory. To allow that this patch introduces the migrate_device family of functions which are functionally similar to migrate_vma but which skips the initial lookup based on mapping. Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:19 +08:00
/*
* migrate_device_finalize() - complete page migration
* @src_pfns: src_pfns returned from migrate_device_range()
* @dst_pfns: array of pfns allocated by the driver to migrate memory to
* @npages: number of pages in the range
*
* Completes migration of the page by removing special migration entries.
* Drivers must ensure copying of page data is complete and visible to the CPU
* before calling this.
*/
void migrate_device_finalize(unsigned long *src_pfns,
unsigned long *dst_pfns, unsigned long npages)
{
unsigned long i;
for (i = 0; i < npages; i++) {
struct folio *dst, *src;
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
struct page *page = migrate_pfn_to_page(src_pfns[i]);
if (!page) {
if (newpage) {
unlock_page(newpage);
put_page(newpage);
}
continue;
}
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
if (newpage) {
unlock_page(newpage);
put_page(newpage);
}
newpage = page;
}
src = page_folio(page);
dst = page_folio(newpage);
remove_migration_ptes(src, dst, false);
folio_unlock(src);
if (is_zone_device_page(page))
put_page(page);
else
putback_lru_page(page);
if (newpage != page) {
unlock_page(newpage);
if (is_zone_device_page(newpage))
put_page(newpage);
else
putback_lru_page(newpage);
}
}
}
mm/migrate_device.c: add migrate_device_range() Device drivers can use the migrate_vma family of functions to migrate existing private anonymous mappings to device private pages. These pages are backed by memory on the device with drivers being responsible for copying data to and from device memory. Device private pages are freed via the pgmap->page_free() callback when they are unmapped and their refcount drops to zero. Alternatively they may be freed indirectly via migration back to CPU memory in response to a pgmap->migrate_to_ram() callback called whenever the CPU accesses an address mapped to a device private page. In other words drivers cannot control the lifetime of data allocated on the devices and must wait until these pages are freed from userspace. This causes issues when memory needs to reclaimed on the device, either because the device is going away due to a ->release() callback or because another user needs to use the memory. Drivers could use the existing migrate_vma functions to migrate data off the device. However this would require them to track the mappings of each page which is both complicated and not always possible. Instead drivers need to be able to migrate device pages directly so they can free up device memory. To allow that this patch introduces the migrate_device family of functions which are functionally similar to migrate_vma but which skips the initial lookup based on mapping. Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:19 +08:00
EXPORT_SYMBOL(migrate_device_finalize);
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
/**
* migrate_vma_finalize() - restore CPU page table entry
* @migrate: migrate struct containing all migration information
*
* This replaces the special migration pte entry with either a mapping to the
* new page if migration was successful for that page, or to the original page
* otherwise.
*
* This also unlocks the pages and puts them back on the lru, or drops the extra
* refcount, for device pages.
*/
void migrate_vma_finalize(struct migrate_vma *migrate)
{
migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
}
EXPORT_SYMBOL(migrate_vma_finalize);
mm/migrate_device.c: add migrate_device_range() Device drivers can use the migrate_vma family of functions to migrate existing private anonymous mappings to device private pages. These pages are backed by memory on the device with drivers being responsible for copying data to and from device memory. Device private pages are freed via the pgmap->page_free() callback when they are unmapped and their refcount drops to zero. Alternatively they may be freed indirectly via migration back to CPU memory in response to a pgmap->migrate_to_ram() callback called whenever the CPU accesses an address mapped to a device private page. In other words drivers cannot control the lifetime of data allocated on the devices and must wait until these pages are freed from userspace. This causes issues when memory needs to reclaimed on the device, either because the device is going away due to a ->release() callback or because another user needs to use the memory. Drivers could use the existing migrate_vma functions to migrate data off the device. However this would require them to track the mappings of each page which is both complicated and not always possible. Instead drivers need to be able to migrate device pages directly so they can free up device memory. To allow that this patch introduces the migrate_device family of functions which are functionally similar to migrate_vma but which skips the initial lookup based on mapping. Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:19 +08:00
/**
* migrate_device_range() - migrate device private pfns to normal memory.
* @src_pfns: array large enough to hold migrating source device private pfns.
* @start: starting pfn in the range to migrate.
* @npages: number of pages to migrate.
*
* migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
* instead of looking up pages based on virtual address mappings a range of
* device pfns that should be migrated to system memory is used instead.
*
* This is useful when a driver needs to free device memory but doesn't know the
* virtual mappings of every page that may be in device memory. For example this
* is often the case when a driver is being unloaded or unbound from a device.
*
* Like migrate_vma_setup() this function will take a reference and lock any
* migrating pages that aren't free before unmapping them. Drivers may then
* allocate destination pages and start copying data from the device to CPU
* memory before calling migrate_device_pages().
*/
int migrate_device_range(unsigned long *src_pfns, unsigned long start,
unsigned long npages)
{
unsigned long i, pfn;
for (pfn = start, i = 0; i < npages; pfn++, i++) {
struct page *page = pfn_to_page(pfn);
if (!get_page_unless_zero(page)) {
src_pfns[i] = 0;
continue;
}
if (!trylock_page(page)) {
src_pfns[i] = 0;
put_page(page);
continue;
}
src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
}
migrate_device_unmap(src_pfns, npages, NULL);
return 0;
}
EXPORT_SYMBOL(migrate_device_range);
/*
* Migrate a device coherent page back to normal memory. The caller should have
* a reference on page which will be copied to the new page if migration is
* successful or dropped on failure.
*/
int migrate_device_coherent_page(struct page *page)
{
unsigned long src_pfn, dst_pfn = 0;
struct page *dpage;
WARN_ON_ONCE(PageCompound(page));
lock_page(page);
src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
/*
* We don't have a VMA and don't need to walk the page tables to find
* the source page. So call migrate_vma_unmap() directly to unmap the
* page as migrate_vma_setup() will fail if args.vma == NULL.
*/
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
migrate_device_unmap(&src_pfn, 1, NULL);
if (!(src_pfn & MIGRATE_PFN_MIGRATE))
return -EBUSY;
dpage = alloc_page(GFP_USER | __GFP_NOWARN);
if (dpage) {
lock_page(dpage);
dst_pfn = migrate_pfn(page_to_pfn(dpage));
}
mm/migrate_device.c: add migrate_device_range() Device drivers can use the migrate_vma family of functions to migrate existing private anonymous mappings to device private pages. These pages are backed by memory on the device with drivers being responsible for copying data to and from device memory. Device private pages are freed via the pgmap->page_free() callback when they are unmapped and their refcount drops to zero. Alternatively they may be freed indirectly via migration back to CPU memory in response to a pgmap->migrate_to_ram() callback called whenever the CPU accesses an address mapped to a device private page. In other words drivers cannot control the lifetime of data allocated on the devices and must wait until these pages are freed from userspace. This causes issues when memory needs to reclaimed on the device, either because the device is going away due to a ->release() callback or because another user needs to use the memory. Drivers could use the existing migrate_vma functions to migrate data off the device. However this would require them to track the mappings of each page which is both complicated and not always possible. Instead drivers need to be able to migrate device pages directly so they can free up device memory. To allow that this patch introduces the migrate_device family of functions which are functionally similar to migrate_vma but which skips the initial lookup based on mapping. Link: https://lkml.kernel.org/r/868116aab70b0c8ee467d62498bb2cf0ef907295.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:19 +08:00
migrate_device_pages(&src_pfn, &dst_pfn, 1);
if (src_pfn & MIGRATE_PFN_MIGRATE)
copy_highpage(dpage, page);
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() migrate_device_coherent_page() reuses the existing migrate_vma family of functions to migrate a specific page without providing a valid mapping or vma. This looks a bit odd because it means we are calling migrate_vma_*() without setting a valid vma, however it was considered acceptable at the time because the details were internal to migrate_device.c and there was only a single user. One of the reasons the details could be kept internal was that this was strictly for migrating device coherent memory. Such memory can be copied directly by the CPU without intervention from a driver. However this isn't true for device private memory, and a future change requires similar functionality for device private memory. So refactor the code into something more sensible for migrating device memory without a vma. Link: https://lkml.kernel.org/r/c7b2ff84e9b33d022cf4a40f87d051f281a16d8f.1664366292.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christian König <christian.koenig@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-28 20:01:18 +08:00
migrate_device_finalize(&src_pfn, &dst_pfn, 1);
if (src_pfn & MIGRATE_PFN_MIGRATE)
return 0;
return -EBUSY;
}