2011-04-20 17:27:32 +08:00
|
|
|
/* bpf_jit_comp.c : BPF JIT compiler
|
|
|
|
*
|
2013-01-31 09:51:44 +08:00
|
|
|
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
* Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
2011-04-20 17:27:32 +08:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; version 2
|
|
|
|
* of the License.
|
|
|
|
*/
|
|
|
|
#include <linux/moduleloader.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/filter.h>
|
2012-10-27 10:26:22 +08:00
|
|
|
#include <linux/if_vlan.h>
|
2013-05-18 00:37:03 +08:00
|
|
|
#include <linux/random.h>
|
2011-04-20 17:27:32 +08:00
|
|
|
|
|
|
|
int bpf_jit_enable __read_mostly;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* assembly code in arch/x86/net/bpf_jit.S
|
|
|
|
*/
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
|
2012-03-30 13:24:05 +08:00
|
|
|
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
extern u8 sk_load_byte_positive_offset[];
|
2012-03-30 13:24:05 +08:00
|
|
|
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
extern u8 sk_load_byte_negative_offset[];
|
2011-04-20 17:27:32 +08:00
|
|
|
|
|
|
|
static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
|
|
|
|
{
|
|
|
|
if (len == 1)
|
|
|
|
*ptr = bytes;
|
|
|
|
else if (len == 2)
|
|
|
|
*(u16 *)ptr = bytes;
|
|
|
|
else {
|
|
|
|
*(u32 *)ptr = bytes;
|
|
|
|
barrier();
|
|
|
|
}
|
|
|
|
return ptr + len;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
|
|
|
|
|
|
|
|
#define EMIT1(b1) EMIT(b1, 1)
|
|
|
|
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
|
|
|
|
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
|
|
|
|
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
#define EMIT1_off32(b1, off) \
|
|
|
|
do {EMIT1(b1); EMIT(off, 4); } while (0)
|
|
|
|
#define EMIT2_off32(b1, b2, off) \
|
|
|
|
do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
|
|
|
|
#define EMIT3_off32(b1, b2, b3, off) \
|
|
|
|
do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
|
|
|
|
#define EMIT4_off32(b1, b2, b3, b4, off) \
|
|
|
|
do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
|
2011-04-20 17:27:32 +08:00
|
|
|
|
|
|
|
static inline bool is_imm8(int value)
|
|
|
|
{
|
|
|
|
return value <= 127 && value >= -128;
|
|
|
|
}
|
|
|
|
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
static inline bool is_simm32(s64 value)
|
2011-04-20 17:27:32 +08:00
|
|
|
{
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
return value == (s64) (s32) value;
|
2011-04-20 17:27:32 +08:00
|
|
|
}
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov dst, src */
|
|
|
|
#define EMIT_mov(DST, SRC) \
|
|
|
|
do {if (DST != SRC) \
|
|
|
|
EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
} while (0)
|
|
|
|
|
|
|
|
static int bpf_size_to_x86_bytes(int bpf_size)
|
|
|
|
{
|
|
|
|
if (bpf_size == BPF_W)
|
|
|
|
return 4;
|
|
|
|
else if (bpf_size == BPF_H)
|
|
|
|
return 2;
|
|
|
|
else if (bpf_size == BPF_B)
|
|
|
|
return 1;
|
|
|
|
else if (bpf_size == BPF_DW)
|
|
|
|
return 4; /* imm32 */
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
2011-04-20 17:27:32 +08:00
|
|
|
|
|
|
|
/* list of x86 cond jumps opcodes (. + s8)
|
|
|
|
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
|
|
|
|
*/
|
|
|
|
#define X86_JB 0x72
|
|
|
|
#define X86_JAE 0x73
|
|
|
|
#define X86_JE 0x74
|
|
|
|
#define X86_JNE 0x75
|
|
|
|
#define X86_JBE 0x76
|
|
|
|
#define X86_JA 0x77
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
#define X86_JGE 0x7D
|
|
|
|
#define X86_JG 0x7F
|
2011-04-20 17:27:32 +08:00
|
|
|
|
|
|
|
static inline void bpf_flush_icache(void *start, void *end)
|
|
|
|
{
|
|
|
|
mm_segment_t old_fs = get_fs();
|
|
|
|
|
|
|
|
set_fs(KERNEL_DS);
|
|
|
|
smp_wmb();
|
|
|
|
flush_icache_range((unsigned long)start, (unsigned long)end);
|
|
|
|
set_fs(old_fs);
|
|
|
|
}
|
|
|
|
|
2012-03-30 13:24:05 +08:00
|
|
|
#define CHOOSE_LOAD_FUNC(K, func) \
|
|
|
|
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
|
2011-04-20 17:27:32 +08:00
|
|
|
|
2013-05-18 00:37:03 +08:00
|
|
|
struct bpf_binary_header {
|
|
|
|
unsigned int pages;
|
|
|
|
/* Note : for security reasons, bpf code will follow a randomly
|
|
|
|
* sized amount of int3 instructions
|
|
|
|
*/
|
|
|
|
u8 image[];
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
|
|
|
|
u8 **image_ptr)
|
|
|
|
{
|
|
|
|
unsigned int sz, hole;
|
|
|
|
struct bpf_binary_header *header;
|
|
|
|
|
|
|
|
/* Most of BPF filters are really small,
|
|
|
|
* but if some of them fill a page, allow at least
|
|
|
|
* 128 extra bytes to insert a random section of int3
|
|
|
|
*/
|
|
|
|
sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
|
|
|
|
header = module_alloc(sz);
|
|
|
|
if (!header)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
|
|
|
|
|
|
|
|
header->pages = sz / PAGE_SIZE;
|
2014-05-14 06:05:55 +08:00
|
|
|
hole = min(sz - (proglen + sizeof(*header)), PAGE_SIZE - sizeof(*header));
|
2013-05-18 00:37:03 +08:00
|
|
|
|
|
|
|
/* insert a random number of int3 instructions before BPF code */
|
|
|
|
*image_ptr = &header->image[prandom_u32() % hole];
|
|
|
|
return header;
|
|
|
|
}
|
|
|
|
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
/* pick a register outside of BPF range for JIT internal work */
|
|
|
|
#define AUX_REG (MAX_BPF_REG + 1)
|
|
|
|
|
|
|
|
/* the following table maps BPF registers to x64 registers.
|
|
|
|
* x64 register r12 is unused, since if used as base address register
|
|
|
|
* in load/store instructions, it always needs an extra byte of encoding
|
|
|
|
*/
|
|
|
|
static const int reg2hex[] = {
|
|
|
|
[BPF_REG_0] = 0, /* rax */
|
|
|
|
[BPF_REG_1] = 7, /* rdi */
|
|
|
|
[BPF_REG_2] = 6, /* rsi */
|
|
|
|
[BPF_REG_3] = 2, /* rdx */
|
|
|
|
[BPF_REG_4] = 1, /* rcx */
|
|
|
|
[BPF_REG_5] = 0, /* r8 */
|
|
|
|
[BPF_REG_6] = 3, /* rbx callee saved */
|
|
|
|
[BPF_REG_7] = 5, /* r13 callee saved */
|
|
|
|
[BPF_REG_8] = 6, /* r14 callee saved */
|
|
|
|
[BPF_REG_9] = 7, /* r15 callee saved */
|
|
|
|
[BPF_REG_FP] = 5, /* rbp readonly */
|
|
|
|
[AUX_REG] = 3, /* r11 temp register */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
|
|
|
|
* which need extra byte of encoding.
|
|
|
|
* rax,rcx,...,rbp have simpler encoding
|
|
|
|
*/
|
|
|
|
static inline bool is_ereg(u32 reg)
|
|
|
|
{
|
|
|
|
if (reg == BPF_REG_5 || reg == AUX_REG ||
|
|
|
|
(reg >= BPF_REG_7 && reg <= BPF_REG_9))
|
|
|
|
return true;
|
|
|
|
else
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* add modifiers if 'reg' maps to x64 registers r8..r15 */
|
|
|
|
static inline u8 add_1mod(u8 byte, u32 reg)
|
|
|
|
{
|
|
|
|
if (is_ereg(reg))
|
|
|
|
byte |= 1;
|
|
|
|
return byte;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u8 add_2mod(u8 byte, u32 r1, u32 r2)
|
|
|
|
{
|
|
|
|
if (is_ereg(r1))
|
|
|
|
byte |= 1;
|
|
|
|
if (is_ereg(r2))
|
|
|
|
byte |= 4;
|
|
|
|
return byte;
|
|
|
|
}
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* encode 'dst_reg' register into x64 opcode 'byte' */
|
|
|
|
static inline u8 add_1reg(u8 byte, u32 dst_reg)
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
{
|
2014-06-07 05:46:06 +08:00
|
|
|
return byte + reg2hex[dst_reg];
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
}
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
|
|
|
|
static inline u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
{
|
2014-06-07 05:46:06 +08:00
|
|
|
return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
}
|
|
|
|
|
2014-05-14 10:50:45 +08:00
|
|
|
struct jit_context {
|
|
|
|
unsigned int cleanup_addr; /* epilogue code offset */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
bool seen_ld_abs;
|
2014-05-14 10:50:45 +08:00
|
|
|
};
|
|
|
|
|
net: filter: split 'struct sk_filter' into socket and bpf parts
clean up names related to socket filtering and bpf in the following way:
- everything that deals with sockets keeps 'sk_*' prefix
- everything that is pure BPF is changed to 'bpf_*' prefix
split 'struct sk_filter' into
struct sk_filter {
atomic_t refcnt;
struct rcu_head rcu;
struct bpf_prog *prog;
};
and
struct bpf_prog {
u32 jited:1,
len:31;
struct sock_fprog_kern *orig_prog;
unsigned int (*bpf_func)(const struct sk_buff *skb,
const struct bpf_insn *filter);
union {
struct sock_filter insns[0];
struct bpf_insn insnsi[0];
struct work_struct work;
};
};
so that 'struct bpf_prog' can be used independent of sockets and cleans up
'unattached' bpf use cases
split SK_RUN_FILTER macro into:
SK_RUN_FILTER to be used with 'struct sk_filter *' and
BPF_PROG_RUN to be used with 'struct bpf_prog *'
__sk_filter_release(struct sk_filter *) gains
__bpf_prog_release(struct bpf_prog *) helper function
also perform related renames for the functions that work
with 'struct bpf_prog *', since they're on the same lines:
sk_filter_size -> bpf_prog_size
sk_filter_select_runtime -> bpf_prog_select_runtime
sk_filter_free -> bpf_prog_free
sk_unattached_filter_create -> bpf_prog_create
sk_unattached_filter_destroy -> bpf_prog_destroy
sk_store_orig_filter -> bpf_prog_store_orig_filter
sk_release_orig_filter -> bpf_release_orig_filter
__sk_migrate_filter -> bpf_migrate_filter
__sk_prepare_filter -> bpf_prepare_filter
API for attaching classic BPF to a socket stays the same:
sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *)
and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program
which is used by sockets, tun, af_packet
API for 'unattached' BPF programs becomes:
bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *)
and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program
which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
|
|
|
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
|
2014-05-14 10:50:45 +08:00
|
|
|
int oldproglen, struct jit_context *ctx)
|
2011-04-20 17:27:32 +08:00
|
|
|
{
|
2014-07-25 07:38:21 +08:00
|
|
|
struct bpf_insn *insn = bpf_prog->insnsi;
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
int insn_cnt = bpf_prog->len;
|
2011-04-20 17:27:32 +08:00
|
|
|
u8 temp[64];
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
int i;
|
|
|
|
int proglen = 0;
|
|
|
|
u8 *prog = temp;
|
|
|
|
int stacksize = MAX_BPF_STACK +
|
|
|
|
32 /* space for rbx, r13, r14, r15 */ +
|
|
|
|
8 /* space for skb_copy_bits() buffer */;
|
2011-04-20 17:27:32 +08:00
|
|
|
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
EMIT1(0x55); /* push rbp */
|
|
|
|
EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
|
2011-04-20 17:27:32 +08:00
|
|
|
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
/* sub rsp, stacksize */
|
|
|
|
EMIT3_off32(0x48, 0x81, 0xEC, stacksize);
|
|
|
|
|
|
|
|
/* all classic BPF filters use R6(rbx) save it */
|
|
|
|
|
|
|
|
/* mov qword ptr [rbp-X],rbx */
|
|
|
|
EMIT3_off32(0x48, 0x89, 0x9D, -stacksize);
|
|
|
|
|
2014-07-31 11:34:15 +08:00
|
|
|
/* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
* as temporary, so all tcpdump filters need to spill/fill R7(r13) and
|
|
|
|
* R8(r14). R9(r15) spill could be made conditional, but there is only
|
|
|
|
* one 'bpf_error' return path out of helper functions inside bpf_jit.S
|
|
|
|
* The overhead of extra spill is negligible for any filter other
|
|
|
|
* than synthetic ones. Therefore not worth adding complexity.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* mov qword ptr [rbp-X],r13 */
|
|
|
|
EMIT3_off32(0x4C, 0x89, 0xAD, -stacksize + 8);
|
|
|
|
/* mov qword ptr [rbp-X],r14 */
|
|
|
|
EMIT3_off32(0x4C, 0x89, 0xB5, -stacksize + 16);
|
|
|
|
/* mov qword ptr [rbp-X],r15 */
|
|
|
|
EMIT3_off32(0x4C, 0x89, 0xBD, -stacksize + 24);
|
|
|
|
|
|
|
|
/* clear A and X registers */
|
|
|
|
EMIT2(0x31, 0xc0); /* xor eax, eax */
|
|
|
|
EMIT3(0x4D, 0x31, 0xED); /* xor r13, r13 */
|
|
|
|
|
|
|
|
if (ctx->seen_ld_abs) {
|
|
|
|
/* r9d : skb->len - skb->data_len (headlen)
|
|
|
|
* r10 : skb->data
|
|
|
|
*/
|
|
|
|
if (is_imm8(offsetof(struct sk_buff, len)))
|
|
|
|
/* mov %r9d, off8(%rdi) */
|
|
|
|
EMIT4(0x44, 0x8b, 0x4f,
|
|
|
|
offsetof(struct sk_buff, len));
|
|
|
|
else
|
|
|
|
/* mov %r9d, off32(%rdi) */
|
|
|
|
EMIT3_off32(0x44, 0x8b, 0x8f,
|
|
|
|
offsetof(struct sk_buff, len));
|
|
|
|
|
|
|
|
if (is_imm8(offsetof(struct sk_buff, data_len)))
|
|
|
|
/* sub %r9d, off8(%rdi) */
|
|
|
|
EMIT4(0x44, 0x2b, 0x4f,
|
|
|
|
offsetof(struct sk_buff, data_len));
|
|
|
|
else
|
|
|
|
EMIT3_off32(0x44, 0x2b, 0x8f,
|
|
|
|
offsetof(struct sk_buff, data_len));
|
|
|
|
|
|
|
|
if (is_imm8(offsetof(struct sk_buff, data)))
|
|
|
|
/* mov %r10, off8(%rdi) */
|
|
|
|
EMIT4(0x4c, 0x8b, 0x57,
|
|
|
|
offsetof(struct sk_buff, data));
|
|
|
|
else
|
|
|
|
/* mov %r10, off32(%rdi) */
|
|
|
|
EMIT3_off32(0x4c, 0x8b, 0x97,
|
|
|
|
offsetof(struct sk_buff, data));
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < insn_cnt; i++, insn++) {
|
2014-06-07 05:46:06 +08:00
|
|
|
const s32 imm32 = insn->imm;
|
|
|
|
u32 dst_reg = insn->dst_reg;
|
|
|
|
u32 src_reg = insn->src_reg;
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
u8 b1 = 0, b2 = 0, b3 = 0;
|
|
|
|
s64 jmp_offset;
|
|
|
|
u8 jmp_cond;
|
|
|
|
int ilen;
|
|
|
|
u8 *func;
|
|
|
|
|
|
|
|
switch (insn->code) {
|
|
|
|
/* ALU */
|
|
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
|
|
case BPF_ADD: b2 = 0x01; break;
|
|
|
|
case BPF_SUB: b2 = 0x29; break;
|
|
|
|
case BPF_AND: b2 = 0x21; break;
|
|
|
|
case BPF_OR: b2 = 0x09; break;
|
|
|
|
case BPF_XOR: b2 = 0x31; break;
|
2011-04-20 17:27:32 +08:00
|
|
|
}
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1(add_2mod(0x48, dst_reg, src_reg));
|
|
|
|
else if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
|
|
EMIT1(add_2mod(0x40, dst_reg, src_reg));
|
|
|
|
EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
2011-04-20 17:27:32 +08:00
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov dst, src */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT_mov(dst_reg, src_reg);
|
2011-04-20 17:27:32 +08:00
|
|
|
break;
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov32 dst, src */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
|
|
EMIT1(add_2mod(0x40, dst_reg, src_reg));
|
|
|
|
EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
2011-04-20 17:27:32 +08:00
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* neg dst */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_ALU | BPF_NEG:
|
|
|
|
case BPF_ALU64 | BPF_NEG:
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
|
|
else if (is_ereg(dst_reg))
|
|
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
EMIT2(0xF7, add_1reg(0xD8, dst_reg));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
|
|
else if (is_ereg(dst_reg))
|
|
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
|
|
case BPF_ADD: b3 = 0xC0; break;
|
|
|
|
case BPF_SUB: b3 = 0xE8; break;
|
|
|
|
case BPF_AND: b3 = 0xE0; break;
|
|
|
|
case BPF_OR: b3 = 0xC8; break;
|
|
|
|
case BPF_XOR: b3 = 0xF0; break;
|
|
|
|
}
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_imm8(imm32))
|
|
|
|
EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
|
|
/* optimization: if imm32 is positive,
|
|
|
|
* use 'mov eax, imm32' (which zero-extends imm32)
|
|
|
|
* to save 2 bytes
|
|
|
|
*/
|
2014-06-07 05:46:06 +08:00
|
|
|
if (imm32 < 0) {
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
/* 'mov rax, imm32' sign extends imm32 */
|
2014-06-07 05:46:06 +08:00
|
|
|
b1 = add_1mod(0x48, dst_reg);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
b2 = 0xC7;
|
|
|
|
b3 = 0xC0;
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
|
2011-04-20 17:27:32 +08:00
|
|
|
break;
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
|
|
/* mov %eax, imm32 */
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg))
|
|
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_MOD | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_DIV | BPF_K:
|
|
|
|
EMIT1(0x50); /* push rax */
|
|
|
|
EMIT1(0x52); /* push rdx */
|
|
|
|
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X)
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov r11, src_reg */
|
|
|
|
EMIT_mov(AUX_REG, src_reg);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov r11, imm32 */
|
|
|
|
EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov rax, dst_reg */
|
|
|
|
EMIT_mov(BPF_REG_0, dst_reg);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
|
|
|
/* xor edx, edx
|
|
|
|
* equivalent to 'xor rdx, rdx', but one byte less
|
|
|
|
*/
|
|
|
|
EMIT2(0x31, 0xd2);
|
|
|
|
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
2014-06-07 05:46:06 +08:00
|
|
|
/* if (src_reg == 0) return 0 */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
|
|
|
/* cmp r11, 0 */
|
|
|
|
EMIT4(0x49, 0x83, 0xFB, 0x00);
|
|
|
|
|
|
|
|
/* jne .+9 (skip over pop, pop, xor and jmp) */
|
|
|
|
EMIT2(X86_JNE, 1 + 1 + 2 + 5);
|
|
|
|
EMIT1(0x5A); /* pop rdx */
|
|
|
|
EMIT1(0x58); /* pop rax */
|
|
|
|
EMIT2(0x31, 0xc0); /* xor eax, eax */
|
|
|
|
|
|
|
|
/* jmp cleanup_addr
|
|
|
|
* addrs[i] - 11, because there are 11 bytes
|
|
|
|
* after this insn: div, mov, pop, pop, mov
|
|
|
|
*/
|
|
|
|
jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
|
|
|
|
EMIT1_off32(0xE9, jmp_offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
|
|
/* div r11 */
|
|
|
|
EMIT3(0x49, 0xF7, 0xF3);
|
|
|
|
else
|
|
|
|
/* div r11d */
|
|
|
|
EMIT3(0x41, 0xF7, 0xF3);
|
|
|
|
|
|
|
|
if (BPF_OP(insn->code) == BPF_MOD)
|
|
|
|
/* mov r11, rdx */
|
|
|
|
EMIT3(0x49, 0x89, 0xD3);
|
|
|
|
else
|
|
|
|
/* mov r11, rax */
|
|
|
|
EMIT3(0x49, 0x89, 0xC3);
|
|
|
|
|
|
|
|
EMIT1(0x5A); /* pop rdx */
|
|
|
|
EMIT1(0x58); /* pop rax */
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov dst_reg, r11 */
|
|
|
|
EMIT_mov(dst_reg, AUX_REG);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
|
|
EMIT1(0x50); /* push rax */
|
|
|
|
EMIT1(0x52); /* push rdx */
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov r11, dst_reg */
|
|
|
|
EMIT_mov(AUX_REG, dst_reg);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X)
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov rax, src_reg */
|
|
|
|
EMIT_mov(BPF_REG_0, src_reg);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov rax, imm32 */
|
|
|
|
EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
|
|
EMIT1(add_1mod(0x48, AUX_REG));
|
|
|
|
else if (is_ereg(AUX_REG))
|
|
|
|
EMIT1(add_1mod(0x40, AUX_REG));
|
|
|
|
/* mul(q) r11 */
|
|
|
|
EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
|
|
|
|
|
|
|
|
/* mov r11, rax */
|
|
|
|
EMIT_mov(AUX_REG, BPF_REG_0);
|
|
|
|
|
|
|
|
EMIT1(0x5A); /* pop rdx */
|
|
|
|
EMIT1(0x58); /* pop rax */
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov dst_reg, r11 */
|
|
|
|
EMIT_mov(dst_reg, AUX_REG);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
/* shifts */
|
|
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
|
|
else if (is_ereg(dst_reg))
|
|
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
|
|
case BPF_LSH: b3 = 0xE0; break;
|
|
|
|
case BPF_RSH: b3 = 0xE8; break;
|
|
|
|
case BPF_ARSH: b3 = 0xF8; break;
|
|
|
|
}
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
|
2014-08-26 03:27:02 +08:00
|
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
|
|
|
|
|
|
/* check for bad case when dst_reg == rcx */
|
|
|
|
if (dst_reg == BPF_REG_4) {
|
|
|
|
/* mov r11, dst_reg */
|
|
|
|
EMIT_mov(AUX_REG, dst_reg);
|
|
|
|
dst_reg = AUX_REG;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (src_reg != BPF_REG_4) { /* common case */
|
|
|
|
EMIT1(0x51); /* push rcx */
|
|
|
|
|
|
|
|
/* mov rcx, src_reg */
|
|
|
|
EMIT_mov(BPF_REG_4, src_reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
|
|
|
|
if (BPF_CLASS(insn->code) == BPF_ALU64)
|
|
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
|
|
else if (is_ereg(dst_reg))
|
|
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
|
|
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
|
|
case BPF_LSH: b3 = 0xE0; break;
|
|
|
|
case BPF_RSH: b3 = 0xE8; break;
|
|
|
|
case BPF_ARSH: b3 = 0xF8; break;
|
|
|
|
}
|
|
|
|
EMIT2(0xD3, add_1reg(b3, dst_reg));
|
|
|
|
|
|
|
|
if (src_reg != BPF_REG_4)
|
|
|
|
EMIT1(0x59); /* pop rcx */
|
|
|
|
|
|
|
|
if (insn->dst_reg == BPF_REG_4)
|
|
|
|
/* mov dst_reg, r11 */
|
|
|
|
EMIT_mov(insn->dst_reg, AUX_REG);
|
|
|
|
break;
|
|
|
|
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
2014-06-07 05:46:06 +08:00
|
|
|
switch (imm32) {
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case 16:
|
|
|
|
/* emit 'ror %ax, 8' to swap lower 2 bytes */
|
|
|
|
EMIT1(0x66);
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg))
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
EMIT1(0x41);
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
case 32:
|
|
|
|
/* emit 'bswap eax' to swap lower 4 bytes */
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg))
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
EMIT2(0x41, 0x0F);
|
2011-04-20 17:27:32 +08:00
|
|
|
else
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
EMIT1(0x0F);
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1(add_1reg(0xC8, dst_reg));
|
2011-04-20 17:27:32 +08:00
|
|
|
break;
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case 64:
|
|
|
|
/* emit 'bswap rax' to swap 8 bytes */
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT3(add_1mod(0x48, dst_reg), 0x0F,
|
|
|
|
add_1reg(0xC8, dst_reg));
|
2013-01-31 09:51:44 +08:00
|
|
|
break;
|
|
|
|
}
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
|
|
break;
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* ST: *(u8*)(dst_reg + off) = imm */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg))
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
EMIT2(0x41, 0xC6);
|
|
|
|
else
|
|
|
|
EMIT1(0xC6);
|
|
|
|
goto st;
|
|
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg))
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
EMIT3(0x66, 0x41, 0xC7);
|
|
|
|
else
|
|
|
|
EMIT2(0x66, 0xC7);
|
|
|
|
goto st;
|
|
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg))
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
EMIT2(0x41, 0xC7);
|
|
|
|
else
|
|
|
|
EMIT1(0xC7);
|
|
|
|
goto st;
|
|
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2(add_1mod(0x48, dst_reg), 0xC7);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
|
|
|
st: if (is_imm8(insn->off))
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2(add_1reg(0x40, dst_reg), insn->off);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
break;
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* STX: *(u8*)(dst_reg + off) = src_reg */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
|
|
/* emit 'mov byte ptr [rax + off], al' */
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg) ||
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
/* have to add extra byte for x86 SIL, DIL regs */
|
2014-06-07 05:46:06 +08:00
|
|
|
src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
|
|
|
|
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
|
|
|
EMIT1(0x88);
|
|
|
|
goto stx;
|
|
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
|
|
EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
|
|
|
EMIT2(0x66, 0x89);
|
|
|
|
goto stx;
|
|
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
|
|
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
|
|
|
EMIT1(0x89);
|
|
|
|
goto stx;
|
|
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
stx: if (is_imm8(insn->off))
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
insn->off);
|
|
|
|
break;
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* LDX: dst_reg = *(u8*)(src_reg + off) */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
|
|
/* emit 'movzx rax, byte ptr [rax + off]' */
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
goto ldx;
|
|
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
|
|
/* emit 'movzx rax, word ptr [rax + off]' */
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
goto ldx;
|
|
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
|
|
/* emit 'mov eax, dword ptr [rax+0x14]' */
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
|
|
EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
|
|
|
EMIT1(0x8B);
|
|
|
|
goto ldx;
|
|
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
|
|
/* emit 'mov rax, qword ptr [rax+0x14]' */
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
ldx: /* if insn->off == 0 we can save one extra byte, but
|
|
|
|
* special case of x86 r13 which always needs an offset
|
|
|
|
* is not worth the hassle
|
|
|
|
*/
|
|
|
|
if (is_imm8(insn->off))
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
insn->off);
|
|
|
|
break;
|
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_STX | BPF_XADD | BPF_W:
|
|
|
|
/* emit 'lock add dword ptr [rax + off], eax' */
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
|
|
EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
|
|
|
EMIT2(0xF0, 0x01);
|
|
|
|
goto xadd;
|
|
|
|
case BPF_STX | BPF_XADD | BPF_DW:
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
xadd: if (is_imm8(insn->off))
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
insn->off);
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* call */
|
|
|
|
case BPF_JMP | BPF_CALL:
|
2014-06-07 05:46:06 +08:00
|
|
|
func = (u8 *) __bpf_call_base + imm32;
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
jmp_offset = func - (image + addrs[i]);
|
|
|
|
if (ctx->seen_ld_abs) {
|
|
|
|
EMIT2(0x41, 0x52); /* push %r10 */
|
|
|
|
EMIT2(0x41, 0x51); /* push %r9 */
|
|
|
|
/* need to adjust jmp offset, since
|
|
|
|
* pop %r9, pop %r10 take 4 bytes after call insn
|
|
|
|
*/
|
|
|
|
jmp_offset += 4;
|
|
|
|
}
|
2014-06-07 05:46:06 +08:00
|
|
|
if (!imm32 || !is_simm32(jmp_offset)) {
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
pr_err("unsupported bpf func %d addr %p image %p\n",
|
2014-06-07 05:46:06 +08:00
|
|
|
imm32, func, image);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
EMIT1_off32(0xE8, jmp_offset);
|
|
|
|
if (ctx->seen_ld_abs) {
|
|
|
|
EMIT2(0x41, 0x59); /* pop %r9 */
|
|
|
|
EMIT2(0x41, 0x5A); /* pop %r10 */
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* cond jump */
|
|
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
2014-06-07 05:46:06 +08:00
|
|
|
/* cmp dst_reg, src_reg */
|
|
|
|
EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
|
|
|
|
add_2reg(0xC0, dst_reg, src_reg));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
goto emit_cond_jmp;
|
|
|
|
|
|
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
2014-06-07 05:46:06 +08:00
|
|
|
/* test dst_reg, src_reg */
|
|
|
|
EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
|
|
|
|
add_2reg(0xC0, dst_reg, src_reg));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
goto emit_cond_jmp;
|
|
|
|
|
|
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
2014-06-07 05:46:06 +08:00
|
|
|
/* test dst_reg, imm32 */
|
|
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
|
|
|
EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
goto emit_cond_jmp;
|
|
|
|
|
|
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
2014-06-07 05:46:06 +08:00
|
|
|
/* cmp dst_reg, imm8/32 */
|
|
|
|
EMIT1(add_1mod(0x48, dst_reg));
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
2014-06-07 05:46:06 +08:00
|
|
|
if (is_imm8(imm32))
|
|
|
|
EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
else
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
|
|
|
emit_cond_jmp: /* convert BPF opcode to x86 */
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
|
|
case BPF_JEQ:
|
|
|
|
jmp_cond = X86_JE;
|
|
|
|
break;
|
|
|
|
case BPF_JSET:
|
|
|
|
case BPF_JNE:
|
|
|
|
jmp_cond = X86_JNE;
|
|
|
|
break;
|
|
|
|
case BPF_JGT:
|
|
|
|
/* GT is unsigned '>', JA in x86 */
|
|
|
|
jmp_cond = X86_JA;
|
|
|
|
break;
|
|
|
|
case BPF_JGE:
|
|
|
|
/* GE is unsigned '>=', JAE in x86 */
|
|
|
|
jmp_cond = X86_JAE;
|
|
|
|
break;
|
|
|
|
case BPF_JSGT:
|
|
|
|
/* signed '>', GT in x86 */
|
|
|
|
jmp_cond = X86_JG;
|
|
|
|
break;
|
|
|
|
case BPF_JSGE:
|
|
|
|
/* signed '>=', GE in x86 */
|
|
|
|
jmp_cond = X86_JGE;
|
|
|
|
break;
|
|
|
|
default: /* to silence gcc warning */
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
|
|
if (is_imm8(jmp_offset)) {
|
|
|
|
EMIT2(jmp_cond, jmp_offset);
|
|
|
|
} else if (is_simm32(jmp_offset)) {
|
|
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
|
|
|
|
} else {
|
|
|
|
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
2011-04-20 17:27:32 +08:00
|
|
|
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
case BPF_JMP | BPF_JA:
|
|
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
|
|
if (!jmp_offset)
|
|
|
|
/* optimize out nop jumps */
|
|
|
|
break;
|
|
|
|
emit_jmp:
|
|
|
|
if (is_imm8(jmp_offset)) {
|
|
|
|
EMIT2(0xEB, jmp_offset);
|
|
|
|
} else if (is_simm32(jmp_offset)) {
|
|
|
|
EMIT1_off32(0xE9, jmp_offset);
|
|
|
|
} else {
|
|
|
|
pr_err("jmp gen bug %llx\n", jmp_offset);
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BPF_LD | BPF_IND | BPF_W:
|
|
|
|
func = sk_load_word;
|
|
|
|
goto common_load;
|
|
|
|
case BPF_LD | BPF_ABS | BPF_W:
|
2014-06-07 05:46:06 +08:00
|
|
|
func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
common_load: ctx->seen_ld_abs = true;
|
|
|
|
jmp_offset = func - (image + addrs[i]);
|
|
|
|
if (!func || !is_simm32(jmp_offset)) {
|
|
|
|
pr_err("unsupported bpf func %d addr %p image %p\n",
|
2014-06-07 05:46:06 +08:00
|
|
|
imm32, func, image);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (BPF_MODE(insn->code) == BPF_ABS) {
|
|
|
|
/* mov %esi, imm32 */
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT1_off32(0xBE, imm32);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
} else {
|
2014-06-07 05:46:06 +08:00
|
|
|
/* mov %rsi, src_reg */
|
|
|
|
EMIT_mov(BPF_REG_2, src_reg);
|
|
|
|
if (imm32) {
|
|
|
|
if (is_imm8(imm32))
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
/* add %esi, imm8 */
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT3(0x83, 0xC6, imm32);
|
2011-04-20 17:27:32 +08:00
|
|
|
else
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
/* add %esi, imm32 */
|
2014-06-07 05:46:06 +08:00
|
|
|
EMIT2_off32(0x81, 0xC6, imm32);
|
2011-04-20 17:27:32 +08:00
|
|
|
}
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
}
|
|
|
|
/* skb pointer is in R6 (%rbx), it will be copied into
|
|
|
|
* %rdi if skb_copy_bits() call is necessary.
|
|
|
|
* sk_load_* helpers also use %r10 and %r9d.
|
|
|
|
* See bpf_jit.S
|
|
|
|
*/
|
|
|
|
EMIT1_off32(0xE8, jmp_offset); /* call */
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BPF_LD | BPF_IND | BPF_H:
|
|
|
|
func = sk_load_half;
|
|
|
|
goto common_load;
|
|
|
|
case BPF_LD | BPF_ABS | BPF_H:
|
2014-06-07 05:46:06 +08:00
|
|
|
func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
goto common_load;
|
|
|
|
case BPF_LD | BPF_IND | BPF_B:
|
|
|
|
func = sk_load_byte;
|
|
|
|
goto common_load;
|
|
|
|
case BPF_LD | BPF_ABS | BPF_B:
|
2014-06-07 05:46:06 +08:00
|
|
|
func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
goto common_load;
|
|
|
|
|
|
|
|
case BPF_JMP | BPF_EXIT:
|
|
|
|
if (i != insn_cnt - 1) {
|
|
|
|
jmp_offset = ctx->cleanup_addr - addrs[i];
|
|
|
|
goto emit_jmp;
|
|
|
|
}
|
|
|
|
/* update cleanup_addr */
|
|
|
|
ctx->cleanup_addr = proglen;
|
|
|
|
/* mov rbx, qword ptr [rbp-X] */
|
|
|
|
EMIT3_off32(0x48, 0x8B, 0x9D, -stacksize);
|
|
|
|
/* mov r13, qword ptr [rbp-X] */
|
|
|
|
EMIT3_off32(0x4C, 0x8B, 0xAD, -stacksize + 8);
|
|
|
|
/* mov r14, qword ptr [rbp-X] */
|
|
|
|
EMIT3_off32(0x4C, 0x8B, 0xB5, -stacksize + 16);
|
|
|
|
/* mov r15, qword ptr [rbp-X] */
|
|
|
|
EMIT3_off32(0x4C, 0x8B, 0xBD, -stacksize + 24);
|
|
|
|
|
|
|
|
EMIT1(0xC9); /* leave */
|
|
|
|
EMIT1(0xC3); /* ret */
|
|
|
|
break;
|
|
|
|
|
2014-05-14 10:50:45 +08:00
|
|
|
default:
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
/* By design x64 JIT should support all BPF instructions
|
|
|
|
* This error will be seen if new instruction was added
|
|
|
|
* to interpreter, but not to JIT
|
net: filter: split 'struct sk_filter' into socket and bpf parts
clean up names related to socket filtering and bpf in the following way:
- everything that deals with sockets keeps 'sk_*' prefix
- everything that is pure BPF is changed to 'bpf_*' prefix
split 'struct sk_filter' into
struct sk_filter {
atomic_t refcnt;
struct rcu_head rcu;
struct bpf_prog *prog;
};
and
struct bpf_prog {
u32 jited:1,
len:31;
struct sock_fprog_kern *orig_prog;
unsigned int (*bpf_func)(const struct sk_buff *skb,
const struct bpf_insn *filter);
union {
struct sock_filter insns[0];
struct bpf_insn insnsi[0];
struct work_struct work;
};
};
so that 'struct bpf_prog' can be used independent of sockets and cleans up
'unattached' bpf use cases
split SK_RUN_FILTER macro into:
SK_RUN_FILTER to be used with 'struct sk_filter *' and
BPF_PROG_RUN to be used with 'struct bpf_prog *'
__sk_filter_release(struct sk_filter *) gains
__bpf_prog_release(struct bpf_prog *) helper function
also perform related renames for the functions that work
with 'struct bpf_prog *', since they're on the same lines:
sk_filter_size -> bpf_prog_size
sk_filter_select_runtime -> bpf_prog_select_runtime
sk_filter_free -> bpf_prog_free
sk_unattached_filter_create -> bpf_prog_create
sk_unattached_filter_destroy -> bpf_prog_destroy
sk_store_orig_filter -> bpf_prog_store_orig_filter
sk_release_orig_filter -> bpf_release_orig_filter
__sk_migrate_filter -> bpf_migrate_filter
__sk_prepare_filter -> bpf_prepare_filter
API for attaching classic BPF to a socket stays the same:
sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *)
and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program
which is used by sockets, tun, af_packet
API for 'unattached' BPF programs becomes:
bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *)
and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program
which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
|
|
|
* or if there is junk in bpf_prog
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
*/
|
|
|
|
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
|
2014-05-14 10:50:45 +08:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
|
2014-05-14 10:50:45 +08:00
|
|
|
ilen = prog - temp;
|
|
|
|
if (image) {
|
|
|
|
if (unlikely(proglen + ilen > oldproglen)) {
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
pr_err("bpf_jit_compile fatal error\n");
|
2014-05-14 10:50:45 +08:00
|
|
|
return -EFAULT;
|
2011-04-20 17:27:32 +08:00
|
|
|
}
|
2014-05-14 10:50:45 +08:00
|
|
|
memcpy(image + proglen, temp, ilen);
|
2011-04-20 17:27:32 +08:00
|
|
|
}
|
2014-05-14 10:50:45 +08:00
|
|
|
proglen += ilen;
|
|
|
|
addrs[i] = proglen;
|
|
|
|
prog = temp;
|
|
|
|
}
|
|
|
|
return proglen;
|
|
|
|
}
|
|
|
|
|
net: filter: split 'struct sk_filter' into socket and bpf parts
clean up names related to socket filtering and bpf in the following way:
- everything that deals with sockets keeps 'sk_*' prefix
- everything that is pure BPF is changed to 'bpf_*' prefix
split 'struct sk_filter' into
struct sk_filter {
atomic_t refcnt;
struct rcu_head rcu;
struct bpf_prog *prog;
};
and
struct bpf_prog {
u32 jited:1,
len:31;
struct sock_fprog_kern *orig_prog;
unsigned int (*bpf_func)(const struct sk_buff *skb,
const struct bpf_insn *filter);
union {
struct sock_filter insns[0];
struct bpf_insn insnsi[0];
struct work_struct work;
};
};
so that 'struct bpf_prog' can be used independent of sockets and cleans up
'unattached' bpf use cases
split SK_RUN_FILTER macro into:
SK_RUN_FILTER to be used with 'struct sk_filter *' and
BPF_PROG_RUN to be used with 'struct bpf_prog *'
__sk_filter_release(struct sk_filter *) gains
__bpf_prog_release(struct bpf_prog *) helper function
also perform related renames for the functions that work
with 'struct bpf_prog *', since they're on the same lines:
sk_filter_size -> bpf_prog_size
sk_filter_select_runtime -> bpf_prog_select_runtime
sk_filter_free -> bpf_prog_free
sk_unattached_filter_create -> bpf_prog_create
sk_unattached_filter_destroy -> bpf_prog_destroy
sk_store_orig_filter -> bpf_prog_store_orig_filter
sk_release_orig_filter -> bpf_release_orig_filter
__sk_migrate_filter -> bpf_migrate_filter
__sk_prepare_filter -> bpf_prepare_filter
API for attaching classic BPF to a socket stays the same:
sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *)
and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program
which is used by sockets, tun, af_packet
API for 'unattached' BPF programs becomes:
bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *)
and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program
which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
|
|
|
void bpf_jit_compile(struct bpf_prog *prog)
|
net: filter: x86: internal BPF JIT
Maps all internal BPF instructions into x86_64 instructions.
This patch replaces original BPF x64 JIT with internal BPF x64 JIT.
sysctl net.core.bpf_jit_enable is reused as on/off switch.
Performance:
1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code.
No performance difference is observed for filters that were JIT-able before
Example assembler code for BPF filter "tcpdump port 22"
original BPF -> old JIT: original BPF -> internal BPF -> new JIT:
0: push %rbp 0: push %rbp
1: mov %rsp,%rbp 1: mov %rsp,%rbp
4: sub $0x60,%rsp 4: sub $0x228,%rsp
8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue
12: mov %r13,-0x220(%rbp)
19: mov %r14,-0x218(%rbp)
20: mov %r15,-0x210(%rbp)
27: xor %eax,%eax // clear A
c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X
e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d
12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d
16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10
3b: mov %rdi,%rbx
1d: mov $0xc,%esi 3e: mov $0xc,%esi
22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75
27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax
2c: jne 0x0000000000000069 4f: jne 0x000000000000009a
2e: mov $0x14,%esi 51: mov $0x14,%esi
33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91
38: cmp $0x84,%eax 5b: cmp $0x84,%rax
3d: je 0x0000000000000049 62: je 0x0000000000000074
3f: cmp $0x6,%eax 64: cmp $0x6,%rax
42: je 0x0000000000000049 68: je 0x0000000000000074
44: cmp $0x11,%eax 6a: cmp $0x11,%rax
47: jne 0x00000000000000c6 6e: jne 0x0000000000000117
49: mov $0x36,%esi 74: mov $0x36,%esi
4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75
53: cmp $0x16,%eax 7e: cmp $0x16,%rax
56: je 0x00000000000000bf 82: je 0x0000000000000110
58: mov $0x38,%esi 88: mov $0x38,%esi
5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75
62: cmp $0x16,%eax 92: cmp $0x16,%rax
65: je 0x00000000000000bf 96: je 0x0000000000000110
67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117
69: cmp $0x800,%eax 9a: cmp $0x800,%rax
6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117
70: mov $0x17,%esi a3: mov $0x17,%esi
75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91
7a: cmp $0x84,%eax ad: cmp $0x84,%rax
7f: je 0x000000000000008b b4: je 0x00000000000000c2
81: cmp $0x6,%eax b6: cmp $0x6,%rax
84: je 0x000000000000008b ba: je 0x00000000000000c2
86: cmp $0x11,%eax bc: cmp $0x11,%rax
89: jne 0x00000000000000c6 c0: jne 0x0000000000000117
8b: mov $0x14,%esi c2: mov $0x14,%esi
90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75
95: test $0x1fff,%ax cc: test $0x1fff,%rax
99: jne 0x00000000000000c6 d3: jne 0x0000000000000117
d5: mov %rax,%r14
9b: mov $0xe,%esi d8: mov $0xe,%esi
a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH
e2: and $0xf,%eax
e5: shl $0x2,%eax
e8: mov %rax,%r13
eb: mov %r14,%rax
ee: mov %r13,%rsi
a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi
a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d
ad: cmp $0x16,%eax f9: cmp $0x16,%rax
b0: je 0x00000000000000bf fd: je 0x0000000000000110
ff: mov %r13,%rsi
b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi
b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d
ba: cmp $0x16,%eax 10a: cmp $0x16,%rax
bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117
bf: mov $0xffff,%eax 110: mov $0xffff,%eax
c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c
c6: xor %eax,%eax 117: mov $0x0,%eax
c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue
cc: leaveq 123: mov -0x220(%rbp),%r13
cd: retq 12a: mov -0x218(%rbp),%r14
131: mov -0x210(%rbp),%r15
138: leaveq
139: retq
On fully cached SKBs both JITed functions take 12 nsec to execute.
BPF interpreter executes the program in 30 nsec.
The difference in generated assembler is due to the following:
Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function
inside bpf_jit.S.
New JIT removes the helper and does it explicitly, so ldx_msh cost
is the same for both JITs, but generated code looks longer.
New JIT has 4 registers to save, so prologue/epilogue are larger,
but the cost is within noise on x64.
Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'.
New JIT clears %rax unconditionally.
2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM
extensions. New JIT supports all BPF extensions.
Performance of such filters improves 2-4 times depending on a filter.
The longer the filter the higher performance gain.
Synthetic benchmarks with many ancillary loads see 20x speedup
which seems to be the maximum gain from JIT
Notes:
. net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional
and can be used to see generated assembler
. there are two jit_compile() functions and code flow for classic filters is:
sk_attach_filter() - load classic BPF
bpf_jit_compile() - try to JIT from classic BPF
sk_convert_filter() - convert classic to internal
bpf_int_jit_compile() - JIT from internal BPF
seccomp and tracing filters will just call bpf_int_jit_compile()
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
net: filter: split 'struct sk_filter' into socket and bpf parts
clean up names related to socket filtering and bpf in the following way:
- everything that deals with sockets keeps 'sk_*' prefix
- everything that is pure BPF is changed to 'bpf_*' prefix
split 'struct sk_filter' into
struct sk_filter {
atomic_t refcnt;
struct rcu_head rcu;
struct bpf_prog *prog;
};
and
struct bpf_prog {
u32 jited:1,
len:31;
struct sock_fprog_kern *orig_prog;
unsigned int (*bpf_func)(const struct sk_buff *skb,
const struct bpf_insn *filter);
union {
struct sock_filter insns[0];
struct bpf_insn insnsi[0];
struct work_struct work;
};
};
so that 'struct bpf_prog' can be used independent of sockets and cleans up
'unattached' bpf use cases
split SK_RUN_FILTER macro into:
SK_RUN_FILTER to be used with 'struct sk_filter *' and
BPF_PROG_RUN to be used with 'struct bpf_prog *'
__sk_filter_release(struct sk_filter *) gains
__bpf_prog_release(struct bpf_prog *) helper function
also perform related renames for the functions that work
with 'struct bpf_prog *', since they're on the same lines:
sk_filter_size -> bpf_prog_size
sk_filter_select_runtime -> bpf_prog_select_runtime
sk_filter_free -> bpf_prog_free
sk_unattached_filter_create -> bpf_prog_create
sk_unattached_filter_destroy -> bpf_prog_destroy
sk_store_orig_filter -> bpf_prog_store_orig_filter
sk_release_orig_filter -> bpf_release_orig_filter
__sk_migrate_filter -> bpf_migrate_filter
__sk_prepare_filter -> bpf_prepare_filter
API for attaching classic BPF to a socket stays the same:
sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *)
and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program
which is used by sockets, tun, af_packet
API for 'unattached' BPF programs becomes:
bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *)
and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program
which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-31 11:34:16 +08:00
|
|
|
void bpf_int_jit_compile(struct bpf_prog *prog)
|
2014-05-14 10:50:45 +08:00
|
|
|
{
|
|
|
|
struct bpf_binary_header *header = NULL;
|
|
|
|
int proglen, oldproglen = 0;
|
|
|
|
struct jit_context ctx = {};
|
|
|
|
u8 *image = NULL;
|
|
|
|
int *addrs;
|
|
|
|
int pass;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!bpf_jit_enable)
|
|
|
|
return;
|
2011-04-20 17:27:32 +08:00
|
|
|
|
2014-05-14 10:50:45 +08:00
|
|
|
if (!prog || !prog->len)
|
|
|
|
return;
|
|
|
|
|
|
|
|
addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
|
|
|
|
if (!addrs)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Before first pass, make a rough estimation of addrs[]
|
|
|
|
* each bpf instruction is translated to less than 64 bytes
|
|
|
|
*/
|
|
|
|
for (proglen = 0, i = 0; i < prog->len; i++) {
|
|
|
|
proglen += 64;
|
|
|
|
addrs[i] = proglen;
|
|
|
|
}
|
|
|
|
ctx.cleanup_addr = proglen;
|
|
|
|
|
|
|
|
for (pass = 0; pass < 10; pass++) {
|
|
|
|
proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
|
|
|
|
if (proglen <= 0) {
|
|
|
|
image = NULL;
|
|
|
|
if (header)
|
|
|
|
module_free(NULL, header);
|
|
|
|
goto out;
|
|
|
|
}
|
2011-04-20 17:27:32 +08:00
|
|
|
if (image) {
|
2012-01-18 15:21:42 +08:00
|
|
|
if (proglen != oldproglen)
|
2014-05-14 10:50:45 +08:00
|
|
|
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
|
|
|
|
proglen, oldproglen);
|
2011-04-20 17:27:32 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (proglen == oldproglen) {
|
2013-05-18 00:37:03 +08:00
|
|
|
header = bpf_alloc_binary(proglen, &image);
|
|
|
|
if (!header)
|
2011-04-20 17:27:32 +08:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
oldproglen = proglen;
|
|
|
|
}
|
2013-03-22 05:22:03 +08:00
|
|
|
|
2011-04-20 17:27:32 +08:00
|
|
|
if (bpf_jit_enable > 1)
|
2014-05-14 10:50:45 +08:00
|
|
|
bpf_jit_dump(prog->len, proglen, 0, image);
|
2011-04-20 17:27:32 +08:00
|
|
|
|
|
|
|
if (image) {
|
2013-05-18 00:37:03 +08:00
|
|
|
bpf_flush_icache(header, image + proglen);
|
|
|
|
set_memory_ro((unsigned long)header, header->pages);
|
2014-05-14 10:50:45 +08:00
|
|
|
prog->bpf_func = (void *)image;
|
|
|
|
prog->jited = 1;
|
2011-04-20 17:27:32 +08:00
|
|
|
}
|
|
|
|
out:
|
|
|
|
kfree(addrs);
|
|
|
|
}
|
|
|
|
|
2014-09-03 04:53:44 +08:00
|
|
|
void bpf_jit_free(struct bpf_prog *fp)
|
2013-10-04 15:14:06 +08:00
|
|
|
{
|
|
|
|
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
|
|
|
|
struct bpf_binary_header *header = (void *)addr;
|
|
|
|
|
2014-09-03 04:53:44 +08:00
|
|
|
if (!fp->jited)
|
|
|
|
goto free_filter;
|
|
|
|
|
2013-10-04 15:14:06 +08:00
|
|
|
set_memory_rw(addr, header->pages);
|
|
|
|
module_free(NULL, header);
|
|
|
|
|
2014-09-03 04:53:44 +08:00
|
|
|
free_filter:
|
|
|
|
bpf_prog_unlock_free(fp);
|
2011-04-20 17:27:32 +08:00
|
|
|
}
|