linux/drivers/gpio/gpio-pch.c

461 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
*/
#include <linux/bits.h>
#include <linux/gpio/driver.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/slab.h>
#define PCH_EDGE_FALLING 0
#define PCH_EDGE_RISING 1
#define PCH_LEVEL_L 2
#define PCH_LEVEL_H 3
#define PCH_EDGE_BOTH 4
#define PCH_IM_MASK GENMASK(2, 0)
#define PCH_IRQ_BASE 24
struct pch_regs {
u32 ien;
u32 istatus;
u32 idisp;
u32 iclr;
u32 imask;
u32 imaskclr;
u32 po;
u32 pi;
u32 pm;
u32 im0;
u32 im1;
u32 reserved[3];
u32 gpio_use_sel;
u32 reset;
};
enum pch_type_t {
INTEL_EG20T_PCH,
OKISEMI_ML7223m_IOH, /* LAPIS Semiconductor ML7223 IOH PCIe Bus-m */
OKISEMI_ML7223n_IOH /* LAPIS Semiconductor ML7223 IOH PCIe Bus-n */
};
/* Specifies number of GPIO PINS */
static int gpio_pins[] = {
[INTEL_EG20T_PCH] = 12,
[OKISEMI_ML7223m_IOH] = 8,
[OKISEMI_ML7223n_IOH] = 8,
};
/**
* struct pch_gpio_reg_data - The register store data.
* @ien_reg: To store contents of IEN register.
* @imask_reg: To store contents of IMASK register.
* @po_reg: To store contents of PO register.
* @pm_reg: To store contents of PM register.
* @im0_reg: To store contents of IM0 register.
* @im1_reg: To store contents of IM1 register.
* @gpio_use_sel_reg : To store contents of GPIO_USE_SEL register.
* (Only ML7223 Bus-n)
*/
struct pch_gpio_reg_data {
u32 ien_reg;
u32 imask_reg;
u32 po_reg;
u32 pm_reg;
u32 im0_reg;
u32 im1_reg;
u32 gpio_use_sel_reg;
};
/**
* struct pch_gpio - GPIO private data structure.
* @base: PCI base address of Memory mapped I/O register.
* @reg: Memory mapped PCH GPIO register list.
* @dev: Pointer to device structure.
* @gpio: Data for GPIO infrastructure.
* @pch_gpio_reg: Memory mapped Register data is saved here
* when suspend.
* @lock: Used for register access protection
* @irq_base: Save base of IRQ number for interrupt
* @ioh: IOH ID
* @spinlock: Used for register access protection
*/
struct pch_gpio {
void __iomem *base;
struct pch_regs __iomem *reg;
struct device *dev;
struct gpio_chip gpio;
struct pch_gpio_reg_data pch_gpio_reg;
int irq_base;
enum pch_type_t ioh;
spinlock_t spinlock;
};
static void pch_gpio_set(struct gpio_chip *gpio, unsigned int nr, int val)
{
u32 reg_val;
struct pch_gpio *chip = gpiochip_get_data(gpio);
unsigned long flags;
spin_lock_irqsave(&chip->spinlock, flags);
reg_val = ioread32(&chip->reg->po);
if (val)
reg_val |= BIT(nr);
else
reg_val &= ~BIT(nr);
iowrite32(reg_val, &chip->reg->po);
spin_unlock_irqrestore(&chip->spinlock, flags);
}
static int pch_gpio_get(struct gpio_chip *gpio, unsigned int nr)
{
struct pch_gpio *chip = gpiochip_get_data(gpio);
return !!(ioread32(&chip->reg->pi) & BIT(nr));
}
static int pch_gpio_direction_output(struct gpio_chip *gpio, unsigned int nr,
int val)
{
struct pch_gpio *chip = gpiochip_get_data(gpio);
u32 pm;
u32 reg_val;
unsigned long flags;
spin_lock_irqsave(&chip->spinlock, flags);
reg_val = ioread32(&chip->reg->po);
if (val)
reg_val |= BIT(nr);
else
reg_val &= ~BIT(nr);
iowrite32(reg_val, &chip->reg->po);
pm = ioread32(&chip->reg->pm);
pm &= BIT(gpio_pins[chip->ioh]) - 1;
pm |= BIT(nr);
iowrite32(pm, &chip->reg->pm);
spin_unlock_irqrestore(&chip->spinlock, flags);
return 0;
}
static int pch_gpio_direction_input(struct gpio_chip *gpio, unsigned int nr)
{
struct pch_gpio *chip = gpiochip_get_data(gpio);
u32 pm;
unsigned long flags;
spin_lock_irqsave(&chip->spinlock, flags);
pm = ioread32(&chip->reg->pm);
pm &= BIT(gpio_pins[chip->ioh]) - 1;
pm &= ~BIT(nr);
iowrite32(pm, &chip->reg->pm);
spin_unlock_irqrestore(&chip->spinlock, flags);
return 0;
}
/*
* Save register configuration and disable interrupts.
*/
static void __maybe_unused pch_gpio_save_reg_conf(struct pch_gpio *chip)
{
chip->pch_gpio_reg.ien_reg = ioread32(&chip->reg->ien);
chip->pch_gpio_reg.imask_reg = ioread32(&chip->reg->imask);
chip->pch_gpio_reg.po_reg = ioread32(&chip->reg->po);
chip->pch_gpio_reg.pm_reg = ioread32(&chip->reg->pm);
chip->pch_gpio_reg.im0_reg = ioread32(&chip->reg->im0);
if (chip->ioh == INTEL_EG20T_PCH)
chip->pch_gpio_reg.im1_reg = ioread32(&chip->reg->im1);
if (chip->ioh == OKISEMI_ML7223n_IOH)
chip->pch_gpio_reg.gpio_use_sel_reg = ioread32(&chip->reg->gpio_use_sel);
}
/*
* This function restores the register configuration of the GPIO device.
*/
static void __maybe_unused pch_gpio_restore_reg_conf(struct pch_gpio *chip)
{
iowrite32(chip->pch_gpio_reg.ien_reg, &chip->reg->ien);
iowrite32(chip->pch_gpio_reg.imask_reg, &chip->reg->imask);
/* to store contents of PO register */
iowrite32(chip->pch_gpio_reg.po_reg, &chip->reg->po);
/* to store contents of PM register */
iowrite32(chip->pch_gpio_reg.pm_reg, &chip->reg->pm);
iowrite32(chip->pch_gpio_reg.im0_reg, &chip->reg->im0);
if (chip->ioh == INTEL_EG20T_PCH)
iowrite32(chip->pch_gpio_reg.im1_reg, &chip->reg->im1);
if (chip->ioh == OKISEMI_ML7223n_IOH)
iowrite32(chip->pch_gpio_reg.gpio_use_sel_reg, &chip->reg->gpio_use_sel);
}
static int pch_gpio_to_irq(struct gpio_chip *gpio, unsigned int offset)
{
struct pch_gpio *chip = gpiochip_get_data(gpio);
return chip->irq_base + offset;
}
static void pch_gpio_setup(struct pch_gpio *chip)
{
struct gpio_chip *gpio = &chip->gpio;
gpio->label = dev_name(chip->dev);
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
gpio->parent = chip->dev;
gpio->owner = THIS_MODULE;
gpio->direction_input = pch_gpio_direction_input;
gpio->get = pch_gpio_get;
gpio->direction_output = pch_gpio_direction_output;
gpio->set = pch_gpio_set;
gpio->base = -1;
gpio->ngpio = gpio_pins[chip->ioh];
gpio->can_sleep = false;
gpio->to_irq = pch_gpio_to_irq;
}
static int pch_irq_type(struct irq_data *d, unsigned int type)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct pch_gpio *chip = gc->private;
gpio: pch9: Use proper flow type handlers Jean-Francois Dagenais reported: Configuring a gpio pin with the gpio-pch driver with "IRQF_TRIGGER_LOW | IRQF_ONESHOT" generates an interrupt storm for threaded ISR until the ISR thread actually gets to physically clear the interrupt on the triggering chip!! The immediate observable symptom is the high CPU usage for my ISR thread task and the interrupt count in /proc/interrupts incrementing radically. The driver is wrong in several ways: 1) Using handle_simple_irq() does not provide proper flow control handling. In the case of oneshot threaded handlers for the demultiplexed interrupts this results in an interrupt storm because the simple handler does not deal with masking/unmasking. Even without threaded oneshot handlers an interrupt storm for level type interrupts can easily be triggered when the interrupt is disabled and the interrupt line is activated from the device. 2) Acknowlegding the demultiplexed interrupt before calling the handler is wrong for level type interrupts. 3) The set_type function unconditionally enables the interrupt. It's supposed to set the type and nothing else. The unmasking is done by the core code. Move the acknowledge code into a separate function and add it to the demux irqchip callbacks. Remove the unconditional enabling from the set_type() callback and set the proper flow handlers depending on the selected type (level/edge). Reported-and-tested-by: Jean-Francois Dagenais <jeff.dagenais@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2012-04-28 16:13:45 +08:00
u32 im, im_pos, val;
u32 __iomem *im_reg;
unsigned long flags;
int ch, irq = d->irq;
ch = irq - chip->irq_base;
if (irq < chip->irq_base + 8) {
im_reg = &chip->reg->im0;
im_pos = ch - 0;
} else {
im_reg = &chip->reg->im1;
im_pos = ch - 8;
}
dev_dbg(chip->dev, "irq=%d type=%d ch=%d pos=%d\n", irq, type, ch, im_pos);
switch (type) {
case IRQ_TYPE_EDGE_RISING:
val = PCH_EDGE_RISING;
break;
case IRQ_TYPE_EDGE_FALLING:
val = PCH_EDGE_FALLING;
break;
case IRQ_TYPE_EDGE_BOTH:
val = PCH_EDGE_BOTH;
break;
case IRQ_TYPE_LEVEL_HIGH:
val = PCH_LEVEL_H;
break;
case IRQ_TYPE_LEVEL_LOW:
val = PCH_LEVEL_L;
break;
default:
return 0;
}
spin_lock_irqsave(&chip->spinlock, flags);
/* Set interrupt mode */
im = ioread32(im_reg) & ~(PCH_IM_MASK << (im_pos * 4));
iowrite32(im | (val << (im_pos * 4)), im_reg);
gpio: pch9: Use proper flow type handlers Jean-Francois Dagenais reported: Configuring a gpio pin with the gpio-pch driver with "IRQF_TRIGGER_LOW | IRQF_ONESHOT" generates an interrupt storm for threaded ISR until the ISR thread actually gets to physically clear the interrupt on the triggering chip!! The immediate observable symptom is the high CPU usage for my ISR thread task and the interrupt count in /proc/interrupts incrementing radically. The driver is wrong in several ways: 1) Using handle_simple_irq() does not provide proper flow control handling. In the case of oneshot threaded handlers for the demultiplexed interrupts this results in an interrupt storm because the simple handler does not deal with masking/unmasking. Even without threaded oneshot handlers an interrupt storm for level type interrupts can easily be triggered when the interrupt is disabled and the interrupt line is activated from the device. 2) Acknowlegding the demultiplexed interrupt before calling the handler is wrong for level type interrupts. 3) The set_type function unconditionally enables the interrupt. It's supposed to set the type and nothing else. The unmasking is done by the core code. Move the acknowledge code into a separate function and add it to the demux irqchip callbacks. Remove the unconditional enabling from the set_type() callback and set the proper flow handlers depending on the selected type (level/edge). Reported-and-tested-by: Jean-Francois Dagenais <jeff.dagenais@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2012-04-28 16:13:45 +08:00
/* And the handler */
if (type & IRQ_TYPE_LEVEL_MASK)
irq_set_handler_locked(d, handle_level_irq);
else if (type & IRQ_TYPE_EDGE_BOTH)
irq_set_handler_locked(d, handle_edge_irq);
spin_unlock_irqrestore(&chip->spinlock, flags);
return 0;
}
static void pch_irq_unmask(struct irq_data *d)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct pch_gpio *chip = gc->private;
iowrite32(BIT(d->irq - chip->irq_base), &chip->reg->imaskclr);
}
static void pch_irq_mask(struct irq_data *d)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct pch_gpio *chip = gc->private;
iowrite32(BIT(d->irq - chip->irq_base), &chip->reg->imask);
}
gpio: pch9: Use proper flow type handlers Jean-Francois Dagenais reported: Configuring a gpio pin with the gpio-pch driver with "IRQF_TRIGGER_LOW | IRQF_ONESHOT" generates an interrupt storm for threaded ISR until the ISR thread actually gets to physically clear the interrupt on the triggering chip!! The immediate observable symptom is the high CPU usage for my ISR thread task and the interrupt count in /proc/interrupts incrementing radically. The driver is wrong in several ways: 1) Using handle_simple_irq() does not provide proper flow control handling. In the case of oneshot threaded handlers for the demultiplexed interrupts this results in an interrupt storm because the simple handler does not deal with masking/unmasking. Even without threaded oneshot handlers an interrupt storm for level type interrupts can easily be triggered when the interrupt is disabled and the interrupt line is activated from the device. 2) Acknowlegding the demultiplexed interrupt before calling the handler is wrong for level type interrupts. 3) The set_type function unconditionally enables the interrupt. It's supposed to set the type and nothing else. The unmasking is done by the core code. Move the acknowledge code into a separate function and add it to the demux irqchip callbacks. Remove the unconditional enabling from the set_type() callback and set the proper flow handlers depending on the selected type (level/edge). Reported-and-tested-by: Jean-Francois Dagenais <jeff.dagenais@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2012-04-28 16:13:45 +08:00
static void pch_irq_ack(struct irq_data *d)
{
struct irq_chip_generic *gc = irq_data_get_irq_chip_data(d);
struct pch_gpio *chip = gc->private;
iowrite32(BIT(d->irq - chip->irq_base), &chip->reg->iclr);
gpio: pch9: Use proper flow type handlers Jean-Francois Dagenais reported: Configuring a gpio pin with the gpio-pch driver with "IRQF_TRIGGER_LOW | IRQF_ONESHOT" generates an interrupt storm for threaded ISR until the ISR thread actually gets to physically clear the interrupt on the triggering chip!! The immediate observable symptom is the high CPU usage for my ISR thread task and the interrupt count in /proc/interrupts incrementing radically. The driver is wrong in several ways: 1) Using handle_simple_irq() does not provide proper flow control handling. In the case of oneshot threaded handlers for the demultiplexed interrupts this results in an interrupt storm because the simple handler does not deal with masking/unmasking. Even without threaded oneshot handlers an interrupt storm for level type interrupts can easily be triggered when the interrupt is disabled and the interrupt line is activated from the device. 2) Acknowlegding the demultiplexed interrupt before calling the handler is wrong for level type interrupts. 3) The set_type function unconditionally enables the interrupt. It's supposed to set the type and nothing else. The unmasking is done by the core code. Move the acknowledge code into a separate function and add it to the demux irqchip callbacks. Remove the unconditional enabling from the set_type() callback and set the proper flow handlers depending on the selected type (level/edge). Reported-and-tested-by: Jean-Francois Dagenais <jeff.dagenais@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2012-04-28 16:13:45 +08:00
}
static irqreturn_t pch_gpio_handler(int irq, void *dev_id)
{
struct pch_gpio *chip = dev_id;
unsigned long reg_val = ioread32(&chip->reg->istatus);
int i;
dev_vdbg(chip->dev, "irq=%d status=0x%lx\n", irq, reg_val);
reg_val &= BIT(gpio_pins[chip->ioh]) - 1;
for_each_set_bit(i, &reg_val, gpio_pins[chip->ioh])
generic_handle_irq(chip->irq_base + i);
return IRQ_RETVAL(reg_val);
}
static int pch_gpio_alloc_generic_chip(struct pch_gpio *chip,
unsigned int irq_start,
unsigned int num)
{
struct irq_chip_generic *gc;
struct irq_chip_type *ct;
int rv;
gc = devm_irq_alloc_generic_chip(chip->dev, "pch_gpio", 1, irq_start,
chip->base, handle_simple_irq);
if (!gc)
return -ENOMEM;
gc->private = chip;
ct = gc->chip_types;
gpio: pch9: Use proper flow type handlers Jean-Francois Dagenais reported: Configuring a gpio pin with the gpio-pch driver with "IRQF_TRIGGER_LOW | IRQF_ONESHOT" generates an interrupt storm for threaded ISR until the ISR thread actually gets to physically clear the interrupt on the triggering chip!! The immediate observable symptom is the high CPU usage for my ISR thread task and the interrupt count in /proc/interrupts incrementing radically. The driver is wrong in several ways: 1) Using handle_simple_irq() does not provide proper flow control handling. In the case of oneshot threaded handlers for the demultiplexed interrupts this results in an interrupt storm because the simple handler does not deal with masking/unmasking. Even without threaded oneshot handlers an interrupt storm for level type interrupts can easily be triggered when the interrupt is disabled and the interrupt line is activated from the device. 2) Acknowlegding the demultiplexed interrupt before calling the handler is wrong for level type interrupts. 3) The set_type function unconditionally enables the interrupt. It's supposed to set the type and nothing else. The unmasking is done by the core code. Move the acknowledge code into a separate function and add it to the demux irqchip callbacks. Remove the unconditional enabling from the set_type() callback and set the proper flow handlers depending on the selected type (level/edge). Reported-and-tested-by: Jean-Francois Dagenais <jeff.dagenais@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2012-04-28 16:13:45 +08:00
ct->chip.irq_ack = pch_irq_ack;
ct->chip.irq_mask = pch_irq_mask;
ct->chip.irq_unmask = pch_irq_unmask;
ct->chip.irq_set_type = pch_irq_type;
rv = devm_irq_setup_generic_chip(chip->dev, gc, IRQ_MSK(num),
IRQ_GC_INIT_MASK_CACHE,
IRQ_NOREQUEST | IRQ_NOPROBE, 0);
return rv;
}
static int pch_gpio_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct device *dev = &pdev->dev;
s32 ret;
struct pch_gpio *chip;
int irq_base;
chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
chip->dev = dev;
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(dev, "pci_enable_device FAILED");
return ret;
}
ret = pcim_iomap_regions(pdev, BIT(1), KBUILD_MODNAME);
if (ret) {
dev_err(dev, "pci_request_regions FAILED-%d", ret);
return ret;
}
chip->base = pcim_iomap_table(pdev)[1];
chip->ioh = id->driver_data;
chip->reg = chip->base;
pci_set_drvdata(pdev, chip);
spin_lock_init(&chip->spinlock);
pch_gpio_setup(chip);
ret = devm_gpiochip_add_data(dev, &chip->gpio, chip);
if (ret) {
dev_err(dev, "PCH gpio: Failed to register GPIO\n");
return ret;
}
irq_base = devm_irq_alloc_descs(dev, -1, 0,
gpio_pins[chip->ioh], NUMA_NO_NODE);
if (irq_base < 0) {
dev_warn(dev, "PCH gpio: Failed to get IRQ base num\n");
chip->irq_base = -1;
return 0;
}
chip->irq_base = irq_base;
gpio: pch9: Use proper flow type handlers Jean-Francois Dagenais reported: Configuring a gpio pin with the gpio-pch driver with "IRQF_TRIGGER_LOW | IRQF_ONESHOT" generates an interrupt storm for threaded ISR until the ISR thread actually gets to physically clear the interrupt on the triggering chip!! The immediate observable symptom is the high CPU usage for my ISR thread task and the interrupt count in /proc/interrupts incrementing radically. The driver is wrong in several ways: 1) Using handle_simple_irq() does not provide proper flow control handling. In the case of oneshot threaded handlers for the demultiplexed interrupts this results in an interrupt storm because the simple handler does not deal with masking/unmasking. Even without threaded oneshot handlers an interrupt storm for level type interrupts can easily be triggered when the interrupt is disabled and the interrupt line is activated from the device. 2) Acknowlegding the demultiplexed interrupt before calling the handler is wrong for level type interrupts. 3) The set_type function unconditionally enables the interrupt. It's supposed to set the type and nothing else. The unmasking is done by the core code. Move the acknowledge code into a separate function and add it to the demux irqchip callbacks. Remove the unconditional enabling from the set_type() callback and set the proper flow handlers depending on the selected type (level/edge). Reported-and-tested-by: Jean-Francois Dagenais <jeff.dagenais@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2012-04-28 16:13:45 +08:00
/* Mask all interrupts, but enable them */
iowrite32(BIT(gpio_pins[chip->ioh]) - 1, &chip->reg->imask);
iowrite32(BIT(gpio_pins[chip->ioh]) - 1, &chip->reg->ien);
gpio: pch9: Use proper flow type handlers Jean-Francois Dagenais reported: Configuring a gpio pin with the gpio-pch driver with "IRQF_TRIGGER_LOW | IRQF_ONESHOT" generates an interrupt storm for threaded ISR until the ISR thread actually gets to physically clear the interrupt on the triggering chip!! The immediate observable symptom is the high CPU usage for my ISR thread task and the interrupt count in /proc/interrupts incrementing radically. The driver is wrong in several ways: 1) Using handle_simple_irq() does not provide proper flow control handling. In the case of oneshot threaded handlers for the demultiplexed interrupts this results in an interrupt storm because the simple handler does not deal with masking/unmasking. Even without threaded oneshot handlers an interrupt storm for level type interrupts can easily be triggered when the interrupt is disabled and the interrupt line is activated from the device. 2) Acknowlegding the demultiplexed interrupt before calling the handler is wrong for level type interrupts. 3) The set_type function unconditionally enables the interrupt. It's supposed to set the type and nothing else. The unmasking is done by the core code. Move the acknowledge code into a separate function and add it to the demux irqchip callbacks. Remove the unconditional enabling from the set_type() callback and set the proper flow handlers depending on the selected type (level/edge). Reported-and-tested-by: Jean-Francois Dagenais <jeff.dagenais@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2012-04-28 16:13:45 +08:00
ret = devm_request_irq(dev, pdev->irq, pch_gpio_handler,
IRQF_SHARED, KBUILD_MODNAME, chip);
if (ret) {
dev_err(dev, "request_irq failed\n");
return ret;
}
return pch_gpio_alloc_generic_chip(chip, irq_base, gpio_pins[chip->ioh]);
}
static int __maybe_unused pch_gpio_suspend(struct device *dev)
{
struct pch_gpio *chip = dev_get_drvdata(dev);
unsigned long flags;
spin_lock_irqsave(&chip->spinlock, flags);
pch_gpio_save_reg_conf(chip);
spin_unlock_irqrestore(&chip->spinlock, flags);
return 0;
}
static int __maybe_unused pch_gpio_resume(struct device *dev)
{
struct pch_gpio *chip = dev_get_drvdata(dev);
unsigned long flags;
spin_lock_irqsave(&chip->spinlock, flags);
iowrite32(0x01, &chip->reg->reset);
iowrite32(0x00, &chip->reg->reset);
pch_gpio_restore_reg_conf(chip);
spin_unlock_irqrestore(&chip->spinlock, flags);
return 0;
}
static SIMPLE_DEV_PM_OPS(pch_gpio_pm_ops, pch_gpio_suspend, pch_gpio_resume);
static const struct pci_device_id pch_gpio_pcidev_id[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8803),
.driver_data = INTEL_EG20T_PCH },
{ PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8014),
.driver_data = OKISEMI_ML7223m_IOH },
{ PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8043),
.driver_data = OKISEMI_ML7223n_IOH },
{ PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8803),
.driver_data = INTEL_EG20T_PCH },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, pch_gpio_pcidev_id);
static struct pci_driver pch_gpio_driver = {
.name = "pch_gpio",
.id_table = pch_gpio_pcidev_id,
.probe = pch_gpio_probe,
.driver = {
.pm = &pch_gpio_pm_ops,
},
};
module_pci_driver(pch_gpio_driver);
MODULE_DESCRIPTION("PCH GPIO PCI Driver");
MODULE_LICENSE("GPL v2");