linux/fs/xfs/scrub/trace.h

1342 lines
40 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2017-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*
* NOTE: none of these tracepoints shall be considered a stable kernel ABI
* as they can change at any time. See xfs_trace.h for documentation of
* specific units found in tracepoint output.
*/
#undef TRACE_SYSTEM
#define TRACE_SYSTEM xfs_scrub
#if !defined(_TRACE_XFS_SCRUB_TRACE_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_XFS_SCRUB_TRACE_H
#include <linux/tracepoint.h>
#include "xfs_bit.h"
struct xfile;
struct xfarray;
xfs: enable sorting of xfile-backed arrays The btree bulk loading code requires that records be provided in the correct record sort order for the given btree type. In general, repair code cannot be required to collect records in order, and it is not feasible to insert new records in the middle of an array to maintain sort order. Implement a sorting algorithm so that we can sort the records just prior to bulk loading. In principle, an xfarray could consume many gigabytes of memory and its backing pages can be sent out to disk at any time. This means that we cannot map the entire array into memory at once, so we must find a way to divide the work into smaller portions (e.g. a page) that /can/ be mapped into memory. Quicksort seems like a reasonable fit for this purpose, since it uses a divide and conquer strategy to keep its average runtime logarithmic. The solution presented here is a port of the glibc implementation, which itself is derived from the median-of-three and tail call recursion strategies outlined by Sedgwick. Subsequent patches will optimize the implementation further by utilizing the kernel's heapsort on directly-mapped memory whenever possible, and improving the quicksort pivot selection algorithm to try to avoid O(n^2) collapses. Note: The sorting functionality gets its own patch because the basic big array mechanisms were plenty for a single code patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 22:48:05 +08:00
struct xfarray_sortinfo;
/*
* ftrace's __print_symbolic requires that all enum values be wrapped in the
* TRACE_DEFINE_ENUM macro so that the enum value can be encoded in the ftrace
* ring buffer. Somehow this was only worth mentioning in the ftrace sample
* code.
*/
TRACE_DEFINE_ENUM(XFS_BTNUM_BNOi);
TRACE_DEFINE_ENUM(XFS_BTNUM_CNTi);
TRACE_DEFINE_ENUM(XFS_BTNUM_BMAPi);
TRACE_DEFINE_ENUM(XFS_BTNUM_INOi);
TRACE_DEFINE_ENUM(XFS_BTNUM_FINOi);
TRACE_DEFINE_ENUM(XFS_BTNUM_RMAPi);
TRACE_DEFINE_ENUM(XFS_BTNUM_REFCi);
TRACE_DEFINE_ENUM(XFS_REFC_DOMAIN_SHARED);
TRACE_DEFINE_ENUM(XFS_REFC_DOMAIN_COW);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_PROBE);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_SB);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_AGF);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_AGFL);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_AGI);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_BNOBT);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_CNTBT);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_INOBT);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_FINOBT);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_RMAPBT);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_REFCNTBT);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_INODE);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_BMBTD);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_BMBTA);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_BMBTC);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_DIR);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_XATTR);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_SYMLINK);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_PARENT);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_RTBITMAP);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_RTSUM);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_UQUOTA);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_GQUOTA);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_PQUOTA);
TRACE_DEFINE_ENUM(XFS_SCRUB_TYPE_FSCOUNTERS);
#define XFS_SCRUB_TYPE_STRINGS \
{ XFS_SCRUB_TYPE_PROBE, "probe" }, \
{ XFS_SCRUB_TYPE_SB, "sb" }, \
{ XFS_SCRUB_TYPE_AGF, "agf" }, \
{ XFS_SCRUB_TYPE_AGFL, "agfl" }, \
{ XFS_SCRUB_TYPE_AGI, "agi" }, \
{ XFS_SCRUB_TYPE_BNOBT, "bnobt" }, \
{ XFS_SCRUB_TYPE_CNTBT, "cntbt" }, \
{ XFS_SCRUB_TYPE_INOBT, "inobt" }, \
{ XFS_SCRUB_TYPE_FINOBT, "finobt" }, \
{ XFS_SCRUB_TYPE_RMAPBT, "rmapbt" }, \
{ XFS_SCRUB_TYPE_REFCNTBT, "refcountbt" }, \
{ XFS_SCRUB_TYPE_INODE, "inode" }, \
{ XFS_SCRUB_TYPE_BMBTD, "bmapbtd" }, \
{ XFS_SCRUB_TYPE_BMBTA, "bmapbta" }, \
{ XFS_SCRUB_TYPE_BMBTC, "bmapbtc" }, \
{ XFS_SCRUB_TYPE_DIR, "directory" }, \
{ XFS_SCRUB_TYPE_XATTR, "xattr" }, \
{ XFS_SCRUB_TYPE_SYMLINK, "symlink" }, \
{ XFS_SCRUB_TYPE_PARENT, "parent" }, \
{ XFS_SCRUB_TYPE_RTBITMAP, "rtbitmap" }, \
{ XFS_SCRUB_TYPE_RTSUM, "rtsummary" }, \
{ XFS_SCRUB_TYPE_UQUOTA, "usrquota" }, \
{ XFS_SCRUB_TYPE_GQUOTA, "grpquota" }, \
{ XFS_SCRUB_TYPE_PQUOTA, "prjquota" }, \
{ XFS_SCRUB_TYPE_FSCOUNTERS, "fscounters" }
#define XFS_SCRUB_FLAG_STRINGS \
{ XFS_SCRUB_IFLAG_REPAIR, "repair" }, \
{ XFS_SCRUB_OFLAG_CORRUPT, "corrupt" }, \
{ XFS_SCRUB_OFLAG_PREEN, "preen" }, \
{ XFS_SCRUB_OFLAG_XFAIL, "xfail" }, \
{ XFS_SCRUB_OFLAG_XCORRUPT, "xcorrupt" }, \
{ XFS_SCRUB_OFLAG_INCOMPLETE, "incomplete" }, \
{ XFS_SCRUB_OFLAG_WARNING, "warning" }, \
{ XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED, "norepair" }, \
{ XFS_SCRUB_IFLAG_FORCE_REBUILD, "rebuild" }
#define XFS_SCRUB_STATE_STRINGS \
{ XCHK_TRY_HARDER, "try_harder" }, \
xfs: stabilize fs summary counters for online fsck If the fscounters scrubber notices incorrect summary counters, it's entirely possible that scrub is simply racing with other threads that are updating the incore counters. There isn't a good way to stabilize percpu counters or set ourselves up to observe live updates with hooks like we do for the quotacheck or nlinks scanners, so we instead choose to freeze the filesystem long enough to walk the incore per-AG structures. Past me thought that it was going to be commonplace to have to freeze the filesystem to perform some kind of repair and set up a whole separate infrastructure to freeze the filesystem in such a way that userspace could not unfreeze while we were running. This involved adding a mutex and freeze_super/thaw_super functions and dealing with the fact that the VFS freeze/thaw functions can free the VFS superblock references on return. This was all very overwrought, since fscounters turned out to be the only user of scrub freezes, and it doesn't require the log to quiesce, only the incore superblock counters. We prevent other threads from changing the freeze level by calling freeze_super_excl with a custom freeze cookie to keep everyone else out of the filesystem. The end result is that fscounters should be much more efficient. When we're checking a busy system and we can't stabilize the counters, the custom freeze will do less work, which should result in less downtime. Repair should be similarly speedy, but that's in a later patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-04 23:20:57 +08:00
{ XCHK_HAVE_FREEZE_PROT, "nofreeze" }, \
{ XCHK_FSGATES_DRAIN, "fsgates_drain" }, \
{ XCHK_NEED_DRAIN, "need_drain" }, \
{ XREP_ALREADY_FIXED, "already_fixed" }
DECLARE_EVENT_CLASS(xchk_class,
TP_PROTO(struct xfs_inode *ip, struct xfs_scrub_metadata *sm,
int error),
TP_ARGS(ip, sm, error),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_ino_t, ino)
__field(unsigned int, type)
__field(xfs_agnumber_t, agno)
__field(xfs_ino_t, inum)
__field(unsigned int, gen)
__field(unsigned int, flags)
__field(int, error)
),
TP_fast_assign(
__entry->dev = ip->i_mount->m_super->s_dev;
__entry->ino = ip->i_ino;
__entry->type = sm->sm_type;
__entry->agno = sm->sm_agno;
__entry->inum = sm->sm_ino;
__entry->gen = sm->sm_gen;
__entry->flags = sm->sm_flags;
__entry->error = error;
),
TP_printk("dev %d:%d ino 0x%llx type %s agno 0x%x inum 0x%llx gen 0x%x flags (%s) error %d",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->ino,
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->agno,
__entry->inum,
__entry->gen,
__print_flags(__entry->flags, "|", XFS_SCRUB_FLAG_STRINGS),
__entry->error)
)
#define DEFINE_SCRUB_EVENT(name) \
DEFINE_EVENT(xchk_class, name, \
TP_PROTO(struct xfs_inode *ip, struct xfs_scrub_metadata *sm, \
int error), \
TP_ARGS(ip, sm, error))
DEFINE_SCRUB_EVENT(xchk_start);
DEFINE_SCRUB_EVENT(xchk_done);
DEFINE_SCRUB_EVENT(xchk_deadlock_retry);
DEFINE_SCRUB_EVENT(xrep_attempt);
DEFINE_SCRUB_EVENT(xrep_done);
DECLARE_EVENT_CLASS(xchk_fsgate_class,
TP_PROTO(struct xfs_scrub *sc, unsigned int fsgate_flags),
TP_ARGS(sc, fsgate_flags),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(unsigned int, type)
__field(unsigned int, fsgate_flags)
),
TP_fast_assign(
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->fsgate_flags = fsgate_flags;
),
TP_printk("dev %d:%d type %s fsgates '%s'",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__print_flags(__entry->fsgate_flags, "|", XFS_SCRUB_STATE_STRINGS))
)
#define DEFINE_SCRUB_FSHOOK_EVENT(name) \
DEFINE_EVENT(xchk_fsgate_class, name, \
TP_PROTO(struct xfs_scrub *sc, unsigned int fsgates_flags), \
TP_ARGS(sc, fsgates_flags))
DEFINE_SCRUB_FSHOOK_EVENT(xchk_fsgates_enable);
DEFINE_SCRUB_FSHOOK_EVENT(xchk_fsgates_disable);
TRACE_EVENT(xchk_op_error,
TP_PROTO(struct xfs_scrub *sc, xfs_agnumber_t agno,
xfs_agblock_t bno, int error, void *ret_ip),
TP_ARGS(sc, agno, bno, error, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(unsigned int, type)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, bno)
__field(int, error)
__field(void *, ret_ip)
),
TP_fast_assign(
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->agno = agno;
__entry->bno = bno;
__entry->error = error;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d type %s agno 0x%x agbno 0x%x error %d ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->agno,
__entry->bno,
__entry->error,
__entry->ret_ip)
);
TRACE_EVENT(xchk_file_op_error,
TP_PROTO(struct xfs_scrub *sc, int whichfork,
xfs_fileoff_t offset, int error, void *ret_ip),
TP_ARGS(sc, whichfork, offset, error, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_ino_t, ino)
__field(int, whichfork)
__field(unsigned int, type)
__field(xfs_fileoff_t, offset)
__field(int, error)
__field(void *, ret_ip)
),
TP_fast_assign(
__entry->dev = sc->ip->i_mount->m_super->s_dev;
__entry->ino = sc->ip->i_ino;
__entry->whichfork = whichfork;
__entry->type = sc->sm->sm_type;
__entry->offset = offset;
__entry->error = error;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d ino 0x%llx fork %s type %s fileoff 0x%llx error %d ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->ino,
__print_symbolic(__entry->whichfork, XFS_WHICHFORK_STRINGS),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->offset,
__entry->error,
__entry->ret_ip)
);
DECLARE_EVENT_CLASS(xchk_block_error_class,
TP_PROTO(struct xfs_scrub *sc, xfs_daddr_t daddr, void *ret_ip),
TP_ARGS(sc, daddr, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(unsigned int, type)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, agbno)
__field(void *, ret_ip)
),
TP_fast_assign(
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->agno = xfs_daddr_to_agno(sc->mp, daddr);
__entry->agbno = xfs_daddr_to_agbno(sc->mp, daddr);
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d type %s agno 0x%x agbno 0x%x ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->agno,
__entry->agbno,
__entry->ret_ip)
)
#define DEFINE_SCRUB_BLOCK_ERROR_EVENT(name) \
DEFINE_EVENT(xchk_block_error_class, name, \
TP_PROTO(struct xfs_scrub *sc, xfs_daddr_t daddr, \
void *ret_ip), \
TP_ARGS(sc, daddr, ret_ip))
DEFINE_SCRUB_BLOCK_ERROR_EVENT(xchk_fs_error);
DEFINE_SCRUB_BLOCK_ERROR_EVENT(xchk_block_error);
DEFINE_SCRUB_BLOCK_ERROR_EVENT(xchk_block_preen);
DECLARE_EVENT_CLASS(xchk_ino_error_class,
TP_PROTO(struct xfs_scrub *sc, xfs_ino_t ino, void *ret_ip),
TP_ARGS(sc, ino, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_ino_t, ino)
__field(unsigned int, type)
__field(void *, ret_ip)
),
TP_fast_assign(
__entry->dev = sc->mp->m_super->s_dev;
__entry->ino = ino;
__entry->type = sc->sm->sm_type;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d ino 0x%llx type %s ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->ino,
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->ret_ip)
)
#define DEFINE_SCRUB_INO_ERROR_EVENT(name) \
DEFINE_EVENT(xchk_ino_error_class, name, \
TP_PROTO(struct xfs_scrub *sc, xfs_ino_t ino, \
void *ret_ip), \
TP_ARGS(sc, ino, ret_ip))
DEFINE_SCRUB_INO_ERROR_EVENT(xchk_ino_error);
DEFINE_SCRUB_INO_ERROR_EVENT(xchk_ino_preen);
DEFINE_SCRUB_INO_ERROR_EVENT(xchk_ino_warning);
DECLARE_EVENT_CLASS(xchk_fblock_error_class,
TP_PROTO(struct xfs_scrub *sc, int whichfork,
xfs_fileoff_t offset, void *ret_ip),
TP_ARGS(sc, whichfork, offset, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_ino_t, ino)
__field(int, whichfork)
__field(unsigned int, type)
__field(xfs_fileoff_t, offset)
__field(void *, ret_ip)
),
TP_fast_assign(
__entry->dev = sc->ip->i_mount->m_super->s_dev;
__entry->ino = sc->ip->i_ino;
__entry->whichfork = whichfork;
__entry->type = sc->sm->sm_type;
__entry->offset = offset;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d ino 0x%llx fork %s type %s fileoff 0x%llx ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->ino,
__print_symbolic(__entry->whichfork, XFS_WHICHFORK_STRINGS),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->offset,
__entry->ret_ip)
);
#define DEFINE_SCRUB_FBLOCK_ERROR_EVENT(name) \
DEFINE_EVENT(xchk_fblock_error_class, name, \
TP_PROTO(struct xfs_scrub *sc, int whichfork, \
xfs_fileoff_t offset, void *ret_ip), \
TP_ARGS(sc, whichfork, offset, ret_ip))
DEFINE_SCRUB_FBLOCK_ERROR_EVENT(xchk_fblock_error);
DEFINE_SCRUB_FBLOCK_ERROR_EVENT(xchk_fblock_warning);
TRACE_EVENT(xchk_incomplete,
TP_PROTO(struct xfs_scrub *sc, void *ret_ip),
TP_ARGS(sc, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(unsigned int, type)
__field(void *, ret_ip)
),
TP_fast_assign(
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d type %s ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->ret_ip)
);
TRACE_EVENT(xchk_btree_op_error,
TP_PROTO(struct xfs_scrub *sc, struct xfs_btree_cur *cur,
int level, int error, void *ret_ip),
TP_ARGS(sc, cur, level, error, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(unsigned int, type)
__field(xfs_btnum_t, btnum)
__field(int, level)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, bno)
ftrace: Rework event_create_dir() Rework event_create_dir() to use an array of static data instead of function pointers where possible. The problem is that it would call the function pointer on module load before parse_args(), possibly even before jump_labels were initialized. Luckily the generated functions don't use jump_labels but it still seems fragile. It also gets in the way of changing when we make the module map executable. The generated function are basically calling trace_define_field() with a bunch of static arguments. So instead of a function, capture these arguments in a static array, avoiding the function call. Now there are a number of cases where the fields are dynamic (syscall arguments, kprobes and uprobes), in which case a static array does not work, for these we preserve the function call. Luckily all these cases are not related to modules and so we can retain the function call for them. Also fix up all broken tracepoint definitions that now generate a compile error. Tested-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191111132458.342979914@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 04:26:59 +08:00
__field(int, ptr)
__field(int, error)
__field(void *, ret_ip)
),
TP_fast_assign(
xfs_fsblock_t fsbno = xchk_btree_cur_fsbno(cur, level);
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->btnum = cur->bc_btnum;
__entry->level = level;
__entry->agno = XFS_FSB_TO_AGNO(cur->bc_mp, fsbno);
__entry->bno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
__entry->ptr = cur->bc_levels[level].ptr;
__entry->error = error;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d type %s btree %s level %d ptr %d agno 0x%x agbno 0x%x error %d ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__print_symbolic(__entry->btnum, XFS_BTNUM_STRINGS),
__entry->level,
__entry->ptr,
__entry->agno,
__entry->bno,
__entry->error,
__entry->ret_ip)
);
TRACE_EVENT(xchk_ifork_btree_op_error,
TP_PROTO(struct xfs_scrub *sc, struct xfs_btree_cur *cur,
int level, int error, void *ret_ip),
TP_ARGS(sc, cur, level, error, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_ino_t, ino)
__field(int, whichfork)
__field(unsigned int, type)
__field(xfs_btnum_t, btnum)
__field(int, level)
__field(int, ptr)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, bno)
__field(int, error)
__field(void *, ret_ip)
),
TP_fast_assign(
xfs_fsblock_t fsbno = xchk_btree_cur_fsbno(cur, level);
__entry->dev = sc->mp->m_super->s_dev;
__entry->ino = sc->ip->i_ino;
__entry->whichfork = cur->bc_ino.whichfork;
__entry->type = sc->sm->sm_type;
__entry->btnum = cur->bc_btnum;
__entry->level = level;
__entry->ptr = cur->bc_levels[level].ptr;
__entry->agno = XFS_FSB_TO_AGNO(cur->bc_mp, fsbno);
__entry->bno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
__entry->error = error;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d ino 0x%llx fork %s type %s btree %s level %d ptr %d agno 0x%x agbno 0x%x error %d ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->ino,
__print_symbolic(__entry->whichfork, XFS_WHICHFORK_STRINGS),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__print_symbolic(__entry->btnum, XFS_BTNUM_STRINGS),
__entry->level,
__entry->ptr,
__entry->agno,
__entry->bno,
__entry->error,
__entry->ret_ip)
);
TRACE_EVENT(xchk_btree_error,
TP_PROTO(struct xfs_scrub *sc, struct xfs_btree_cur *cur,
int level, void *ret_ip),
TP_ARGS(sc, cur, level, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(unsigned int, type)
__field(xfs_btnum_t, btnum)
__field(int, level)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, bno)
ftrace: Rework event_create_dir() Rework event_create_dir() to use an array of static data instead of function pointers where possible. The problem is that it would call the function pointer on module load before parse_args(), possibly even before jump_labels were initialized. Luckily the generated functions don't use jump_labels but it still seems fragile. It also gets in the way of changing when we make the module map executable. The generated function are basically calling trace_define_field() with a bunch of static arguments. So instead of a function, capture these arguments in a static array, avoiding the function call. Now there are a number of cases where the fields are dynamic (syscall arguments, kprobes and uprobes), in which case a static array does not work, for these we preserve the function call. Luckily all these cases are not related to modules and so we can retain the function call for them. Also fix up all broken tracepoint definitions that now generate a compile error. Tested-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191111132458.342979914@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 04:26:59 +08:00
__field(int, ptr)
__field(void *, ret_ip)
),
TP_fast_assign(
xfs_fsblock_t fsbno = xchk_btree_cur_fsbno(cur, level);
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->btnum = cur->bc_btnum;
__entry->level = level;
__entry->agno = XFS_FSB_TO_AGNO(cur->bc_mp, fsbno);
__entry->bno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
__entry->ptr = cur->bc_levels[level].ptr;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d type %s btree %s level %d ptr %d agno 0x%x agbno 0x%x ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__print_symbolic(__entry->btnum, XFS_BTNUM_STRINGS),
__entry->level,
__entry->ptr,
__entry->agno,
__entry->bno,
__entry->ret_ip)
);
TRACE_EVENT(xchk_ifork_btree_error,
TP_PROTO(struct xfs_scrub *sc, struct xfs_btree_cur *cur,
int level, void *ret_ip),
TP_ARGS(sc, cur, level, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_ino_t, ino)
__field(int, whichfork)
__field(unsigned int, type)
__field(xfs_btnum_t, btnum)
__field(int, level)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, bno)
ftrace: Rework event_create_dir() Rework event_create_dir() to use an array of static data instead of function pointers where possible. The problem is that it would call the function pointer on module load before parse_args(), possibly even before jump_labels were initialized. Luckily the generated functions don't use jump_labels but it still seems fragile. It also gets in the way of changing when we make the module map executable. The generated function are basically calling trace_define_field() with a bunch of static arguments. So instead of a function, capture these arguments in a static array, avoiding the function call. Now there are a number of cases where the fields are dynamic (syscall arguments, kprobes and uprobes), in which case a static array does not work, for these we preserve the function call. Luckily all these cases are not related to modules and so we can retain the function call for them. Also fix up all broken tracepoint definitions that now generate a compile error. Tested-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191111132458.342979914@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 04:26:59 +08:00
__field(int, ptr)
__field(void *, ret_ip)
),
TP_fast_assign(
xfs_fsblock_t fsbno = xchk_btree_cur_fsbno(cur, level);
__entry->dev = sc->mp->m_super->s_dev;
__entry->ino = sc->ip->i_ino;
__entry->whichfork = cur->bc_ino.whichfork;
__entry->type = sc->sm->sm_type;
__entry->btnum = cur->bc_btnum;
__entry->level = level;
__entry->agno = XFS_FSB_TO_AGNO(cur->bc_mp, fsbno);
__entry->bno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
__entry->ptr = cur->bc_levels[level].ptr;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d ino 0x%llx fork %s type %s btree %s level %d ptr %d agno 0x%x agbno 0x%x ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->ino,
__print_symbolic(__entry->whichfork, XFS_WHICHFORK_STRINGS),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__print_symbolic(__entry->btnum, XFS_BTNUM_STRINGS),
__entry->level,
__entry->ptr,
__entry->agno,
__entry->bno,
__entry->ret_ip)
);
DECLARE_EVENT_CLASS(xchk_sbtree_class,
TP_PROTO(struct xfs_scrub *sc, struct xfs_btree_cur *cur,
int level),
TP_ARGS(sc, cur, level),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(int, type)
__field(xfs_btnum_t, btnum)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, bno)
__field(int, level)
__field(int, nlevels)
__field(int, ptr)
),
TP_fast_assign(
xfs_fsblock_t fsbno = xchk_btree_cur_fsbno(cur, level);
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->btnum = cur->bc_btnum;
__entry->agno = XFS_FSB_TO_AGNO(cur->bc_mp, fsbno);
__entry->bno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
__entry->level = level;
__entry->nlevels = cur->bc_nlevels;
__entry->ptr = cur->bc_levels[level].ptr;
),
TP_printk("dev %d:%d type %s btree %s agno 0x%x agbno 0x%x level %d nlevels %d ptr %d",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__print_symbolic(__entry->btnum, XFS_BTNUM_STRINGS),
__entry->agno,
__entry->bno,
__entry->level,
__entry->nlevels,
__entry->ptr)
)
#define DEFINE_SCRUB_SBTREE_EVENT(name) \
DEFINE_EVENT(xchk_sbtree_class, name, \
TP_PROTO(struct xfs_scrub *sc, struct xfs_btree_cur *cur, \
int level), \
TP_ARGS(sc, cur, level))
DEFINE_SCRUB_SBTREE_EVENT(xchk_btree_rec);
DEFINE_SCRUB_SBTREE_EVENT(xchk_btree_key);
TRACE_EVENT(xchk_xref_error,
TP_PROTO(struct xfs_scrub *sc, int error, void *ret_ip),
TP_ARGS(sc, error, ret_ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(int, type)
__field(int, error)
__field(void *, ret_ip)
),
TP_fast_assign(
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->error = error;
__entry->ret_ip = ret_ip;
),
TP_printk("dev %d:%d type %s xref error %d ret_ip %pS",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->error,
__entry->ret_ip)
);
TRACE_EVENT(xchk_iallocbt_check_cluster,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
xfs_agino_t startino, xfs_daddr_t map_daddr,
unsigned short map_len, unsigned int chunk_ino,
unsigned int nr_inodes, uint16_t cluster_mask,
uint16_t holemask, unsigned int cluster_ino),
TP_ARGS(mp, agno, startino, map_daddr, map_len, chunk_ino, nr_inodes,
cluster_mask, holemask, cluster_ino),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agino_t, startino)
__field(xfs_daddr_t, map_daddr)
__field(unsigned short, map_len)
__field(unsigned int, chunk_ino)
__field(unsigned int, nr_inodes)
__field(unsigned int, cluster_ino)
__field(uint16_t, cluster_mask)
__field(uint16_t, holemask)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->startino = startino;
__entry->map_daddr = map_daddr;
__entry->map_len = map_len;
__entry->chunk_ino = chunk_ino;
__entry->nr_inodes = nr_inodes;
__entry->cluster_mask = cluster_mask;
__entry->holemask = holemask;
__entry->cluster_ino = cluster_ino;
),
TP_printk("dev %d:%d agno 0x%x startino 0x%x daddr 0x%llx bbcount 0x%x chunkino 0x%x nr_inodes %u cluster_mask 0x%x holemask 0x%x cluster_ino 0x%x",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->startino,
__entry->map_daddr,
__entry->map_len,
__entry->chunk_ino,
__entry->nr_inodes,
__entry->cluster_mask,
__entry->holemask,
__entry->cluster_ino)
)
xfs: rewrite xchk_inode_is_allocated to work properly Back in the mists of time[1], I proposed this function to assist the inode btree scrubbers in checking the inode btree contents against the allocation state of the inode records. The original version performed a direct lookup in the inode cache and returned the allocation status if the cached inode hadn't been reused and wasn't in an intermediate state. Brian thought it would be better to use the usual iget/irele mechanisms, so that was changed for the final version. Unfortunately, this hasn't aged well -- the IGET_INCORE flag only has one user and clutters up the regular iget path, which makes it hard to reason about how it actually works. Worse yet, the inode inactivation series silently broke it because iget won't return inodes that are anywhere in the inactivation machinery, even though the caller is already required to prevent inode allocation and freeing. Inodes in the inactivation machinery are still allocated, but the current code's interactions with the iget code prevent us from being able to say that. Now that I understand the inode lifecycle better than I did in early 2017, I now realize that as long as the cached inode hasn't been reused and isn't actively being reclaimed, it's safe to access the i_mode field (with the AGI, rcu, and i_flags locks held), and we don't need to worry about the inode being freed out from under us. Therefore, port the original version to modern code structure, which fixes the brokennes w.r.t. inactivation. In the next patch we'll remove IGET_INCORE since it's no longer necessary. [1] https://lore.kernel.org/linux-xfs/149643868294.23065.8094890990886436794.stgit@birch.djwong.org/ Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 22:48:12 +08:00
TRACE_EVENT(xchk_inode_is_allocated,
TP_PROTO(struct xfs_inode *ip),
TP_ARGS(ip),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_ino_t, ino)
__field(unsigned long, iflags)
__field(umode_t, mode)
),
TP_fast_assign(
__entry->dev = VFS_I(ip)->i_sb->s_dev;
__entry->ino = ip->i_ino;
__entry->iflags = ip->i_flags;
__entry->mode = VFS_I(ip)->i_mode;
),
TP_printk("dev %d:%d ino 0x%llx iflags 0x%lx mode 0x%x",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->ino,
__entry->iflags,
__entry->mode)
);
TRACE_EVENT(xchk_fscounters_calc,
TP_PROTO(struct xfs_mount *mp, uint64_t icount, uint64_t ifree,
uint64_t fdblocks, uint64_t delalloc),
TP_ARGS(mp, icount, ifree, fdblocks, delalloc),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(int64_t, icount_sb)
__field(uint64_t, icount_calculated)
__field(int64_t, ifree_sb)
__field(uint64_t, ifree_calculated)
__field(int64_t, fdblocks_sb)
__field(uint64_t, fdblocks_calculated)
__field(uint64_t, delalloc)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->icount_sb = mp->m_sb.sb_icount;
__entry->icount_calculated = icount;
__entry->ifree_sb = mp->m_sb.sb_ifree;
__entry->ifree_calculated = ifree;
__entry->fdblocks_sb = mp->m_sb.sb_fdblocks;
__entry->fdblocks_calculated = fdblocks;
__entry->delalloc = delalloc;
),
TP_printk("dev %d:%d icount %lld:%llu ifree %lld::%llu fdblocks %lld::%llu delalloc %llu",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->icount_sb,
__entry->icount_calculated,
__entry->ifree_sb,
__entry->ifree_calculated,
__entry->fdblocks_sb,
__entry->fdblocks_calculated,
__entry->delalloc)
)
TRACE_EVENT(xchk_fscounters_within_range,
TP_PROTO(struct xfs_mount *mp, uint64_t expected, int64_t curr_value,
int64_t old_value),
TP_ARGS(mp, expected, curr_value, old_value),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(uint64_t, expected)
__field(int64_t, curr_value)
__field(int64_t, old_value)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->expected = expected;
__entry->curr_value = curr_value;
__entry->old_value = old_value;
),
TP_printk("dev %d:%d expected %llu curr_value %lld old_value %lld",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->expected,
__entry->curr_value,
__entry->old_value)
)
xfs: stabilize fs summary counters for online fsck If the fscounters scrubber notices incorrect summary counters, it's entirely possible that scrub is simply racing with other threads that are updating the incore counters. There isn't a good way to stabilize percpu counters or set ourselves up to observe live updates with hooks like we do for the quotacheck or nlinks scanners, so we instead choose to freeze the filesystem long enough to walk the incore per-AG structures. Past me thought that it was going to be commonplace to have to freeze the filesystem to perform some kind of repair and set up a whole separate infrastructure to freeze the filesystem in such a way that userspace could not unfreeze while we were running. This involved adding a mutex and freeze_super/thaw_super functions and dealing with the fact that the VFS freeze/thaw functions can free the VFS superblock references on return. This was all very overwrought, since fscounters turned out to be the only user of scrub freezes, and it doesn't require the log to quiesce, only the incore superblock counters. We prevent other threads from changing the freeze level by calling freeze_super_excl with a custom freeze cookie to keep everyone else out of the filesystem. The end result is that fscounters should be much more efficient. When we're checking a busy system and we can't stabilize the counters, the custom freeze will do less work, which should result in less downtime. Repair should be similarly speedy, but that's in a later patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-04 23:20:57 +08:00
DECLARE_EVENT_CLASS(xchk_fsfreeze_class,
TP_PROTO(struct xfs_scrub *sc, int error),
TP_ARGS(sc, error),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(unsigned int, type)
__field(int, error)
),
TP_fast_assign(
__entry->dev = sc->mp->m_super->s_dev;
__entry->type = sc->sm->sm_type;
__entry->error = error;
),
TP_printk("dev %d:%d type %s error %d",
MAJOR(__entry->dev), MINOR(__entry->dev),
__print_symbolic(__entry->type, XFS_SCRUB_TYPE_STRINGS),
__entry->error)
);
#define DEFINE_XCHK_FSFREEZE_EVENT(name) \
DEFINE_EVENT(xchk_fsfreeze_class, name, \
TP_PROTO(struct xfs_scrub *sc, int error), \
TP_ARGS(sc, error))
DEFINE_XCHK_FSFREEZE_EVENT(xchk_fsfreeze);
DEFINE_XCHK_FSFREEZE_EVENT(xchk_fsthaw);
TRACE_EVENT(xchk_refcount_incorrect,
TP_PROTO(struct xfs_perag *pag, const struct xfs_refcount_irec *irec,
xfs_nlink_t seen),
TP_ARGS(pag, irec, seen),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(enum xfs_refc_domain, domain)
__field(xfs_agblock_t, startblock)
__field(xfs_extlen_t, blockcount)
__field(xfs_nlink_t, refcount)
__field(xfs_nlink_t, seen)
),
TP_fast_assign(
__entry->dev = pag->pag_mount->m_super->s_dev;
__entry->agno = pag->pag_agno;
__entry->domain = irec->rc_domain;
__entry->startblock = irec->rc_startblock;
__entry->blockcount = irec->rc_blockcount;
__entry->refcount = irec->rc_refcount;
__entry->seen = seen;
),
TP_printk("dev %d:%d agno 0x%x dom %s agbno 0x%x fsbcount 0x%x refcount %u seen %u",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__print_symbolic(__entry->domain, XFS_REFC_DOMAIN_STRINGS),
__entry->startblock,
__entry->blockcount,
__entry->refcount,
__entry->seen)
)
TRACE_EVENT(xfile_create,
TP_PROTO(struct xfile *xf),
TP_ARGS(xf),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(unsigned long, ino)
__array(char, pathname, 256)
),
TP_fast_assign(
char pathname[257];
char *path;
__entry->ino = file_inode(xf->file)->i_ino;
memset(pathname, 0, sizeof(pathname));
path = file_path(xf->file, pathname, sizeof(pathname) - 1);
if (IS_ERR(path))
path = "(unknown)";
strncpy(__entry->pathname, path, sizeof(__entry->pathname));
),
TP_printk("xfino 0x%lx path '%s'",
__entry->ino,
__entry->pathname)
);
TRACE_EVENT(xfile_destroy,
TP_PROTO(struct xfile *xf),
TP_ARGS(xf),
TP_STRUCT__entry(
__field(unsigned long, ino)
__field(unsigned long long, bytes)
__field(loff_t, size)
),
TP_fast_assign(
struct xfile_stat statbuf;
int ret;
ret = xfile_stat(xf, &statbuf);
if (!ret) {
__entry->bytes = statbuf.bytes;
__entry->size = statbuf.size;
} else {
__entry->bytes = -1;
__entry->size = -1;
}
__entry->ino = file_inode(xf->file)->i_ino;
),
TP_printk("xfino 0x%lx mem_bytes 0x%llx isize 0x%llx",
__entry->ino,
__entry->bytes,
__entry->size)
);
DECLARE_EVENT_CLASS(xfile_class,
TP_PROTO(struct xfile *xf, loff_t pos, unsigned long long bytecount),
TP_ARGS(xf, pos, bytecount),
TP_STRUCT__entry(
__field(unsigned long, ino)
__field(unsigned long long, bytes_used)
__field(loff_t, pos)
__field(loff_t, size)
__field(unsigned long long, bytecount)
),
TP_fast_assign(
struct xfile_stat statbuf;
int ret;
ret = xfile_stat(xf, &statbuf);
if (!ret) {
__entry->bytes_used = statbuf.bytes;
__entry->size = statbuf.size;
} else {
__entry->bytes_used = -1;
__entry->size = -1;
}
__entry->ino = file_inode(xf->file)->i_ino;
__entry->pos = pos;
__entry->bytecount = bytecount;
),
TP_printk("xfino 0x%lx mem_bytes 0x%llx pos 0x%llx bytecount 0x%llx isize 0x%llx",
__entry->ino,
__entry->bytes_used,
__entry->pos,
__entry->bytecount,
__entry->size)
);
#define DEFINE_XFILE_EVENT(name) \
DEFINE_EVENT(xfile_class, name, \
TP_PROTO(struct xfile *xf, loff_t pos, unsigned long long bytecount), \
TP_ARGS(xf, pos, bytecount))
DEFINE_XFILE_EVENT(xfile_pread);
DEFINE_XFILE_EVENT(xfile_pwrite);
DEFINE_XFILE_EVENT(xfile_seek_data);
DEFINE_XFILE_EVENT(xfile_get_page);
DEFINE_XFILE_EVENT(xfile_put_page);
TRACE_EVENT(xfarray_create,
TP_PROTO(struct xfarray *xfa, unsigned long long required_capacity),
TP_ARGS(xfa, required_capacity),
TP_STRUCT__entry(
__field(unsigned long, ino)
__field(uint64_t, max_nr)
__field(size_t, obj_size)
__field(int, obj_size_log)
__field(unsigned long long, required_capacity)
),
TP_fast_assign(
__entry->max_nr = xfa->max_nr;
__entry->obj_size = xfa->obj_size;
__entry->obj_size_log = xfa->obj_size_log;
__entry->ino = file_inode(xfa->xfile->file)->i_ino;
__entry->required_capacity = required_capacity;
),
TP_printk("xfino 0x%lx max_nr %llu reqd_nr %llu objsz %zu objszlog %d",
__entry->ino,
__entry->max_nr,
__entry->required_capacity,
__entry->obj_size,
__entry->obj_size_log)
);
xfs: enable sorting of xfile-backed arrays The btree bulk loading code requires that records be provided in the correct record sort order for the given btree type. In general, repair code cannot be required to collect records in order, and it is not feasible to insert new records in the middle of an array to maintain sort order. Implement a sorting algorithm so that we can sort the records just prior to bulk loading. In principle, an xfarray could consume many gigabytes of memory and its backing pages can be sent out to disk at any time. This means that we cannot map the entire array into memory at once, so we must find a way to divide the work into smaller portions (e.g. a page) that /can/ be mapped into memory. Quicksort seems like a reasonable fit for this purpose, since it uses a divide and conquer strategy to keep its average runtime logarithmic. The solution presented here is a port of the glibc implementation, which itself is derived from the median-of-three and tail call recursion strategies outlined by Sedgwick. Subsequent patches will optimize the implementation further by utilizing the kernel's heapsort on directly-mapped memory whenever possible, and improving the quicksort pivot selection algorithm to try to avoid O(n^2) collapses. Note: The sorting functionality gets its own patch because the basic big array mechanisms were plenty for a single code patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 22:48:05 +08:00
TRACE_EVENT(xfarray_isort,
TP_PROTO(struct xfarray_sortinfo *si, uint64_t lo, uint64_t hi),
TP_ARGS(si, lo, hi),
TP_STRUCT__entry(
__field(unsigned long, ino)
__field(unsigned long long, lo)
__field(unsigned long long, hi)
),
TP_fast_assign(
__entry->ino = file_inode(si->array->xfile->file)->i_ino;
__entry->lo = lo;
__entry->hi = hi;
),
TP_printk("xfino 0x%lx lo %llu hi %llu elts %llu",
__entry->ino,
__entry->lo,
__entry->hi,
__entry->hi - __entry->lo)
);
TRACE_EVENT(xfarray_pagesort,
TP_PROTO(struct xfarray_sortinfo *si, uint64_t lo, uint64_t hi),
xfs: enable sorting of xfile-backed arrays The btree bulk loading code requires that records be provided in the correct record sort order for the given btree type. In general, repair code cannot be required to collect records in order, and it is not feasible to insert new records in the middle of an array to maintain sort order. Implement a sorting algorithm so that we can sort the records just prior to bulk loading. In principle, an xfarray could consume many gigabytes of memory and its backing pages can be sent out to disk at any time. This means that we cannot map the entire array into memory at once, so we must find a way to divide the work into smaller portions (e.g. a page) that /can/ be mapped into memory. Quicksort seems like a reasonable fit for this purpose, since it uses a divide and conquer strategy to keep its average runtime logarithmic. The solution presented here is a port of the glibc implementation, which itself is derived from the median-of-three and tail call recursion strategies outlined by Sedgwick. Subsequent patches will optimize the implementation further by utilizing the kernel's heapsort on directly-mapped memory whenever possible, and improving the quicksort pivot selection algorithm to try to avoid O(n^2) collapses. Note: The sorting functionality gets its own patch because the basic big array mechanisms were plenty for a single code patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 22:48:05 +08:00
TP_ARGS(si, lo, hi),
TP_STRUCT__entry(
__field(unsigned long, ino)
__field(unsigned long long, lo)
__field(unsigned long long, hi)
),
TP_fast_assign(
__entry->ino = file_inode(si->array->xfile->file)->i_ino;
__entry->lo = lo;
__entry->hi = hi;
),
TP_printk("xfino 0x%lx lo %llu hi %llu elts %llu",
__entry->ino,
__entry->lo,
__entry->hi,
__entry->hi - __entry->lo)
);
TRACE_EVENT(xfarray_qsort,
TP_PROTO(struct xfarray_sortinfo *si, uint64_t lo, uint64_t hi),
TP_ARGS(si, lo, hi),
TP_STRUCT__entry(
__field(unsigned long, ino)
__field(unsigned long long, lo)
__field(unsigned long long, hi)
__field(int, stack_depth)
__field(int, max_stack_depth)
),
TP_fast_assign(
__entry->ino = file_inode(si->array->xfile->file)->i_ino;
__entry->lo = lo;
__entry->hi = hi;
__entry->stack_depth = si->stack_depth;
__entry->max_stack_depth = si->max_stack_depth;
),
TP_printk("xfino 0x%lx lo %llu hi %llu elts %llu stack %d/%d",
__entry->ino,
__entry->lo,
__entry->hi,
__entry->hi - __entry->lo,
__entry->stack_depth,
__entry->max_stack_depth)
);
TRACE_EVENT(xfarray_sort,
TP_PROTO(struct xfarray_sortinfo *si, size_t bytes),
TP_ARGS(si, bytes),
TP_STRUCT__entry(
__field(unsigned long, ino)
__field(unsigned long long, nr)
__field(size_t, obj_size)
__field(size_t, bytes)
__field(unsigned int, max_stack_depth)
),
TP_fast_assign(
__entry->nr = si->array->nr;
__entry->obj_size = si->array->obj_size;
__entry->ino = file_inode(si->array->xfile->file)->i_ino;
__entry->bytes = bytes;
__entry->max_stack_depth = si->max_stack_depth;
),
TP_printk("xfino 0x%lx nr %llu objsz %zu stack %u bytes %zu",
__entry->ino,
__entry->nr,
__entry->obj_size,
__entry->max_stack_depth,
__entry->bytes)
);
TRACE_EVENT(xfarray_sort_stats,
TP_PROTO(struct xfarray_sortinfo *si, int error),
TP_ARGS(si, error),
TP_STRUCT__entry(
__field(unsigned long, ino)
#ifdef DEBUG
__field(unsigned long long, loads)
__field(unsigned long long, stores)
__field(unsigned long long, compares)
__field(unsigned long long, heapsorts)
xfs: enable sorting of xfile-backed arrays The btree bulk loading code requires that records be provided in the correct record sort order for the given btree type. In general, repair code cannot be required to collect records in order, and it is not feasible to insert new records in the middle of an array to maintain sort order. Implement a sorting algorithm so that we can sort the records just prior to bulk loading. In principle, an xfarray could consume many gigabytes of memory and its backing pages can be sent out to disk at any time. This means that we cannot map the entire array into memory at once, so we must find a way to divide the work into smaller portions (e.g. a page) that /can/ be mapped into memory. Quicksort seems like a reasonable fit for this purpose, since it uses a divide and conquer strategy to keep its average runtime logarithmic. The solution presented here is a port of the glibc implementation, which itself is derived from the median-of-three and tail call recursion strategies outlined by Sedgwick. Subsequent patches will optimize the implementation further by utilizing the kernel's heapsort on directly-mapped memory whenever possible, and improving the quicksort pivot selection algorithm to try to avoid O(n^2) collapses. Note: The sorting functionality gets its own patch because the basic big array mechanisms were plenty for a single code patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 22:48:05 +08:00
#endif
__field(unsigned int, max_stack_depth)
__field(unsigned int, max_stack_used)
__field(int, error)
),
TP_fast_assign(
__entry->ino = file_inode(si->array->xfile->file)->i_ino;
#ifdef DEBUG
__entry->loads = si->loads;
__entry->stores = si->stores;
__entry->compares = si->compares;
__entry->heapsorts = si->heapsorts;
xfs: enable sorting of xfile-backed arrays The btree bulk loading code requires that records be provided in the correct record sort order for the given btree type. In general, repair code cannot be required to collect records in order, and it is not feasible to insert new records in the middle of an array to maintain sort order. Implement a sorting algorithm so that we can sort the records just prior to bulk loading. In principle, an xfarray could consume many gigabytes of memory and its backing pages can be sent out to disk at any time. This means that we cannot map the entire array into memory at once, so we must find a way to divide the work into smaller portions (e.g. a page) that /can/ be mapped into memory. Quicksort seems like a reasonable fit for this purpose, since it uses a divide and conquer strategy to keep its average runtime logarithmic. The solution presented here is a port of the glibc implementation, which itself is derived from the median-of-three and tail call recursion strategies outlined by Sedgwick. Subsequent patches will optimize the implementation further by utilizing the kernel's heapsort on directly-mapped memory whenever possible, and improving the quicksort pivot selection algorithm to try to avoid O(n^2) collapses. Note: The sorting functionality gets its own patch because the basic big array mechanisms were plenty for a single code patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 22:48:05 +08:00
#endif
__entry->max_stack_depth = si->max_stack_depth;
__entry->max_stack_used = si->max_stack_used;
__entry->error = error;
),
TP_printk(
#ifdef DEBUG
"xfino 0x%lx loads %llu stores %llu compares %llu heapsorts %llu stack_depth %u/%u error %d",
xfs: enable sorting of xfile-backed arrays The btree bulk loading code requires that records be provided in the correct record sort order for the given btree type. In general, repair code cannot be required to collect records in order, and it is not feasible to insert new records in the middle of an array to maintain sort order. Implement a sorting algorithm so that we can sort the records just prior to bulk loading. In principle, an xfarray could consume many gigabytes of memory and its backing pages can be sent out to disk at any time. This means that we cannot map the entire array into memory at once, so we must find a way to divide the work into smaller portions (e.g. a page) that /can/ be mapped into memory. Quicksort seems like a reasonable fit for this purpose, since it uses a divide and conquer strategy to keep its average runtime logarithmic. The solution presented here is a port of the glibc implementation, which itself is derived from the median-of-three and tail call recursion strategies outlined by Sedgwick. Subsequent patches will optimize the implementation further by utilizing the kernel's heapsort on directly-mapped memory whenever possible, and improving the quicksort pivot selection algorithm to try to avoid O(n^2) collapses. Note: The sorting functionality gets its own patch because the basic big array mechanisms were plenty for a single code patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 22:48:05 +08:00
#else
"xfino 0x%lx stack_depth %u/%u error %d",
#endif
__entry->ino,
#ifdef DEBUG
__entry->loads,
__entry->stores,
__entry->compares,
__entry->heapsorts,
xfs: enable sorting of xfile-backed arrays The btree bulk loading code requires that records be provided in the correct record sort order for the given btree type. In general, repair code cannot be required to collect records in order, and it is not feasible to insert new records in the middle of an array to maintain sort order. Implement a sorting algorithm so that we can sort the records just prior to bulk loading. In principle, an xfarray could consume many gigabytes of memory and its backing pages can be sent out to disk at any time. This means that we cannot map the entire array into memory at once, so we must find a way to divide the work into smaller portions (e.g. a page) that /can/ be mapped into memory. Quicksort seems like a reasonable fit for this purpose, since it uses a divide and conquer strategy to keep its average runtime logarithmic. The solution presented here is a port of the glibc implementation, which itself is derived from the median-of-three and tail call recursion strategies outlined by Sedgwick. Subsequent patches will optimize the implementation further by utilizing the kernel's heapsort on directly-mapped memory whenever possible, and improving the quicksort pivot selection algorithm to try to avoid O(n^2) collapses. Note: The sorting functionality gets its own patch because the basic big array mechanisms were plenty for a single code patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10 22:48:05 +08:00
#endif
__entry->max_stack_used,
__entry->max_stack_depth,
__entry->error)
);
#ifdef CONFIG_XFS_RT
TRACE_EVENT(xchk_rtsum_record_free,
TP_PROTO(struct xfs_mount *mp, xfs_rtblock_t start,
uint64_t len, unsigned int log, loff_t pos, xfs_suminfo_t v),
TP_ARGS(mp, start, len, log, pos, v),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(dev_t, rtdev)
__field(xfs_rtblock_t, start)
__field(unsigned long long, len)
__field(unsigned int, log)
__field(loff_t, pos)
__field(xfs_suminfo_t, v)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->rtdev = mp->m_rtdev_targp->bt_dev;
__entry->start = start;
__entry->len = len;
__entry->log = log;
__entry->pos = pos;
__entry->v = v;
),
TP_printk("dev %d:%d rtdev %d:%d rtx 0x%llx rtxcount 0x%llx log %u rsumpos 0x%llx sumcount %u",
MAJOR(__entry->dev), MINOR(__entry->dev),
MAJOR(__entry->rtdev), MINOR(__entry->rtdev),
__entry->start,
__entry->len,
__entry->log,
__entry->pos,
__entry->v)
);
#endif /* CONFIG_XFS_RT */
/* repair tracepoints */
#if IS_ENABLED(CONFIG_XFS_ONLINE_REPAIR)
DECLARE_EVENT_CLASS(xrep_extent_class,
TP_PROTO(struct xfs_perag *pag, xfs_agblock_t agbno, xfs_extlen_t len),
TP_ARGS(pag, agbno, len),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, agbno)
__field(xfs_extlen_t, len)
),
TP_fast_assign(
__entry->dev = pag->pag_mount->m_super->s_dev;
__entry->agno = pag->pag_agno;
__entry->agbno = agbno;
__entry->len = len;
),
TP_printk("dev %d:%d agno 0x%x agbno 0x%x fsbcount 0x%x",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->agbno,
__entry->len)
);
#define DEFINE_REPAIR_EXTENT_EVENT(name) \
DEFINE_EVENT(xrep_extent_class, name, \
TP_PROTO(struct xfs_perag *pag, xfs_agblock_t agbno, xfs_extlen_t len), \
TP_ARGS(pag, agbno, len))
DEFINE_REPAIR_EXTENT_EVENT(xreap_dispose_unmap_extent);
DEFINE_REPAIR_EXTENT_EVENT(xreap_dispose_free_extent);
DEFINE_REPAIR_EXTENT_EVENT(xreap_agextent_binval);
DEFINE_REPAIR_EXTENT_EVENT(xrep_agfl_insert);
DECLARE_EVENT_CLASS(xrep_reap_find_class,
TP_PROTO(struct xfs_perag *pag, xfs_agblock_t agbno, xfs_extlen_t len,
bool crosslinked),
TP_ARGS(pag, agbno, len, crosslinked),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, agbno)
__field(xfs_extlen_t, len)
__field(bool, crosslinked)
),
TP_fast_assign(
__entry->dev = pag->pag_mount->m_super->s_dev;
__entry->agno = pag->pag_agno;
__entry->agbno = agbno;
__entry->len = len;
__entry->crosslinked = crosslinked;
),
TP_printk("dev %d:%d agno 0x%x agbno 0x%x fsbcount 0x%x crosslinked %d",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->agbno,
__entry->len,
__entry->crosslinked ? 1 : 0)
);
#define DEFINE_REPAIR_REAP_FIND_EVENT(name) \
DEFINE_EVENT(xrep_reap_find_class, name, \
TP_PROTO(struct xfs_perag *pag, xfs_agblock_t agbno, xfs_extlen_t len, \
bool crosslinked), \
TP_ARGS(pag, agbno, len, crosslinked))
DEFINE_REPAIR_REAP_FIND_EVENT(xreap_agextent_select);
DECLARE_EVENT_CLASS(xrep_rmap_class,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
xfs_agblock_t agbno, xfs_extlen_t len,
uint64_t owner, uint64_t offset, unsigned int flags),
TP_ARGS(mp, agno, agbno, len, owner, offset, flags),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, agbno)
__field(xfs_extlen_t, len)
__field(uint64_t, owner)
__field(uint64_t, offset)
__field(unsigned int, flags)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->agbno = agbno;
__entry->len = len;
__entry->owner = owner;
__entry->offset = offset;
__entry->flags = flags;
),
TP_printk("dev %d:%d agno 0x%x agbno 0x%x fsbcount 0x%x owner 0x%llx fileoff 0x%llx flags 0x%x",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->agbno,
__entry->len,
__entry->owner,
__entry->offset,
__entry->flags)
);
#define DEFINE_REPAIR_RMAP_EVENT(name) \
DEFINE_EVENT(xrep_rmap_class, name, \
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno, \
xfs_agblock_t agbno, xfs_extlen_t len, \
uint64_t owner, uint64_t offset, unsigned int flags), \
TP_ARGS(mp, agno, agbno, len, owner, offset, flags))
DEFINE_REPAIR_RMAP_EVENT(xrep_alloc_extent_fn);
DEFINE_REPAIR_RMAP_EVENT(xrep_ialloc_extent_fn);
DEFINE_REPAIR_RMAP_EVENT(xrep_rmap_extent_fn);
DEFINE_REPAIR_RMAP_EVENT(xrep_bmap_extent_fn);
TRACE_EVENT(xrep_refcount_extent_fn,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
struct xfs_refcount_irec *irec),
TP_ARGS(mp, agno, irec),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, startblock)
__field(xfs_extlen_t, blockcount)
__field(xfs_nlink_t, refcount)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->startblock = irec->rc_startblock;
__entry->blockcount = irec->rc_blockcount;
__entry->refcount = irec->rc_refcount;
),
TP_printk("dev %d:%d agno 0x%x agbno 0x%x fsbcount 0x%x refcount %u",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->startblock,
__entry->blockcount,
__entry->refcount)
)
TRACE_EVENT(xrep_findroot_block,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agblock_t agbno,
uint32_t magic, uint16_t level),
TP_ARGS(mp, agno, agbno, magic, level),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, agbno)
__field(uint32_t, magic)
__field(uint16_t, level)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->agbno = agbno;
__entry->magic = magic;
__entry->level = level;
),
TP_printk("dev %d:%d agno 0x%x agbno 0x%x magic 0x%x level %u",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->agbno,
__entry->magic,
__entry->level)
)
TRACE_EVENT(xrep_calc_ag_resblks,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
xfs_agino_t icount, xfs_agblock_t aglen, xfs_agblock_t freelen,
xfs_agblock_t usedlen),
TP_ARGS(mp, agno, icount, aglen, freelen, usedlen),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agino_t, icount)
__field(xfs_agblock_t, aglen)
__field(xfs_agblock_t, freelen)
__field(xfs_agblock_t, usedlen)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->icount = icount;
__entry->aglen = aglen;
__entry->freelen = freelen;
__entry->usedlen = usedlen;
),
TP_printk("dev %d:%d agno 0x%x icount %u aglen %u freelen %u usedlen %u",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->icount,
__entry->aglen,
__entry->freelen,
__entry->usedlen)
)
TRACE_EVENT(xrep_calc_ag_resblks_btsize,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
xfs_agblock_t bnobt_sz, xfs_agblock_t inobt_sz,
xfs_agblock_t rmapbt_sz, xfs_agblock_t refcbt_sz),
TP_ARGS(mp, agno, bnobt_sz, inobt_sz, rmapbt_sz, refcbt_sz),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agblock_t, bnobt_sz)
__field(xfs_agblock_t, inobt_sz)
__field(xfs_agblock_t, rmapbt_sz)
__field(xfs_agblock_t, refcbt_sz)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->bnobt_sz = bnobt_sz;
__entry->inobt_sz = inobt_sz;
__entry->rmapbt_sz = rmapbt_sz;
__entry->refcbt_sz = refcbt_sz;
),
TP_printk("dev %d:%d agno 0x%x bnobt %u inobt %u rmapbt %u refcountbt %u",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->bnobt_sz,
__entry->inobt_sz,
__entry->rmapbt_sz,
__entry->refcbt_sz)
)
TRACE_EVENT(xrep_reset_counters,
TP_PROTO(struct xfs_mount *mp),
TP_ARGS(mp),
TP_STRUCT__entry(
__field(dev_t, dev)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
),
TP_printk("dev %d:%d",
MAJOR(__entry->dev), MINOR(__entry->dev))
)
TRACE_EVENT(xrep_ialloc_insert,
TP_PROTO(struct xfs_mount *mp, xfs_agnumber_t agno,
xfs_agino_t startino, uint16_t holemask, uint8_t count,
uint8_t freecount, uint64_t freemask),
TP_ARGS(mp, agno, startino, holemask, count, freecount, freemask),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_agnumber_t, agno)
__field(xfs_agino_t, startino)
__field(uint16_t, holemask)
__field(uint8_t, count)
__field(uint8_t, freecount)
__field(uint64_t, freemask)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->agno = agno;
__entry->startino = startino;
__entry->holemask = holemask;
__entry->count = count;
__entry->freecount = freecount;
__entry->freemask = freemask;
),
TP_printk("dev %d:%d agno 0x%x startino 0x%x holemask 0x%x count %u freecount %u freemask 0x%llx",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->agno,
__entry->startino,
__entry->holemask,
__entry->count,
__entry->freecount,
__entry->freemask)
)
#endif /* IS_ENABLED(CONFIG_XFS_ONLINE_REPAIR) */
#endif /* _TRACE_XFS_SCRUB_TRACE_H */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#define TRACE_INCLUDE_FILE scrub/trace
#include <trace/define_trace.h>