linux/drivers/block/zram/zram_drv.c

1330 lines
31 KiB
C
Raw Normal View History

/*
* Compressed RAM block device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
* 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
*/
#define KMSG_COMPONENT "zram"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <linux/err.h>
#include <linux/idr.h>
#include "zram_drv.h"
static DEFINE_IDR(zram_index_idr);
static int zram_major;
static const char *default_compressor = "lzo";
/* Module params (documentation at end) */
static unsigned int num_devices = 1;
static inline void deprecated_attr_warn(const char *name)
{
pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
task_pid_nr(current),
current->comm,
name,
"See zram documentation.");
}
#define ZRAM_ATTR_RO(name) \
static ssize_t name##_show(struct device *d, \
struct device_attribute *attr, char *b) \
{ \
struct zram *zram = dev_to_zram(d); \
\
deprecated_attr_warn(__stringify(name)); \
return scnprintf(b, PAGE_SIZE, "%llu\n", \
(u64)atomic64_read(&zram->stats.name)); \
} \
static DEVICE_ATTR_RO(name);
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
static inline bool init_done(struct zram *zram)
{
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
return zram->disksize;
}
static inline struct zram *dev_to_zram(struct device *dev)
{
return (struct zram *)dev_to_disk(dev)->private_data;
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
/* flag operations needs meta->tb_lock */
static int zram_test_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
return meta->table[index].value & BIT(flag);
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static void zram_set_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
meta->table[index].value |= BIT(flag);
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static void zram_clear_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
meta->table[index].value &= ~BIT(flag);
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
{
return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static void zram_set_obj_size(struct zram_meta *meta,
u32 index, size_t size)
{
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
}
static inline int is_partial_io(struct bio_vec *bvec)
{
return bvec->bv_len != PAGE_SIZE;
}
/*
* Check if request is within bounds and aligned on zram logical blocks.
*/
static inline int valid_io_request(struct zram *zram,
sector_t start, unsigned int size)
{
u64 end, bound;
/* unaligned request */
if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
return 0;
if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
return 0;
end = start + (size >> SECTOR_SHIFT);
bound = zram->disksize >> SECTOR_SHIFT;
/* out of range range */
if (unlikely(start >= bound || end > bound || start > end))
return 0;
/* I/O request is valid */
return 1;
}
static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
if (*offset + bvec->bv_len >= PAGE_SIZE)
(*index)++;
*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}
static inline void update_used_max(struct zram *zram,
const unsigned long pages)
{
unsigned long old_max, cur_max;
old_max = atomic_long_read(&zram->stats.max_used_pages);
do {
cur_max = old_max;
if (pages > cur_max)
old_max = atomic_long_cmpxchg(
&zram->stats.max_used_pages, cur_max, pages);
} while (old_max != cur_max);
}
static int page_zero_filled(void *ptr)
{
unsigned int pos;
unsigned long *page;
page = (unsigned long *)ptr;
for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
if (page[pos])
return 0;
}
return 1;
}
static void handle_zero_page(struct bio_vec *bvec)
{
struct page *page = bvec->bv_page;
void *user_mem;
user_mem = kmap_atomic(page);
if (is_partial_io(bvec))
memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
else
clear_page(user_mem);
kunmap_atomic(user_mem);
flush_dcache_page(page);
}
static ssize_t initstate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
val = init_done(zram);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%u\n", val);
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static ssize_t disksize_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
}
static ssize_t orig_data_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct zram *zram = dev_to_zram(dev);
deprecated_attr_warn("orig_data_size");
return scnprintf(buf, PAGE_SIZE, "%llu\n",
(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
}
static ssize_t mem_used_total_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val = 0;
struct zram *zram = dev_to_zram(dev);
deprecated_attr_warn("mem_used_total");
down_read(&zram->init_lock);
if (init_done(zram)) {
struct zram_meta *meta = zram->meta;
val = zs_get_total_pages(meta->mem_pool);
}
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t mem_limit_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val;
struct zram *zram = dev_to_zram(dev);
deprecated_attr_warn("mem_limit");
down_read(&zram->init_lock);
val = zram->limit_pages;
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t mem_limit_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
u64 limit;
char *tmp;
struct zram *zram = dev_to_zram(dev);
limit = memparse(buf, &tmp);
if (buf == tmp) /* no chars parsed, invalid input */
return -EINVAL;
down_write(&zram->init_lock);
zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
up_write(&zram->init_lock);
return len;
}
static ssize_t mem_used_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 val = 0;
struct zram *zram = dev_to_zram(dev);
deprecated_attr_warn("mem_used_max");
down_read(&zram->init_lock);
if (init_done(zram))
val = atomic_long_read(&zram->stats.max_used_pages);
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t mem_used_max_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int err;
unsigned long val;
struct zram *zram = dev_to_zram(dev);
err = kstrtoul(buf, 10, &val);
if (err || val != 0)
return -EINVAL;
down_read(&zram->init_lock);
if (init_done(zram)) {
struct zram_meta *meta = zram->meta;
atomic_long_set(&zram->stats.max_used_pages,
zs_get_total_pages(meta->mem_pool));
}
up_read(&zram->init_lock);
return len;
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static ssize_t max_comp_streams_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int val;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
val = zram->max_comp_streams;
up_read(&zram->init_lock);
return scnprintf(buf, PAGE_SIZE, "%d\n", val);
}
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
static ssize_t max_comp_streams_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
int num;
struct zram *zram = dev_to_zram(dev);
int ret;
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
ret = kstrtoint(buf, 0, &num);
if (ret < 0)
return ret;
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
if (num < 1)
return -EINVAL;
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
down_write(&zram->init_lock);
if (init_done(zram)) {
if (!zcomp_set_max_streams(zram->comp, num)) {
pr_info("Cannot change max compression streams\n");
ret = -EINVAL;
goto out;
}
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
}
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
zram->max_comp_streams = num;
ret = len;
out:
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
up_write(&zram->init_lock);
return ret;
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
}
static ssize_t comp_algorithm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
size_t sz;
struct zram *zram = dev_to_zram(dev);
down_read(&zram->init_lock);
sz = zcomp_available_show(zram->compressor, buf);
up_read(&zram->init_lock);
return sz;
}
static ssize_t comp_algorithm_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct zram *zram = dev_to_zram(dev);
down_write(&zram->init_lock);
if (init_done(zram)) {
up_write(&zram->init_lock);
pr_info("Can't change algorithm for initialized device\n");
return -EBUSY;
}
strlcpy(zram->compressor, buf, sizeof(zram->compressor));
up_write(&zram->init_lock);
return len;
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static ssize_t compact_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
unsigned long nr_migrated;
struct zram *zram = dev_to_zram(dev);
struct zram_meta *meta;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
down_read(&zram->init_lock);
if (!init_done(zram)) {
up_read(&zram->init_lock);
return -EINVAL;
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
meta = zram->meta;
nr_migrated = zs_compact(meta->mem_pool);
atomic64_add(nr_migrated, &zram->stats.num_migrated);
up_read(&zram->init_lock);
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
return len;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static ssize_t io_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
{
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
struct zram *zram = dev_to_zram(dev);
ssize_t ret;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
down_read(&zram->init_lock);
ret = scnprintf(buf, PAGE_SIZE,
"%8llu %8llu %8llu %8llu\n",
(u64)atomic64_read(&zram->stats.failed_reads),
(u64)atomic64_read(&zram->stats.failed_writes),
(u64)atomic64_read(&zram->stats.invalid_io),
(u64)atomic64_read(&zram->stats.notify_free));
up_read(&zram->init_lock);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
return ret;
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static ssize_t mm_stat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
struct zram *zram = dev_to_zram(dev);
u64 orig_size, mem_used = 0;
long max_used;
ssize_t ret;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
down_read(&zram->init_lock);
if (init_done(zram))
mem_used = zs_get_total_pages(zram->meta->mem_pool);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
orig_size = atomic64_read(&zram->stats.pages_stored);
max_used = atomic_long_read(&zram->stats.max_used_pages);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
ret = scnprintf(buf, PAGE_SIZE,
"%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
orig_size << PAGE_SHIFT,
(u64)atomic64_read(&zram->stats.compr_data_size),
mem_used << PAGE_SHIFT,
zram->limit_pages << PAGE_SHIFT,
max_used << PAGE_SHIFT,
(u64)atomic64_read(&zram->stats.zero_pages),
(u64)atomic64_read(&zram->stats.num_migrated));
up_read(&zram->init_lock);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
return ret;
}
static DEVICE_ATTR_RO(io_stat);
static DEVICE_ATTR_RO(mm_stat);
ZRAM_ATTR_RO(num_reads);
ZRAM_ATTR_RO(num_writes);
ZRAM_ATTR_RO(failed_reads);
ZRAM_ATTR_RO(failed_writes);
ZRAM_ATTR_RO(invalid_io);
ZRAM_ATTR_RO(notify_free);
ZRAM_ATTR_RO(zero_pages);
ZRAM_ATTR_RO(compr_data_size);
static inline bool zram_meta_get(struct zram *zram)
{
if (atomic_inc_not_zero(&zram->refcount))
return true;
return false;
}
static inline void zram_meta_put(struct zram *zram)
{
atomic_dec(&zram->refcount);
}
static void zram_meta_free(struct zram_meta *meta, u64 disksize)
{
size_t num_pages = disksize >> PAGE_SHIFT;
size_t index;
/* Free all pages that are still in this zram device */
for (index = 0; index < num_pages; index++) {
unsigned long handle = meta->table[index].handle;
if (!handle)
continue;
zs_free(meta->mem_pool, handle);
}
zs_destroy_pool(meta->mem_pool);
vfree(meta->table);
kfree(meta);
}
static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
{
size_t num_pages;
char pool_name[8];
struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
if (!meta)
return NULL;
num_pages = disksize >> PAGE_SHIFT;
meta->table = vzalloc(num_pages * sizeof(*meta->table));
if (!meta->table) {
pr_err("Error allocating zram address table\n");
goto out_error;
}
snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
if (!meta->mem_pool) {
pr_err("Error creating memory pool\n");
goto out_error;
}
return meta;
out_error:
vfree(meta->table);
kfree(meta);
return NULL;
}
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
/*
* To protect concurrent access to the same index entry,
* caller should hold this table index entry's bit_spinlock to
* indicate this index entry is accessing.
*/
static void zram_free_page(struct zram *zram, size_t index)
{
struct zram_meta *meta = zram->meta;
unsigned long handle = meta->table[index].handle;
if (unlikely(!handle)) {
/*
* No memory is allocated for zero filled pages.
* Simply clear zero page flag.
*/
if (zram_test_flag(meta, index, ZRAM_ZERO)) {
zram_clear_flag(meta, index, ZRAM_ZERO);
atomic64_dec(&zram->stats.zero_pages);
}
return;
}
zs_free(meta->mem_pool, handle);
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
atomic64_sub(zram_get_obj_size(meta, index),
&zram->stats.compr_data_size);
atomic64_dec(&zram->stats.pages_stored);
meta->table[index].handle = 0;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
zram_set_obj_size(meta, index, 0);
}
static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
{
int ret = 0;
unsigned char *cmem;
struct zram_meta *meta = zram->meta;
unsigned long handle;
size_t size;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
handle = meta->table[index].handle;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
size = zram_get_obj_size(meta, index);
if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
clear_page(mem);
return 0;
}
cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
if (size == PAGE_SIZE)
copy_page(mem, cmem);
else
ret = zcomp_decompress(zram->comp, cmem, size, mem);
zs_unmap_object(meta->mem_pool, handle);
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
Staging: ramzswap: Support generic I/O requests Currently, ramzwap devices (/dev/ramzswapX) can only be used as swap disks since it was hard-coded to consider only the first request in bio vector. Now, we iterate over all the segments in an incoming bio which allows us to handle all kinds of I/O requests. ramzswap devices can still handle PAGE_SIZE aligned and multiple of PAGE_SIZE sized I/O requests only. To ensure that we get always get such requests only, we set following request_queue attributes to PAGE_SIZE: - physical_block_size - logical_block_size - io_min - io_opt Note: physical and logical block sizes were already set equal to PAGE_SIZE and that seems to be sufficient to get PAGE_SIZE aligned I/O. Since we are no longer limited to handling swap requests only, the next few patches rename ramzswap to zram. So, the devices will then be called /dev/zram{0, 1, 2, ...} Usage/Examples: 1) Use as /tmp storage - mkfs.ext4 /dev/zram0 - mount /dev/zram0 /tmp 2) Use as swap: - mkswap /dev/zram0 - swapon /dev/zram0 -p 10 # give highest priority to zram0 Performance: - I/O benchamark done with 'dd' command. Details can be found here: http://code.google.com/p/compcache/wiki/zramperf Summary: - Maximum read speed (approx): - ram disk: 1200 MB/sec - zram disk: 600 MB/sec - Maximum write speed (approx): - ram disk: 500 MB/sec - zram disk: 160 MB/sec Issues: - Double caching: We can potentially waste memory by having two copies of a page -- one in page cache (uncompress) and second in the device memory (compressed). However, during reclaim, clean page cache pages are quickly freed, so this does not seem to be a big problem. - Stale data: Not all filesystems support issuing 'discard' requests to underlying block devices. So, if such filesystems are used over zram devices, we can accumulate lot of stale data in memory. Even for filesystems to do support discard (example, ext4), we need to see how effective it is. - Scalability: There is only one (per-device) de/compression buffer stats. This can lead to significant contention, especially when used for generic (non-swap) purposes. Signed-off-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-06-01 16:01:23 +08:00
/* Should NEVER happen. Return bio error if it does. */
if (unlikely(ret)) {
pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
return ret;
Staging: ramzswap: Support generic I/O requests Currently, ramzwap devices (/dev/ramzswapX) can only be used as swap disks since it was hard-coded to consider only the first request in bio vector. Now, we iterate over all the segments in an incoming bio which allows us to handle all kinds of I/O requests. ramzswap devices can still handle PAGE_SIZE aligned and multiple of PAGE_SIZE sized I/O requests only. To ensure that we get always get such requests only, we set following request_queue attributes to PAGE_SIZE: - physical_block_size - logical_block_size - io_min - io_opt Note: physical and logical block sizes were already set equal to PAGE_SIZE and that seems to be sufficient to get PAGE_SIZE aligned I/O. Since we are no longer limited to handling swap requests only, the next few patches rename ramzswap to zram. So, the devices will then be called /dev/zram{0, 1, 2, ...} Usage/Examples: 1) Use as /tmp storage - mkfs.ext4 /dev/zram0 - mount /dev/zram0 /tmp 2) Use as swap: - mkswap /dev/zram0 - swapon /dev/zram0 -p 10 # give highest priority to zram0 Performance: - I/O benchamark done with 'dd' command. Details can be found here: http://code.google.com/p/compcache/wiki/zramperf Summary: - Maximum read speed (approx): - ram disk: 1200 MB/sec - zram disk: 600 MB/sec - Maximum write speed (approx): - ram disk: 500 MB/sec - zram disk: 160 MB/sec Issues: - Double caching: We can potentially waste memory by having two copies of a page -- one in page cache (uncompress) and second in the device memory (compressed). However, during reclaim, clean page cache pages are quickly freed, so this does not seem to be a big problem. - Stale data: Not all filesystems support issuing 'discard' requests to underlying block devices. So, if such filesystems are used over zram devices, we can accumulate lot of stale data in memory. Even for filesystems to do support discard (example, ext4), we need to see how effective it is. - Scalability: There is only one (per-device) de/compression buffer stats. This can lead to significant contention, especially when used for generic (non-swap) purposes. Signed-off-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-06-01 16:01:23 +08:00
}
return 0;
}
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
u32 index, int offset)
{
int ret;
struct page *page;
unsigned char *user_mem, *uncmem = NULL;
struct zram_meta *meta = zram->meta;
page = bvec->bv_page;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
if (unlikely(!meta->table[index].handle) ||
zram_test_flag(meta, index, ZRAM_ZERO)) {
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
handle_zero_page(bvec);
return 0;
}
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
if (is_partial_io(bvec))
/* Use a temporary buffer to decompress the page */
uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
user_mem = kmap_atomic(page);
if (!is_partial_io(bvec))
uncmem = user_mem;
if (!uncmem) {
pr_info("Unable to allocate temp memory\n");
ret = -ENOMEM;
goto out_cleanup;
}
ret = zram_decompress_page(zram, uncmem, index);
/* Should NEVER happen. Return bio error if it does. */
if (unlikely(ret))
goto out_cleanup;
if (is_partial_io(bvec))
memcpy(user_mem + bvec->bv_offset, uncmem + offset,
bvec->bv_len);
flush_dcache_page(page);
ret = 0;
out_cleanup:
kunmap_atomic(user_mem);
if (is_partial_io(bvec))
kfree(uncmem);
return ret;
}
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset)
{
int ret = 0;
size_t clen;
unsigned long handle;
struct page *page;
unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
struct zram_meta *meta = zram->meta;
struct zcomp_strm *zstrm;
zram: remove zram->lock in read path and change it with mutex Finally, we separated zram->lock dependency from 32bit stat/ table handling so there is no reason to use rw_semaphore between read and write path so this patch removes the lock from read path totally and changes rw_semaphore with mutex. So, we could do old: read-read: OK read-write: NO write-write: NO Now: read-read: OK read-write: OK write-write: NO The below data proves mixed workload performs well 11 times and there is also enhance on write-write path because current rw-semaphore doesn't support SPIN_ON_OWNER. It's side effect but anyway good thing for us. Write-related tests perform better (from 61% to 1058%) but read path has good/bad(from -2.22% to 1.45%) but they are all marginal within stddev. CPU 12 iozone -t -T -l 12 -u 12 -r 16K -s 60M -I +Z -V 0 ==Initial write ==Initial write records: 10 records: 10 avg: 516189.16 avg: 839907.96 std: 22486.53 (4.36%) std: 47902.17 (5.70%) max: 546970.60 max: 909910.35 min: 481131.54 min: 751148.38 ==Rewrite ==Rewrite records: 10 records: 10 avg: 509527.98 avg: 1050156.37 std: 45799.94 (8.99%) std: 40695.44 (3.88%) max: 611574.27 max: 1111929.26 min: 443679.95 min: 980409.62 ==Read ==Read records: 10 records: 10 avg: 4408624.17 avg: 4472546.76 std: 281152.61 (6.38%) std: 163662.78 (3.66%) max: 4867888.66 max: 4727351.03 min: 4058347.69 min: 4126520.88 ==Re-read ==Re-read records: 10 records: 10 avg: 4462147.53 avg: 4363257.75 std: 283546.11 (6.35%) std: 247292.63 (5.67%) max: 4912894.44 max: 4677241.75 min: 4131386.50 min: 4035235.84 ==Reverse Read ==Reverse Read records: 10 records: 10 avg: 4565865.97 avg: 4485818.08 std: 313395.63 (6.86%) std: 248470.10 (5.54%) max: 5232749.16 max: 4789749.94 min: 4185809.62 min: 3963081.34 ==Stride read ==Stride read records: 10 records: 10 avg: 4515981.80 avg: 4418806.01 std: 211192.32 (4.68%) std: 212837.97 (4.82%) max: 4889287.28 max: 4686967.22 min: 4210362.00 min: 4083041.84 ==Random read ==Random read records: 10 records: 10 avg: 4410525.23 avg: 4387093.18 std: 236693.22 (5.37%) std: 235285.23 (5.36%) max: 4713698.47 max: 4669760.62 min: 4057163.62 min: 3952002.16 ==Mixed workload ==Mixed workload records: 10 records: 10 avg: 243234.25 avg: 2818677.27 std: 28505.07 (11.72%) std: 195569.70 (6.94%) max: 288905.23 max: 3126478.11 min: 212473.16 min: 2484150.69 ==Random write ==Random write records: 10 records: 10 avg: 555887.07 avg: 1053057.79 std: 70841.98 (12.74%) std: 35195.36 (3.34%) max: 683188.28 max: 1096125.73 min: 437299.57 min: 992481.93 ==Pwrite ==Pwrite records: 10 records: 10 avg: 501745.93 avg: 810363.09 std: 16373.54 (3.26%) std: 19245.01 (2.37%) max: 518724.52 max: 833359.70 min: 464208.73 min: 765501.87 ==Pread ==Pread records: 10 records: 10 avg: 4539894.60 avg: 4457680.58 std: 197094.66 (4.34%) std: 188965.60 (4.24%) max: 4877170.38 max: 4689905.53 min: 4226326.03 min: 4095739.72 Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-31 07:46:06 +08:00
bool locked = false;
unsigned long alloced_pages;
page = bvec->bv_page;
if (is_partial_io(bvec)) {
/*
* This is a partial IO. We need to read the full page
* before to write the changes.
*/
uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
if (!uncmem) {
ret = -ENOMEM;
goto out;
}
ret = zram_decompress_page(zram, uncmem, index);
if (ret)
goto out;
}
zstrm = zcomp_strm_find(zram->comp);
zram: remove zram->lock in read path and change it with mutex Finally, we separated zram->lock dependency from 32bit stat/ table handling so there is no reason to use rw_semaphore between read and write path so this patch removes the lock from read path totally and changes rw_semaphore with mutex. So, we could do old: read-read: OK read-write: NO write-write: NO Now: read-read: OK read-write: OK write-write: NO The below data proves mixed workload performs well 11 times and there is also enhance on write-write path because current rw-semaphore doesn't support SPIN_ON_OWNER. It's side effect but anyway good thing for us. Write-related tests perform better (from 61% to 1058%) but read path has good/bad(from -2.22% to 1.45%) but they are all marginal within stddev. CPU 12 iozone -t -T -l 12 -u 12 -r 16K -s 60M -I +Z -V 0 ==Initial write ==Initial write records: 10 records: 10 avg: 516189.16 avg: 839907.96 std: 22486.53 (4.36%) std: 47902.17 (5.70%) max: 546970.60 max: 909910.35 min: 481131.54 min: 751148.38 ==Rewrite ==Rewrite records: 10 records: 10 avg: 509527.98 avg: 1050156.37 std: 45799.94 (8.99%) std: 40695.44 (3.88%) max: 611574.27 max: 1111929.26 min: 443679.95 min: 980409.62 ==Read ==Read records: 10 records: 10 avg: 4408624.17 avg: 4472546.76 std: 281152.61 (6.38%) std: 163662.78 (3.66%) max: 4867888.66 max: 4727351.03 min: 4058347.69 min: 4126520.88 ==Re-read ==Re-read records: 10 records: 10 avg: 4462147.53 avg: 4363257.75 std: 283546.11 (6.35%) std: 247292.63 (5.67%) max: 4912894.44 max: 4677241.75 min: 4131386.50 min: 4035235.84 ==Reverse Read ==Reverse Read records: 10 records: 10 avg: 4565865.97 avg: 4485818.08 std: 313395.63 (6.86%) std: 248470.10 (5.54%) max: 5232749.16 max: 4789749.94 min: 4185809.62 min: 3963081.34 ==Stride read ==Stride read records: 10 records: 10 avg: 4515981.80 avg: 4418806.01 std: 211192.32 (4.68%) std: 212837.97 (4.82%) max: 4889287.28 max: 4686967.22 min: 4210362.00 min: 4083041.84 ==Random read ==Random read records: 10 records: 10 avg: 4410525.23 avg: 4387093.18 std: 236693.22 (5.37%) std: 235285.23 (5.36%) max: 4713698.47 max: 4669760.62 min: 4057163.62 min: 3952002.16 ==Mixed workload ==Mixed workload records: 10 records: 10 avg: 243234.25 avg: 2818677.27 std: 28505.07 (11.72%) std: 195569.70 (6.94%) max: 288905.23 max: 3126478.11 min: 212473.16 min: 2484150.69 ==Random write ==Random write records: 10 records: 10 avg: 555887.07 avg: 1053057.79 std: 70841.98 (12.74%) std: 35195.36 (3.34%) max: 683188.28 max: 1096125.73 min: 437299.57 min: 992481.93 ==Pwrite ==Pwrite records: 10 records: 10 avg: 501745.93 avg: 810363.09 std: 16373.54 (3.26%) std: 19245.01 (2.37%) max: 518724.52 max: 833359.70 min: 464208.73 min: 765501.87 ==Pread ==Pread records: 10 records: 10 avg: 4539894.60 avg: 4457680.58 std: 197094.66 (4.34%) std: 188965.60 (4.24%) max: 4877170.38 max: 4689905.53 min: 4226326.03 min: 4095739.72 Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-31 07:46:06 +08:00
locked = true;
user_mem = kmap_atomic(page);
if (is_partial_io(bvec)) {
memcpy(uncmem + offset, user_mem + bvec->bv_offset,
bvec->bv_len);
kunmap_atomic(user_mem);
user_mem = NULL;
} else {
uncmem = user_mem;
}
if (page_zero_filled(uncmem)) {
if (user_mem)
kunmap_atomic(user_mem);
/* Free memory associated with this sector now. */
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
zram_set_flag(meta, index, ZRAM_ZERO);
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
atomic64_inc(&zram->stats.zero_pages);
ret = 0;
goto out;
}
ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
if (!is_partial_io(bvec)) {
kunmap_atomic(user_mem);
user_mem = NULL;
uncmem = NULL;
}
if (unlikely(ret)) {
pr_err("Compression failed! err=%d\n", ret);
goto out;
}
src = zstrm->buffer;
if (unlikely(clen > max_zpage_size)) {
clen = PAGE_SIZE;
if (is_partial_io(bvec))
src = uncmem;
}
Staging: ramzswap: Support generic I/O requests Currently, ramzwap devices (/dev/ramzswapX) can only be used as swap disks since it was hard-coded to consider only the first request in bio vector. Now, we iterate over all the segments in an incoming bio which allows us to handle all kinds of I/O requests. ramzswap devices can still handle PAGE_SIZE aligned and multiple of PAGE_SIZE sized I/O requests only. To ensure that we get always get such requests only, we set following request_queue attributes to PAGE_SIZE: - physical_block_size - logical_block_size - io_min - io_opt Note: physical and logical block sizes were already set equal to PAGE_SIZE and that seems to be sufficient to get PAGE_SIZE aligned I/O. Since we are no longer limited to handling swap requests only, the next few patches rename ramzswap to zram. So, the devices will then be called /dev/zram{0, 1, 2, ...} Usage/Examples: 1) Use as /tmp storage - mkfs.ext4 /dev/zram0 - mount /dev/zram0 /tmp 2) Use as swap: - mkswap /dev/zram0 - swapon /dev/zram0 -p 10 # give highest priority to zram0 Performance: - I/O benchamark done with 'dd' command. Details can be found here: http://code.google.com/p/compcache/wiki/zramperf Summary: - Maximum read speed (approx): - ram disk: 1200 MB/sec - zram disk: 600 MB/sec - Maximum write speed (approx): - ram disk: 500 MB/sec - zram disk: 160 MB/sec Issues: - Double caching: We can potentially waste memory by having two copies of a page -- one in page cache (uncompress) and second in the device memory (compressed). However, during reclaim, clean page cache pages are quickly freed, so this does not seem to be a big problem. - Stale data: Not all filesystems support issuing 'discard' requests to underlying block devices. So, if such filesystems are used over zram devices, we can accumulate lot of stale data in memory. Even for filesystems to do support discard (example, ext4), we need to see how effective it is. - Scalability: There is only one (per-device) de/compression buffer stats. This can lead to significant contention, especially when used for generic (non-swap) purposes. Signed-off-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-06-01 16:01:23 +08:00
handle = zs_malloc(meta->mem_pool, clen);
if (!handle) {
pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
index, clen);
ret = -ENOMEM;
goto out;
}
alloced_pages = zs_get_total_pages(meta->mem_pool);
if (zram->limit_pages && alloced_pages > zram->limit_pages) {
zs_free(meta->mem_pool, handle);
ret = -ENOMEM;
goto out;
}
update_used_max(zram, alloced_pages);
cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
src = kmap_atomic(page);
copy_page(cmem, src);
kunmap_atomic(src);
} else {
memcpy(cmem, src, clen);
}
zcomp_strm_release(zram->comp, zstrm);
locked = false;
zs_unmap_object(meta->mem_pool, handle);
/*
* Free memory associated with this sector
* before overwriting unused sectors.
*/
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
meta->table[index].handle = handle;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
zram_set_obj_size(meta, index, clen);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
/* Update stats */
atomic64_add(clen, &zram->stats.compr_data_size);
atomic64_inc(&zram->stats.pages_stored);
out:
zram: remove zram->lock in read path and change it with mutex Finally, we separated zram->lock dependency from 32bit stat/ table handling so there is no reason to use rw_semaphore between read and write path so this patch removes the lock from read path totally and changes rw_semaphore with mutex. So, we could do old: read-read: OK read-write: NO write-write: NO Now: read-read: OK read-write: OK write-write: NO The below data proves mixed workload performs well 11 times and there is also enhance on write-write path because current rw-semaphore doesn't support SPIN_ON_OWNER. It's side effect but anyway good thing for us. Write-related tests perform better (from 61% to 1058%) but read path has good/bad(from -2.22% to 1.45%) but they are all marginal within stddev. CPU 12 iozone -t -T -l 12 -u 12 -r 16K -s 60M -I +Z -V 0 ==Initial write ==Initial write records: 10 records: 10 avg: 516189.16 avg: 839907.96 std: 22486.53 (4.36%) std: 47902.17 (5.70%) max: 546970.60 max: 909910.35 min: 481131.54 min: 751148.38 ==Rewrite ==Rewrite records: 10 records: 10 avg: 509527.98 avg: 1050156.37 std: 45799.94 (8.99%) std: 40695.44 (3.88%) max: 611574.27 max: 1111929.26 min: 443679.95 min: 980409.62 ==Read ==Read records: 10 records: 10 avg: 4408624.17 avg: 4472546.76 std: 281152.61 (6.38%) std: 163662.78 (3.66%) max: 4867888.66 max: 4727351.03 min: 4058347.69 min: 4126520.88 ==Re-read ==Re-read records: 10 records: 10 avg: 4462147.53 avg: 4363257.75 std: 283546.11 (6.35%) std: 247292.63 (5.67%) max: 4912894.44 max: 4677241.75 min: 4131386.50 min: 4035235.84 ==Reverse Read ==Reverse Read records: 10 records: 10 avg: 4565865.97 avg: 4485818.08 std: 313395.63 (6.86%) std: 248470.10 (5.54%) max: 5232749.16 max: 4789749.94 min: 4185809.62 min: 3963081.34 ==Stride read ==Stride read records: 10 records: 10 avg: 4515981.80 avg: 4418806.01 std: 211192.32 (4.68%) std: 212837.97 (4.82%) max: 4889287.28 max: 4686967.22 min: 4210362.00 min: 4083041.84 ==Random read ==Random read records: 10 records: 10 avg: 4410525.23 avg: 4387093.18 std: 236693.22 (5.37%) std: 235285.23 (5.36%) max: 4713698.47 max: 4669760.62 min: 4057163.62 min: 3952002.16 ==Mixed workload ==Mixed workload records: 10 records: 10 avg: 243234.25 avg: 2818677.27 std: 28505.07 (11.72%) std: 195569.70 (6.94%) max: 288905.23 max: 3126478.11 min: 212473.16 min: 2484150.69 ==Random write ==Random write records: 10 records: 10 avg: 555887.07 avg: 1053057.79 std: 70841.98 (12.74%) std: 35195.36 (3.34%) max: 683188.28 max: 1096125.73 min: 437299.57 min: 992481.93 ==Pwrite ==Pwrite records: 10 records: 10 avg: 501745.93 avg: 810363.09 std: 16373.54 (3.26%) std: 19245.01 (2.37%) max: 518724.52 max: 833359.70 min: 464208.73 min: 765501.87 ==Pread ==Pread records: 10 records: 10 avg: 4539894.60 avg: 4457680.58 std: 197094.66 (4.34%) std: 188965.60 (4.24%) max: 4877170.38 max: 4689905.53 min: 4226326.03 min: 4095739.72 Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-31 07:46:06 +08:00
if (locked)
zcomp_strm_release(zram->comp, zstrm);
if (is_partial_io(bvec))
kfree(uncmem);
return ret;
}
/*
* zram_bio_discard - handler on discard request
* @index: physical block index in PAGE_SIZE units
* @offset: byte offset within physical block
*/
static void zram_bio_discard(struct zram *zram, u32 index,
int offset, struct bio *bio)
{
size_t n = bio->bi_iter.bi_size;
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
struct zram_meta *meta = zram->meta;
/*
* zram manages data in physical block size units. Because logical block
* size isn't identical with physical block size on some arch, we
* could get a discard request pointing to a specific offset within a
* certain physical block. Although we can handle this request by
* reading that physiclal block and decompressing and partially zeroing
* and re-compressing and then re-storing it, this isn't reasonable
* because our intent with a discard request is to save memory. So
* skipping this logical block is appropriate here.
*/
if (offset) {
if (n <= (PAGE_SIZE - offset))
return;
n -= (PAGE_SIZE - offset);
index++;
}
while (n >= PAGE_SIZE) {
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
atomic64_inc(&zram->stats.notify_free);
index++;
n -= PAGE_SIZE;
}
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset, int rw)
{
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
unsigned long start_time = jiffies;
int ret;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
&zram->disk->part0);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
if (rw == READ) {
atomic64_inc(&zram->stats.num_reads);
ret = zram_bvec_read(zram, bvec, index, offset);
} else {
atomic64_inc(&zram->stats.num_writes);
ret = zram_bvec_write(zram, bvec, index, offset);
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
generic_end_io_acct(rw, &zram->disk->part0, start_time);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
if (unlikely(ret)) {
if (rw == READ)
atomic64_inc(&zram->stats.failed_reads);
else
atomic64_inc(&zram->stats.failed_writes);
}
return ret;
}
static void __zram_make_request(struct zram *zram, struct bio *bio)
{
int offset, rw;
u32 index;
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
struct bio_vec bvec;
struct bvec_iter iter;
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
offset = (bio->bi_iter.bi_sector &
(SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
if (unlikely(bio->bi_rw & REQ_DISCARD)) {
zram_bio_discard(zram, index, offset, bio);
bio_endio(bio, 0);
return;
}
rw = bio_data_dir(bio);
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
bio_for_each_segment(bvec, bio, iter) {
int max_transfer_size = PAGE_SIZE - offset;
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
if (bvec.bv_len > max_transfer_size) {
/*
* zram_bvec_rw() can only make operation on a single
* zram page. Split the bio vector.
*/
struct bio_vec bv;
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
bv.bv_page = bvec.bv_page;
bv.bv_len = max_transfer_size;
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
bv.bv_offset = bvec.bv_offset;
if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
goto out;
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
bv.bv_len = bvec.bv_len - max_transfer_size;
bv.bv_offset += max_transfer_size;
if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
goto out;
} else
if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
goto out;
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
update_position(&index, &offset, &bvec);
Staging: ramzswap: Support generic I/O requests Currently, ramzwap devices (/dev/ramzswapX) can only be used as swap disks since it was hard-coded to consider only the first request in bio vector. Now, we iterate over all the segments in an incoming bio which allows us to handle all kinds of I/O requests. ramzswap devices can still handle PAGE_SIZE aligned and multiple of PAGE_SIZE sized I/O requests only. To ensure that we get always get such requests only, we set following request_queue attributes to PAGE_SIZE: - physical_block_size - logical_block_size - io_min - io_opt Note: physical and logical block sizes were already set equal to PAGE_SIZE and that seems to be sufficient to get PAGE_SIZE aligned I/O. Since we are no longer limited to handling swap requests only, the next few patches rename ramzswap to zram. So, the devices will then be called /dev/zram{0, 1, 2, ...} Usage/Examples: 1) Use as /tmp storage - mkfs.ext4 /dev/zram0 - mount /dev/zram0 /tmp 2) Use as swap: - mkswap /dev/zram0 - swapon /dev/zram0 -p 10 # give highest priority to zram0 Performance: - I/O benchamark done with 'dd' command. Details can be found here: http://code.google.com/p/compcache/wiki/zramperf Summary: - Maximum read speed (approx): - ram disk: 1200 MB/sec - zram disk: 600 MB/sec - Maximum write speed (approx): - ram disk: 500 MB/sec - zram disk: 160 MB/sec Issues: - Double caching: We can potentially waste memory by having two copies of a page -- one in page cache (uncompress) and second in the device memory (compressed). However, during reclaim, clean page cache pages are quickly freed, so this does not seem to be a big problem. - Stale data: Not all filesystems support issuing 'discard' requests to underlying block devices. So, if such filesystems are used over zram devices, we can accumulate lot of stale data in memory. Even for filesystems to do support discard (example, ext4), we need to see how effective it is. - Scalability: There is only one (per-device) de/compression buffer stats. This can lead to significant contention, especially when used for generic (non-swap) purposes. Signed-off-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-06-01 16:01:23 +08:00
}
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return;
out:
bio_io_error(bio);
}
/*
* Handler function for all zram I/O requests.
*/
static void zram_make_request(struct request_queue *queue, struct bio *bio)
{
struct zram *zram = queue->queuedata;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
if (unlikely(!zram_meta_get(zram)))
goto error;
if (!valid_io_request(zram, bio->bi_iter.bi_sector,
bio->bi_iter.bi_size)) {
atomic64_inc(&zram->stats.invalid_io);
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
goto put_zram;
}
__zram_make_request(zram, bio);
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
zram_meta_put(zram);
Merge branch 'for-3.2/core' of git://git.kernel.dk/linux-block * 'for-3.2/core' of git://git.kernel.dk/linux-block: (29 commits) block: don't call blk_drain_queue() if elevator is not up blk-throttle: use queue_is_locked() instead of lockdep_is_held() blk-throttle: Take blkcg->lock while traversing blkcg->policy_list blk-throttle: Free up policy node associated with deleted rule block: warn if tag is greater than real_max_depth. block: make gendisk hold a reference to its queue blk-flush: move the queue kick into blk-flush: fix invalid BUG_ON in blk_insert_flush block: Remove the control of complete cpu from bio. block: fix a typo in the blk-cgroup.h file block: initialize the bounce pool if high memory may be added later block: fix request_queue lifetime handling by making blk_queue_cleanup() properly shutdown block: drop @tsk from attempt_plug_merge() and explain sync rules block: make get_request[_wait]() fail if queue is dead block: reorganize throtl_get_tg() and blk_throtl_bio() block: reorganize queue draining block: drop unnecessary blk_get/put_queue() in scsi_cmd_ioctl() and blk_get_tg() block: pass around REQ_* flags instead of broken down booleans during request alloc/free block: move blk_throtl prototypes to block/blk.h block: fix genhd refcounting in blkio_policy_parse_and_set() ... Fix up trivial conflicts due to "mddev_t" -> "struct mddev" conversion and making the request functions be of type "void" instead of "int" in - drivers/md/{faulty.c,linear.c,md.c,md.h,multipath.c,raid0.c,raid1.c,raid10.c,raid5.c} - drivers/staging/zram/zram_drv.c
2011-11-05 08:06:58 +08:00
return;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
put_zram:
zram_meta_put(zram);
error:
bio_io_error(bio);
}
static void zram_slot_free_notify(struct block_device *bdev,
unsigned long index)
{
struct zram *zram;
struct zram_meta *meta;
zram = bdev->bd_disk->private_data;
meta = zram->meta;
zram: don't grab mutex in zram_slot_free_noity [1] introduced down_write in zram_slot_free_notify to prevent race between zram_slot_free_notify and zram_bvec_[read|write]. The race could happen if somebody who has right permission to open swap device is reading swap device while it is used by swap in parallel. However, zram_slot_free_notify is called with holding spin_lock of swap layer so we shouldn't avoid holing mutex. Otherwise, lockdep warns it. This patch adds new list to handle free slot and workqueue so zram_slot_free_notify just registers slot index to be freed and registers the request to workqueue. If workqueue is expired, it holds mutex_lock so there is no problem any more. If any I/O is issued, zram handles pending slot-free request caused by zram_slot_free_notify right before handling issued request because workqueue wouldn't be expired yet so zram I/O request handling function can miss it. Lastly, when zram is reset, flush_work could handle all of pending free request so we shouldn't have memory leak. NOTE: If zram_slot_free_notify's kmalloc with GFP_ATOMIC would be failed, the slot will be freed when next write I/O write the slot. [1] [57ab0485, zram: use zram->lock to protect zram_free_page() in swap free notify path] * from v2 * refactoring * from v1 * totally redesign Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: stable@vger.kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-12 14:13:56 +08:00
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
zram: replace global tb_lock with fine grain lock Currently, we use a rwlock tb_lock to protect concurrent access to the whole zram meta table. However, according to the actual access model, there is only a small chance for upper user to access the same table[index], so the current lock granularity is too big. The idea of optimization is to change the lock granularity from whole meta table to per table entry (table -> table[index]), so that we can protect concurrent access to the same table[index], meanwhile allow the maximum concurrency. With this in mind, several kinds of locks which could be used as a per-entry lock were tested and compared: Test environment: x86-64 Intel Core2 Q8400, system memory 4GB, Ubuntu 12.04, kernel v3.15.0-rc3 as base, zram with 4 max_comp_streams LZO. iozone test: iozone -t 4 -R -r 16K -s 200M -I +Z (1GB zram with ext4 filesystem, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------------- Initial write 1381094 1425435 1422860 1423075 1421521 Rewrite 1529479 1641199 1668762 1672855 1654910 Read 8468009 11324979 11305569 11117273 10997202 Re-read 8467476 11260914 11248059 11145336 10906486 Reverse Read 6821393 8106334 8282174 8279195 8109186 Stride read 7191093 8994306 9153982 8961224 9004434 Random read 7156353 8957932 9167098 8980465 8940476 Mixed workload 4172747 5680814 5927825 5489578 5972253 Random write 1483044 1605588 1594329 1600453 1596010 Pwrite 1276644 1303108 1311612 1314228 1300960 Pread 4324337 4632869 4618386 4457870 4500166 To enhance the possibility of access the same table[index] concurrently, set zram a small disksize(10MB) and let threads run with large loop count. fio test: fio --bs=32k --randrepeat=1 --randseed=100 --refill_buffers --scramble_buffers=1 --direct=1 --loops=3000 --numjobs=4 --filename=/dev/zram0 --name=seq-write --rw=write --stonewall --name=seq-read --rw=read --stonewall --name=seq-readwrite --rw=rw --stonewall --name=rand-readwrite --rw=randrw --stonewall (10MB zram raw block device, take the average of 10 tests, KB/s) Test base CAS spinlock rwlock bit_spinlock ------------------------------------------------------------- seq-write 933789 999357 1003298 995961 1001958 seq-read 5634130 6577930 6380861 6243912 6230006 seq-rw 1405687 1638117 1640256 1633903 1634459 rand-rw 1386119 1614664 1617211 1609267 1612471 All the optimization methods show a higher performance than the base, however, it is hard to say which method is the most appropriate. On the other hand, zram is mostly used on small embedded system, so we don't want to increase any memory footprint. This patch pick the bit_spinlock method, pack object size and page_flag into an unsigned long table.value, so as to not increase any memory overhead on both 32-bit and 64-bit system. On the third hand, even though different kinds of locks have different performances, we can ignore this difference, because: if zram is used as zram swapfile, the swap subsystem can prevent concurrent access to the same swapslot; if zram is used as zram-blk for set up filesystem on it, the upper filesystem and the page cache also prevent concurrent access of the same block mostly. So we can ignore the different performances among locks. Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07 07:08:31 +08:00
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
atomic64_inc(&zram->stats.notify_free);
}
zram: implement rw_page operation of zram This patch implements rw_page operation for zram block device. I implemented the feature in zram and tested it. Test bed was the G2, LG electronic mobile device, whtich has msm8974 processor and 2GB memory. With a memory allocation test program consuming memory, the system generates swap. Operating time of swap_write_page() was measured. -------------------------------------------------- | | operating time | improvement | | | (20 runs average) | | -------------------------------------------------- |with patch | 1061.15 us | +2.4% | -------------------------------------------------- |without patch| 1087.35 us | | -------------------------------------------------- Each test(with paged_io,with BIO) result set shows normal distribution and has equal variance. I mean the two values are valid result to compare. I can say operation with paged I/O(without BIO) is faster 2.4% with confidence level 95%. [minchan@kernel.org: make rw_page opeartion return 0] [minchan@kernel.org: rely on the bi_end_io for zram_rw_page fails] [sergey.senozhatsky@gmail.com: code cleanup] [minchan@kernel.org: add comment] Signed-off-by: karam.lee <karam.lee@lge.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: <seungho1.park@lge.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 08:56:53 +08:00
static int zram_rw_page(struct block_device *bdev, sector_t sector,
struct page *page, int rw)
{
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
int offset, err = -EIO;
zram: implement rw_page operation of zram This patch implements rw_page operation for zram block device. I implemented the feature in zram and tested it. Test bed was the G2, LG electronic mobile device, whtich has msm8974 processor and 2GB memory. With a memory allocation test program consuming memory, the system generates swap. Operating time of swap_write_page() was measured. -------------------------------------------------- | | operating time | improvement | | | (20 runs average) | | -------------------------------------------------- |with patch | 1061.15 us | +2.4% | -------------------------------------------------- |without patch| 1087.35 us | | -------------------------------------------------- Each test(with paged_io,with BIO) result set shows normal distribution and has equal variance. I mean the two values are valid result to compare. I can say operation with paged I/O(without BIO) is faster 2.4% with confidence level 95%. [minchan@kernel.org: make rw_page opeartion return 0] [minchan@kernel.org: rely on the bi_end_io for zram_rw_page fails] [sergey.senozhatsky@gmail.com: code cleanup] [minchan@kernel.org: add comment] Signed-off-by: karam.lee <karam.lee@lge.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: <seungho1.park@lge.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 08:56:53 +08:00
u32 index;
struct zram *zram;
struct bio_vec bv;
zram = bdev->bd_disk->private_data;
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
if (unlikely(!zram_meta_get(zram)))
goto out;
zram: implement rw_page operation of zram This patch implements rw_page operation for zram block device. I implemented the feature in zram and tested it. Test bed was the G2, LG electronic mobile device, whtich has msm8974 processor and 2GB memory. With a memory allocation test program consuming memory, the system generates swap. Operating time of swap_write_page() was measured. -------------------------------------------------- | | operating time | improvement | | | (20 runs average) | | -------------------------------------------------- |with patch | 1061.15 us | +2.4% | -------------------------------------------------- |without patch| 1087.35 us | | -------------------------------------------------- Each test(with paged_io,with BIO) result set shows normal distribution and has equal variance. I mean the two values are valid result to compare. I can say operation with paged I/O(without BIO) is faster 2.4% with confidence level 95%. [minchan@kernel.org: make rw_page opeartion return 0] [minchan@kernel.org: rely on the bi_end_io for zram_rw_page fails] [sergey.senozhatsky@gmail.com: code cleanup] [minchan@kernel.org: add comment] Signed-off-by: karam.lee <karam.lee@lge.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: <seungho1.park@lge.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 08:56:53 +08:00
if (!valid_io_request(zram, sector, PAGE_SIZE)) {
atomic64_inc(&zram->stats.invalid_io);
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
err = -EINVAL;
goto put_zram;
zram: implement rw_page operation of zram This patch implements rw_page operation for zram block device. I implemented the feature in zram and tested it. Test bed was the G2, LG electronic mobile device, whtich has msm8974 processor and 2GB memory. With a memory allocation test program consuming memory, the system generates swap. Operating time of swap_write_page() was measured. -------------------------------------------------- | | operating time | improvement | | | (20 runs average) | | -------------------------------------------------- |with patch | 1061.15 us | +2.4% | -------------------------------------------------- |without patch| 1087.35 us | | -------------------------------------------------- Each test(with paged_io,with BIO) result set shows normal distribution and has equal variance. I mean the two values are valid result to compare. I can say operation with paged I/O(without BIO) is faster 2.4% with confidence level 95%. [minchan@kernel.org: make rw_page opeartion return 0] [minchan@kernel.org: rely on the bi_end_io for zram_rw_page fails] [sergey.senozhatsky@gmail.com: code cleanup] [minchan@kernel.org: add comment] Signed-off-by: karam.lee <karam.lee@lge.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: <seungho1.park@lge.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 08:56:53 +08:00
}
index = sector >> SECTORS_PER_PAGE_SHIFT;
offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
bv.bv_page = page;
bv.bv_len = PAGE_SIZE;
bv.bv_offset = 0;
err = zram_bvec_rw(zram, &bv, index, offset, rw);
zram: remove init_lock in zram_make_request Admin could reset zram during I/O operation going on so we have used zram->init_lock as read-side lock in I/O path to prevent sudden zram meta freeing. However, the init_lock is really troublesome. We can't do call zram_meta_alloc under init_lock due to lockdep splat because zram_rw_page is one of the function under reclaim path and hold it as read_lock while other places in process context hold it as write_lock. So, we have used allocation out of the lock to avoid lockdep warn but it's not good for readability and fainally, I met another lockdep splat between init_lock and cpu_hotplug from kmem_cache_destroy during working zsmalloc compaction. :( Yes, the ideal is to remove horrible init_lock of zram in rw path. This patch removes it in rw path and instead, add atomic refcount for meta lifetime management and completion to free meta in process context. It's important to free meta in process context because some of resource destruction needs mutex lock, which could be held if we releases the resource in reclaim context so it's deadlock, again. As a bonus, we could remove init_done check in rw path because zram_meta_get will do a role for it, instead. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ganesh Mahendran <opensource.ganesh@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:45 +08:00
put_zram:
zram_meta_put(zram);
out:
zram: implement rw_page operation of zram This patch implements rw_page operation for zram block device. I implemented the feature in zram and tested it. Test bed was the G2, LG electronic mobile device, whtich has msm8974 processor and 2GB memory. With a memory allocation test program consuming memory, the system generates swap. Operating time of swap_write_page() was measured. -------------------------------------------------- | | operating time | improvement | | | (20 runs average) | | -------------------------------------------------- |with patch | 1061.15 us | +2.4% | -------------------------------------------------- |without patch| 1087.35 us | | -------------------------------------------------- Each test(with paged_io,with BIO) result set shows normal distribution and has equal variance. I mean the two values are valid result to compare. I can say operation with paged I/O(without BIO) is faster 2.4% with confidence level 95%. [minchan@kernel.org: make rw_page opeartion return 0] [minchan@kernel.org: rely on the bi_end_io for zram_rw_page fails] [sergey.senozhatsky@gmail.com: code cleanup] [minchan@kernel.org: add comment] Signed-off-by: karam.lee <karam.lee@lge.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: <seungho1.park@lge.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 08:56:53 +08:00
/*
* If I/O fails, just return error(ie, non-zero) without
* calling page_endio.
* It causes resubmit the I/O with bio request by upper functions
* of rw_page(e.g., swap_readpage, __swap_writepage) and
* bio->bi_end_io does things to handle the error
* (e.g., SetPageError, set_page_dirty and extra works).
*/
if (err == 0)
page_endio(page, rw, 0);
return err;
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static void zram_reset_device(struct zram *zram)
{
struct zram_meta *meta;
struct zcomp *comp;
u64 disksize;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
down_write(&zram->init_lock);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
zram->limit_pages = 0;
if (!init_done(zram)) {
up_write(&zram->init_lock);
return;
}
meta = zram->meta;
comp = zram->comp;
disksize = zram->disksize;
/*
* Refcount will go down to 0 eventually and r/w handler
* cannot handle further I/O so it will bail out by
* check zram_meta_get.
*/
zram_meta_put(zram);
/*
* We want to free zram_meta in process context to avoid
* deadlock between reclaim path and any other locks.
*/
wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
/* Reset stats */
memset(&zram->stats, 0, sizeof(zram->stats));
zram->disksize = 0;
zram->max_comp_streams = 1;
set_capacity(zram->disk, 0);
part_stat_set_all(&zram->disk->part0, 0);
up_write(&zram->init_lock);
/* I/O operation under all of CPU are done so let's free */
zram_meta_free(meta, disksize);
zcomp_destroy(comp);
}
static ssize_t disksize_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
u64 disksize;
struct zcomp *comp;
struct zram_meta *meta;
struct zram *zram = dev_to_zram(dev);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
int err;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
disksize = memparse(buf, NULL);
if (!disksize)
return -EINVAL;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
disksize = PAGE_ALIGN(disksize);
meta = zram_meta_alloc(zram->disk->first_minor, disksize);
if (!meta)
return -ENOMEM;
comp = zcomp_create(zram->compressor, zram->max_comp_streams);
if (IS_ERR(comp)) {
pr_info("Cannot initialise %s compressing backend\n",
zram->compressor);
err = PTR_ERR(comp);
goto out_free_meta;
}
down_write(&zram->init_lock);
if (init_done(zram)) {
pr_info("Cannot change disksize for initialized device\n");
err = -EBUSY;
goto out_destroy_comp;
}
init_waitqueue_head(&zram->io_done);
atomic_set(&zram->refcount, 1);
zram->meta = meta;
zram->comp = comp;
zram->disksize = disksize;
set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
up_write(&zram->init_lock);
/*
* Revalidate disk out of the init_lock to avoid lockdep splat.
* It's okay because disk's capacity is protected by init_lock
* so that revalidate_disk always sees up-to-date capacity.
*/
revalidate_disk(zram->disk);
return len;
out_destroy_comp:
up_write(&zram->init_lock);
zcomp_destroy(comp);
out_free_meta:
zram_meta_free(meta, disksize);
return err;
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
int ret;
unsigned short do_reset;
struct zram *zram;
struct block_device *bdev;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
zram = dev_to_zram(dev);
bdev = bdget_disk(zram->disk, 0);
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
if (!bdev)
return -ENOMEM;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
mutex_lock(&bdev->bd_mutex);
/* Do not reset an active device! */
if (bdev->bd_openers) {
ret = -EBUSY;
goto out;
}
ret = kstrtou16(buf, 10, &do_reset);
if (ret)
goto out;
if (!do_reset) {
ret = -EINVAL;
goto out;
}
/* Make sure all pending I/O is finished */
fsync_bdev(bdev);
zram_reset_device(zram);
mutex_unlock(&bdev->bd_mutex);
revalidate_disk(zram->disk);
bdput(bdev);
return len;
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
out:
mutex_unlock(&bdev->bd_mutex);
bdput(bdev);
return ret;
}
zram: reorganize code layout This patch looks big, but basically it just moves code blocks. No functional changes. Our current code layout looks like a sandwitch. For example, a) between read/write handlers, we have update_used_max() helper function: static int zram_decompress_page static int zram_bvec_read static inline void update_used_max static int zram_bvec_write static int zram_bvec_rw b) RW request handlers __zram_make_request/zram_bio_discard are divided by sysfs attr reset_store() function and corresponding zram_reset_device() handler: static void zram_bio_discard static void zram_reset_device static ssize_t disksize_store static ssize_t reset_store static void __zram_make_request c) we first a bunch of sysfs read/store functions. then a number of one-liners, then helper functions, RW functions, sysfs functions, helper functions again, and so on. Reorganize layout to be more logically grouped (a brief description, `cat zram_drv.c | grep static` gives a bigger picture): -- one-liners: zram_test_flag/etc. -- helpers: is_partial_io/update_position/etc -- sysfs attr show/store functions + ZRAM_ATTR_RO() generated stats show() functions exception: reset and disksize store functions are required to be after meta() functions. because we do device create/destroy actions in these sysfs handlers. -- "mm" functions: meta get/put, meta alloc/free, page free static inline bool zram_meta_get static inline void zram_meta_put static void zram_meta_free static struct zram_meta *zram_meta_alloc static void zram_free_page -- a block of I/O functions static int zram_decompress_page static int zram_bvec_read static int zram_bvec_write static void zram_bio_discard static int zram_bvec_rw static void __zram_make_request static void zram_make_request static void zram_slot_free_notify static int zram_rw_page -- device contol: add/remove/init/reset functions (+zram-control class will sit here) static int zram_reset_device static ssize_t reset_store static ssize_t disksize_store static int zram_add static void zram_remove static int __init zram_init static void __exit zram_exit Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-26 06:00:08 +08:00
static const struct block_device_operations zram_devops = {
.swap_slot_free_notify = zram_slot_free_notify,
.rw_page = zram_rw_page,
.owner = THIS_MODULE
};
static DEVICE_ATTR_WO(compact);
static DEVICE_ATTR_RW(disksize);
static DEVICE_ATTR_RO(initstate);
static DEVICE_ATTR_WO(reset);
static DEVICE_ATTR_RO(orig_data_size);
static DEVICE_ATTR_RO(mem_used_total);
static DEVICE_ATTR_RW(mem_limit);
static DEVICE_ATTR_RW(mem_used_max);
static DEVICE_ATTR_RW(max_comp_streams);
static DEVICE_ATTR_RW(comp_algorithm);
static struct attribute *zram_disk_attrs[] = {
&dev_attr_disksize.attr,
&dev_attr_initstate.attr,
&dev_attr_reset.attr,
&dev_attr_num_reads.attr,
&dev_attr_num_writes.attr,
&dev_attr_failed_reads.attr,
&dev_attr_failed_writes.attr,
&dev_attr_compact.attr,
&dev_attr_invalid_io.attr,
&dev_attr_notify_free.attr,
&dev_attr_zero_pages.attr,
&dev_attr_orig_data_size.attr,
&dev_attr_compr_data_size.attr,
&dev_attr_mem_used_total.attr,
&dev_attr_mem_limit.attr,
&dev_attr_mem_used_max.attr,
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
&dev_attr_max_comp_streams.attr,
&dev_attr_comp_algorithm.attr,
&dev_attr_io_stat.attr,
&dev_attr_mm_stat.attr,
NULL,
};
static struct attribute_group zram_disk_attr_group = {
.attrs = zram_disk_attrs,
};
static int zram_add(int device_id)
{
struct zram *zram;
struct request_queue *queue;
int ret;
zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
if (!zram)
return -ENOMEM;
ret = idr_alloc(&zram_index_idr, zram, device_id,
device_id + 1, GFP_KERNEL);
if (ret < 0)
goto out_free_dev;
init_rwsem(&zram->init_lock);
queue = blk_alloc_queue(GFP_KERNEL);
if (!queue) {
pr_err("Error allocating disk queue for device %d\n",
device_id);
ret = -ENOMEM;
goto out_free_idr;
}
blk_queue_make_request(queue, zram_make_request);
/* gendisk structure */
zram->disk = alloc_disk(1);
if (!zram->disk) {
pr_warn("Error allocating disk structure for device %d\n",
device_id);
ret = -ENOMEM;
goto out_free_queue;
}
zram->disk->major = zram_major;
zram->disk->first_minor = device_id;
zram->disk->fops = &zram_devops;
zram->disk->queue = queue;
zram->disk->queue->queuedata = zram;
zram->disk->private_data = zram;
snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
set_capacity(zram->disk, 0);
/* zram devices sort of resembles non-rotational disks */
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
Staging: ramzswap: Support generic I/O requests Currently, ramzwap devices (/dev/ramzswapX) can only be used as swap disks since it was hard-coded to consider only the first request in bio vector. Now, we iterate over all the segments in an incoming bio which allows us to handle all kinds of I/O requests. ramzswap devices can still handle PAGE_SIZE aligned and multiple of PAGE_SIZE sized I/O requests only. To ensure that we get always get such requests only, we set following request_queue attributes to PAGE_SIZE: - physical_block_size - logical_block_size - io_min - io_opt Note: physical and logical block sizes were already set equal to PAGE_SIZE and that seems to be sufficient to get PAGE_SIZE aligned I/O. Since we are no longer limited to handling swap requests only, the next few patches rename ramzswap to zram. So, the devices will then be called /dev/zram{0, 1, 2, ...} Usage/Examples: 1) Use as /tmp storage - mkfs.ext4 /dev/zram0 - mount /dev/zram0 /tmp 2) Use as swap: - mkswap /dev/zram0 - swapon /dev/zram0 -p 10 # give highest priority to zram0 Performance: - I/O benchamark done with 'dd' command. Details can be found here: http://code.google.com/p/compcache/wiki/zramperf Summary: - Maximum read speed (approx): - ram disk: 1200 MB/sec - zram disk: 600 MB/sec - Maximum write speed (approx): - ram disk: 500 MB/sec - zram disk: 160 MB/sec Issues: - Double caching: We can potentially waste memory by having two copies of a page -- one in page cache (uncompress) and second in the device memory (compressed). However, during reclaim, clean page cache pages are quickly freed, so this does not seem to be a big problem. - Stale data: Not all filesystems support issuing 'discard' requests to underlying block devices. So, if such filesystems are used over zram devices, we can accumulate lot of stale data in memory. Even for filesystems to do support discard (example, ext4), we need to see how effective it is. - Scalability: There is only one (per-device) de/compression buffer stats. This can lead to significant contention, especially when used for generic (non-swap) purposes. Signed-off-by: Nitin Gupta <ngupta@vflare.org> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-06-01 16:01:23 +08:00
/*
* To ensure that we always get PAGE_SIZE aligned
* and n*PAGE_SIZED sized I/O requests.
*/
blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
blk_queue_logical_block_size(zram->disk->queue,
ZRAM_LOGICAL_BLOCK_SIZE);
blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
/*
* zram_bio_discard() will clear all logical blocks if logical block
* size is identical with physical block size(PAGE_SIZE). But if it is
* different, we will skip discarding some parts of logical blocks in
* the part of the request range which isn't aligned to physical block
* size. So we can't ensure that all discarded logical blocks are
* zeroed.
*/
if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
zram->disk->queue->limits.discard_zeroes_data = 1;
else
zram->disk->queue->limits.discard_zeroes_data = 0;
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
add_disk(zram->disk);
ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
&zram_disk_attr_group);
if (ret < 0) {
pr_warn("Error creating sysfs group");
goto out_free_disk;
}
strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
zram->meta = NULL;
zram: add multi stream functionality Existing zram (zcomp) implementation has only one compression stream (buffer and algorithm private part), so in order to prevent data corruption only one write (compress operation) can use this compression stream, forcing all concurrent write operations to wait for stream lock to be released. This patch changes zcomp to keep a compression streams list of user-defined size (via sysfs device attr). Each write operation still exclusively holds compression stream, the difference is that we can have N write operations (depending on size of streams list) executing in parallel. See TEST section later in commit message for performance data. Introduce struct zcomp_strm_multi and a set of functions to manage zcomp_strm stream access. zcomp_strm_multi has a list of idle zcomp_strm structs, spinlock to protect idle list and wait queue, making it possible to perform parallel compressions. The following set of functions added: - zcomp_strm_multi_find()/zcomp_strm_multi_release() find and release a compression stream, implement required locking - zcomp_strm_multi_create()/zcomp_strm_multi_destroy() create and destroy zcomp_strm_multi zcomp ->strm_find() and ->strm_release() callbacks are set during initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release() correspondingly. Each time zcomp issues a zcomp_strm_multi_find() call, the following set of operations performed: - spin lock strm_lock - if idle list is not empty, remove zcomp_strm from idle list, spin unlock and return zcomp stream pointer to caller - if idle list is empty, current adds itself to wait queue. it will be awaken by zcomp_strm_multi_release() caller. zcomp_strm_multi_release(): - spin lock strm_lock - add zcomp stream to idle list - spin unlock, wake up sleeper Minchan Kim reported that spinlock-based locking scheme has demonstrated a severe perfomance regression for single compression stream case, comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16) base spinlock mutex ==Initial write ==Initial write ==Initial write records: 5 records: 5 records: 5 avg: 1642424.35 avg: 699610.40 avg: 1655583.71 std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96 max: 1690170.94 max: 1163473.45 max: 1697164.75 min: 1568669.52 min: 573429.88 min: 1553410.23 ==Rewrite ==Rewrite ==Rewrite records: 5 records: 5 records: 5 avg: 1611775.39 avg: 501406.64 avg: 1684419.11 std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42 max: 1641800.95 max: 531356.78 max: 1706445.84 min: 1593515.27 min: 488817.78 min: 1655335.73 When only one compression stream available, mutex with spin on owner tends to perform much better than frequent wait_event()/wake_up(). This is why single stream implemented as a special case with mutex locking. Introduce and document zram device attribute max_comp_streams. This attr shows and stores current zcomp's max number of zcomp streams (max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter. `max_strm' limits the number of zcomp_strm structs in compression backend's idle list (max_comp_streams). max_comp_streams used during initialisation as follows: -- passing to zcomp_create() max_strm equals to 1 will initialise zcomp using single compression stream zcomp_strm_single (mutex-based locking). -- passing to zcomp_create() max_strm greater than 1 will initialise zcomp using multi compression stream zcomp_strm_multi (spinlock-based locking). default max_comp_streams value is 1, meaning that zram with single stream will be initialised. Later patch will introduce configuration knob to change max_comp_streams on already initialised and used zcomp. TEST iozone -t 3 -R -r 16K -s 60M -I +Z test base 1 strm (mutex) 3 strm (spinlock) ----------------------------------------------------------------------- Initial write 589286.78 583518.39 718011.05 Rewrite 604837.97 596776.38 1515125.72 Random write 584120.11 595714.58 1388850.25 Pwrite 535731.17 541117.38 739295.27 Fwrite 1418083.88 1478612.72 1484927.06 Usage example: set max_comp_streams to 4 echo 4 > /sys/block/zram0/max_comp_streams show current max_comp_streams (default value is 1). cat /sys/block/zram0/max_comp_streams Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08 06:38:14 +08:00
zram->max_comp_streams = 1;
return 0;
out_free_disk:
del_gendisk(zram->disk);
put_disk(zram->disk);
out_free_queue:
blk_cleanup_queue(queue);
out_free_idr:
idr_remove(&zram_index_idr, device_id);
out_free_dev:
kfree(zram);
return ret;
}
static void zram_remove(struct zram *zram)
{
/*
* Remove sysfs first, so no one will perform a disksize
* store while we destroy the devices
*/
sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
&zram_disk_attr_group);
zram_reset_device(zram);
idr_remove(&zram_index_idr, zram->disk->first_minor);
blk_cleanup_queue(zram->disk->queue);
del_gendisk(zram->disk);
put_disk(zram->disk);
kfree(zram);
}
zram: rework reset and destroy path We need to return set_capacity(disk, 0) from reset_store() back to zram_reset_device(), a catch by Ganesh Mahendran. Potentially, we can race set_capacity() calls from init and reset paths. The problem is that zram_reset_device() is also getting called from zram_exit(), which performs operations in misleading reversed order -- we first create_device() and then init it, while zram_exit() perform destroy_device() first and then does zram_reset_device(). This is done to remove sysfs group before we reset device, so we can continue with device reset/destruction not being raced by sysfs attr write (f.e. disksize). Apart from that, destroy_device() releases zram->disk (but we still have ->disk pointer), so we cannot acces zram->disk in later zram_reset_device() call, which may cause additional errors in the future. So, this patch rework and cleanup destroy path. 1) remove several unneeded goto labels in zram_init() 2) factor out zram_init() error path and zram_exit() into destroy_devices() function, which takes the number of devices to destroy as its argument. 3) remove sysfs group in destroy_devices() first, so we can reorder operations -- reset device (as expected) goes before disk destroy and queue cleanup. So we can always access ->disk in zram_reset_device(). 4) and, finally, return set_capacity() back under ->init_lock. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:39 +08:00
static int zram_remove_cb(int id, void *ptr, void *data)
{
zram_remove(ptr);
return 0;
}
zram: rework reset and destroy path We need to return set_capacity(disk, 0) from reset_store() back to zram_reset_device(), a catch by Ganesh Mahendran. Potentially, we can race set_capacity() calls from init and reset paths. The problem is that zram_reset_device() is also getting called from zram_exit(), which performs operations in misleading reversed order -- we first create_device() and then init it, while zram_exit() perform destroy_device() first and then does zram_reset_device(). This is done to remove sysfs group before we reset device, so we can continue with device reset/destruction not being raced by sysfs attr write (f.e. disksize). Apart from that, destroy_device() releases zram->disk (but we still have ->disk pointer), so we cannot acces zram->disk in later zram_reset_device() call, which may cause additional errors in the future. So, this patch rework and cleanup destroy path. 1) remove several unneeded goto labels in zram_init() 2) factor out zram_init() error path and zram_exit() into destroy_devices() function, which takes the number of devices to destroy as its argument. 3) remove sysfs group in destroy_devices() first, so we can reorder operations -- reset device (as expected) goes before disk destroy and queue cleanup. So we can always access ->disk in zram_reset_device(). 4) and, finally, return set_capacity() back under ->init_lock. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:39 +08:00
static void destroy_devices(void)
{
idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
idr_destroy(&zram_index_idr);
zram: rework reset and destroy path We need to return set_capacity(disk, 0) from reset_store() back to zram_reset_device(), a catch by Ganesh Mahendran. Potentially, we can race set_capacity() calls from init and reset paths. The problem is that zram_reset_device() is also getting called from zram_exit(), which performs operations in misleading reversed order -- we first create_device() and then init it, while zram_exit() perform destroy_device() first and then does zram_reset_device(). This is done to remove sysfs group before we reset device, so we can continue with device reset/destruction not being raced by sysfs attr write (f.e. disksize). Apart from that, destroy_device() releases zram->disk (but we still have ->disk pointer), so we cannot acces zram->disk in later zram_reset_device() call, which may cause additional errors in the future. So, this patch rework and cleanup destroy path. 1) remove several unneeded goto labels in zram_init() 2) factor out zram_init() error path and zram_exit() into destroy_devices() function, which takes the number of devices to destroy as its argument. 3) remove sysfs group in destroy_devices() first, so we can reorder operations -- reset device (as expected) goes before disk destroy and queue cleanup. So we can always access ->disk in zram_reset_device(). 4) and, finally, return set_capacity() back under ->init_lock. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:39 +08:00
unregister_blkdev(zram_major, "zram");
pr_info("Destroyed device(s)\n");
}
static int __init zram_init(void)
{
int ret, dev_id;
if (num_devices > max_num_devices) {
pr_warn("Invalid value for num_devices: %u\n",
num_devices);
zram: rework reset and destroy path We need to return set_capacity(disk, 0) from reset_store() back to zram_reset_device(), a catch by Ganesh Mahendran. Potentially, we can race set_capacity() calls from init and reset paths. The problem is that zram_reset_device() is also getting called from zram_exit(), which performs operations in misleading reversed order -- we first create_device() and then init it, while zram_exit() perform destroy_device() first and then does zram_reset_device(). This is done to remove sysfs group before we reset device, so we can continue with device reset/destruction not being raced by sysfs attr write (f.e. disksize). Apart from that, destroy_device() releases zram->disk (but we still have ->disk pointer), so we cannot acces zram->disk in later zram_reset_device() call, which may cause additional errors in the future. So, this patch rework and cleanup destroy path. 1) remove several unneeded goto labels in zram_init() 2) factor out zram_init() error path and zram_exit() into destroy_devices() function, which takes the number of devices to destroy as its argument. 3) remove sysfs group in destroy_devices() first, so we can reorder operations -- reset device (as expected) goes before disk destroy and queue cleanup. So we can always access ->disk in zram_reset_device(). 4) and, finally, return set_capacity() back under ->init_lock. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:39 +08:00
return -EINVAL;
}
zram_major = register_blkdev(0, "zram");
if (zram_major <= 0) {
pr_warn("Unable to get major number\n");
zram: rework reset and destroy path We need to return set_capacity(disk, 0) from reset_store() back to zram_reset_device(), a catch by Ganesh Mahendran. Potentially, we can race set_capacity() calls from init and reset paths. The problem is that zram_reset_device() is also getting called from zram_exit(), which performs operations in misleading reversed order -- we first create_device() and then init it, while zram_exit() perform destroy_device() first and then does zram_reset_device(). This is done to remove sysfs group before we reset device, so we can continue with device reset/destruction not being raced by sysfs attr write (f.e. disksize). Apart from that, destroy_device() releases zram->disk (but we still have ->disk pointer), so we cannot acces zram->disk in later zram_reset_device() call, which may cause additional errors in the future. So, this patch rework and cleanup destroy path. 1) remove several unneeded goto labels in zram_init() 2) factor out zram_init() error path and zram_exit() into destroy_devices() function, which takes the number of devices to destroy as its argument. 3) remove sysfs group in destroy_devices() first, so we can reorder operations -- reset device (as expected) goes before disk destroy and queue cleanup. So we can always access ->disk in zram_reset_device(). 4) and, finally, return set_capacity() back under ->init_lock. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:39 +08:00
return -EBUSY;
}
for (dev_id = 0; dev_id < num_devices; dev_id++) {
ret = zram_add(dev_id);
if (ret != 0)
zram: rework reset and destroy path We need to return set_capacity(disk, 0) from reset_store() back to zram_reset_device(), a catch by Ganesh Mahendran. Potentially, we can race set_capacity() calls from init and reset paths. The problem is that zram_reset_device() is also getting called from zram_exit(), which performs operations in misleading reversed order -- we first create_device() and then init it, while zram_exit() perform destroy_device() first and then does zram_reset_device(). This is done to remove sysfs group before we reset device, so we can continue with device reset/destruction not being raced by sysfs attr write (f.e. disksize). Apart from that, destroy_device() releases zram->disk (but we still have ->disk pointer), so we cannot acces zram->disk in later zram_reset_device() call, which may cause additional errors in the future. So, this patch rework and cleanup destroy path. 1) remove several unneeded goto labels in zram_init() 2) factor out zram_init() error path and zram_exit() into destroy_devices() function, which takes the number of devices to destroy as its argument. 3) remove sysfs group in destroy_devices() first, so we can reorder operations -- reset device (as expected) goes before disk destroy and queue cleanup. So we can always access ->disk in zram_reset_device(). 4) and, finally, return set_capacity() back under ->init_lock. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:39 +08:00
goto out_error;
}
zram: rework reset and destroy path We need to return set_capacity(disk, 0) from reset_store() back to zram_reset_device(), a catch by Ganesh Mahendran. Potentially, we can race set_capacity() calls from init and reset paths. The problem is that zram_reset_device() is also getting called from zram_exit(), which performs operations in misleading reversed order -- we first create_device() and then init it, while zram_exit() perform destroy_device() first and then does zram_reset_device(). This is done to remove sysfs group before we reset device, so we can continue with device reset/destruction not being raced by sysfs attr write (f.e. disksize). Apart from that, destroy_device() releases zram->disk (but we still have ->disk pointer), so we cannot acces zram->disk in later zram_reset_device() call, which may cause additional errors in the future. So, this patch rework and cleanup destroy path. 1) remove several unneeded goto labels in zram_init() 2) factor out zram_init() error path and zram_exit() into destroy_devices() function, which takes the number of devices to destroy as its argument. 3) remove sysfs group in destroy_devices() first, so we can reorder operations -- reset device (as expected) goes before disk destroy and queue cleanup. So we can always access ->disk in zram_reset_device(). 4) and, finally, return set_capacity() back under ->init_lock. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:39 +08:00
pr_info("Created %u device(s)\n", num_devices);
return 0;
zram: rework reset and destroy path We need to return set_capacity(disk, 0) from reset_store() back to zram_reset_device(), a catch by Ganesh Mahendran. Potentially, we can race set_capacity() calls from init and reset paths. The problem is that zram_reset_device() is also getting called from zram_exit(), which performs operations in misleading reversed order -- we first create_device() and then init it, while zram_exit() perform destroy_device() first and then does zram_reset_device(). This is done to remove sysfs group before we reset device, so we can continue with device reset/destruction not being raced by sysfs attr write (f.e. disksize). Apart from that, destroy_device() releases zram->disk (but we still have ->disk pointer), so we cannot acces zram->disk in later zram_reset_device() call, which may cause additional errors in the future. So, this patch rework and cleanup destroy path. 1) remove several unneeded goto labels in zram_init() 2) factor out zram_init() error path and zram_exit() into destroy_devices() function, which takes the number of devices to destroy as its argument. 3) remove sysfs group in destroy_devices() first, so we can reorder operations -- reset device (as expected) goes before disk destroy and queue cleanup. So we can always access ->disk in zram_reset_device(). 4) and, finally, return set_capacity() back under ->init_lock. [akpm@linux-foundation.org: tweak comment] Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reported-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 07:00:39 +08:00
out_error:
destroy_devices();
return ret;
}
static void __exit zram_exit(void)
{
destroy_devices();
}
module_init(zram_init);
module_exit(zram_exit);
module_param(num_devices, uint, 0);
MODULE_PARM_DESC(num_devices, "Number of zram devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("Compressed RAM Block Device");