linux/drivers/net/can/Kconfig

245 lines
8.3 KiB
Plaintext
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
menuconfig CAN_DEV
tristate "CAN Device Drivers"
default y
depends on CAN
help
Controller Area Network (CAN) is serial communications protocol up to
1Mbit/s for its original release (now known as Classical CAN) and up
to 8Mbit/s for the more recent CAN with Flexible Data-Rate
(CAN-FD). The CAN bus was originally mainly for automotive, but is now
widely used in marine (NMEA2000), industrial, and medical
applications. More information on the CAN network protocol family
PF_CAN is contained in <Documentation/networking/can.rst>.
This section contains all the CAN(-FD) device drivers including the
virtual ones. If you own such devices or plan to use the virtual CAN
interfaces to develop applications, say Y here.
To compile as a module, choose M here: the module will be called
can-dev.
if CAN_DEV
config CAN_VCAN
tristate "Virtual Local CAN Interface (vcan)"
help
Similar to the network loopback devices, vcan offers a
virtual local CAN interface.
This driver can also be built as a module. If so, the module
will be called vcan.
config CAN_VXCAN
tristate "Virtual CAN Tunnel (vxcan)"
help
Similar to the virtual ethernet driver veth, vxcan implements a
local CAN traffic tunnel between two virtual CAN network devices.
When creating a vxcan, two vxcan devices are created as pair.
When one end receives the packet it appears on its pair and vice
versa. The vxcan can be used for cross namespace communication.
In opposite to vcan loopback devices the vxcan only forwards CAN
frames to its pair and does *not* provide a local echo of sent
CAN frames. To disable a potential echo in af_can.c the vxcan driver
announces IFF_ECHO in the interface flags. To have a clean start
in each namespace the CAN GW hop counter is set to zero.
This driver can also be built as a module. If so, the module
will be called vxcan.
config CAN_NETLINK
bool "CAN device drivers with Netlink support"
default y
help
Enables the common framework for CAN device drivers. This is the
standard library and provides features for the Netlink interface such
as bittiming validation, support of CAN error states, device restart
and others.
The additional features selected by this option will be added to the
can-dev module.
This is required by all platform and hardware CAN drivers. If you
plan to use such devices or if unsure, say Y.
if CAN_NETLINK
config CAN_CALC_BITTIMING
bool "CAN bit-timing calculation"
default y
help
If enabled, CAN bit-timing parameters will be calculated for the
bit-rate specified via Netlink argument "bitrate" when the device
get started. This works fine for the most common CAN controllers
with standard bit-rates but may fail for exotic bit-rates or CAN
source clock frequencies. Disabling saves some space, but then the
bit-timing parameters must be specified directly using the Netlink
arguments "tq", "prop_seg", "phase_seg1", "phase_seg2" and "sjw".
The additional features selected by this option will be added to the
can-dev module.
If unsure, say Y.
config CAN_RX_OFFLOAD
bool
config CAN_AT91
tristate "Atmel AT91 onchip CAN controller"
depends on (ARCH_AT91 || COMPILE_TEST) && HAS_IOMEM
select CAN_RX_OFFLOAD
help
This is a driver for the SoC CAN controller in Atmel's AT91SAM9263
and AT91SAM9X5 processors.
config CAN_BXCAN
tristate "STM32 Basic Extended CAN (bxCAN) devices"
depends on ARCH_STM32 || COMPILE_TEST
depends on HAS_IOMEM
select CAN_RX_OFFLOAD
help
Say yes here to build support for the STMicroelectronics STM32 basic
extended CAN Controller (bxCAN).
This driver can also be built as a module. If so, the module
will be called bxcan.
config CAN_CAN327
tristate "Serial / USB serial ELM327 based OBD-II Interfaces (can327)"
depends on TTY
select CAN_RX_OFFLOAD
help
CAN driver for several 'low cost' OBD-II interfaces based on the
ELM327 OBD-II interpreter chip.
This is a best effort driver - the ELM327 interface was never
designed to be used as a standalone CAN interface. However, it can
still be used for simple request-response protocols (such as OBD II),
and to monitor broadcast messages on a bus (such as in a vehicle).
Please refer to the documentation for information on how to use it:
Documentation/networking/device_drivers/can/can327.rst
If this driver is built as a module, it will be called can327.
config CAN_FLEXCAN
tristate "Support for Freescale FLEXCAN based chips"
depends on OF || COLDFIRE || COMPILE_TEST
depends on HAS_IOMEM
select CAN_RX_OFFLOAD
help
Say Y here if you want to support for Freescale FlexCAN.
config CAN_GRCAN
tristate "Aeroflex Gaisler GRCAN and GRHCAN CAN devices"
depends on OF && HAS_DMA && HAS_IOMEM
help
Say Y here if you want to use Aeroflex Gaisler GRCAN or GRHCAN.
Note that the driver supports little endian, even though little
endian syntheses of the cores would need some modifications on
the hardware level to work.
config CAN_JANZ_ICAN3
tristate "Janz VMOD-ICAN3 Intelligent CAN controller"
depends on MFD_JANZ_CMODIO
help
Driver for Janz VMOD-ICAN3 Intelligent CAN controller module, which
connects to a MODULbus carrier board.
This driver can also be built as a module. If so, the module will be
called janz-ican3.ko.
config CAN_KVASER_PCIEFD
depends on PCI
tristate "Kvaser PCIe FD cards"
help
This is a driver for the Kvaser PCI Express CAN FD family.
Supported devices:
Kvaser PCIEcan 4xHS
Kvaser PCIEcan 2xHS v2
Kvaser PCIEcan HS v2
Kvaser PCIEcan 1xCAN v3
Kvaser PCIEcan 2xCAN v3
Kvaser PCIEcan 4xCAN v2
Kvaser Mini PCI Express HS v2
Kvaser Mini PCI Express 2xHS v2
Kvaser Mini PCI Express 1xCAN v3
Kvaser Mini PCI Express 2xCAN v3
Kvaser M.2 PCIe 4xCAN
Kvaser PCIe 8xCAN
can: slcan: use CAN network device driver API As suggested by commit [1], now the driver uses the functions and the data structures provided by the CAN network device driver interface. Currently the driver doesn't implement a way to set bitrate for SLCAN based devices via ip tool, so you'll have to do this by slcand or slcan_attach invocation through the -sX parameter: - slcan_attach -f -s6 -o /dev/ttyACM0 - slcand -f -s8 -o /dev/ttyUSB0 where -s6 in will set adapter's bitrate to 500 Kbit/s and -s8 to 1Mbit/s. See the table below for further CAN bitrates: - s0 -> 10 Kbit/s - s1 -> 20 Kbit/s - s2 -> 50 Kbit/s - s3 -> 100 Kbit/s - s4 -> 125 Kbit/s - s5 -> 250 Kbit/s - s6 -> 500 Kbit/s - s7 -> 800 Kbit/s - s8 -> 1000 Kbit/s In doing so, the struct can_priv::bittiming.bitrate of the driver is not set and since the open_candev() checks that the bitrate has been set, it must be a non-zero value, the bitrate is set to a fake value (-1U) before it is called. Using the rtnl_lock()/rtnl_unlock() functions has become a bit more tricky as the register_candev() function indirectly calls rtnl_lock() via register_netdev(). To avoid a deadlock it is therefore necessary to call rtnl_unlock() before calling register_candev(). The same goes for the unregister_candev() function. [1] commit 39549eef3587f ("can: CAN Network device driver and Netlink interface") Link: https://lore.kernel.org/all/20220628163137.413025-6-dario.binacchi@amarulasolutions.com Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com> Tested-by: Jeroen Hofstee <jhofstee@victronenergy.com> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2022-06-29 00:31:29 +08:00
config CAN_SLCAN
tristate "Serial / USB serial CAN Adaptors (slcan)"
depends on TTY
help
CAN driver for several 'low cost' CAN interfaces that are attached
via serial lines or via USB-to-serial adapters using the LAWICEL
ASCII protocol. The driver implements the tty linediscipline N_SLCAN.
As only the sending and receiving of CAN frames is implemented, this
driver should work with the (serial/USB) CAN hardware from:
www.canusb.com / www.can232.com / www.mictronics.de / www.canhack.de
Userspace tools to attach the SLCAN line discipline (slcan_attach,
slcand) can be found in the can-utils at the linux-can project, see
https://github.com/linux-can/can-utils for details.
The slcan driver supports up to 10 CAN netdevices by default which
can be changed by the 'maxdev=xx' module option. This driver can
also be built as a module. If so, the module will be called slcan.
config CAN_SUN4I
tristate "Allwinner A10 CAN controller"
depends on MACH_SUN4I || MACH_SUN7I || (RISCV && ARCH_SUNXI) || COMPILE_TEST
help
Say Y here if you want to use CAN controller found on Allwinner
A10/A20/D1 SoCs.
To compile this driver as a module, choose M here: the module will
be called sun4i_can.
config CAN_TI_HECC
depends on ARM
tristate "TI High End CAN Controller"
select CAN_RX_OFFLOAD
help
Driver for TI HECC (High End CAN Controller) module found on many
TI devices. The device specifications are available from www.ti.com
config CAN_XILINXCAN
tristate "Xilinx CAN"
depends on ARCH_ZYNQ || ARM64 || MICROBLAZE || COMPILE_TEST
depends on COMMON_CLK && HAS_IOMEM
help
Xilinx CAN driver. This driver supports both soft AXI CAN IP and
Zynq CANPS IP.
source "drivers/net/can/c_can/Kconfig"
source "drivers/net/can/cc770/Kconfig"
source "drivers/net/can/ctucanfd/Kconfig"
source "drivers/net/can/esd/Kconfig"
source "drivers/net/can/ifi_canfd/Kconfig"
source "drivers/net/can/m_can/Kconfig"
source "drivers/net/can/mscan/Kconfig"
source "drivers/net/can/peak_canfd/Kconfig"
can: rcar_canfd: Add Renesas R-Car CAN FD driver This patch adds support for the CAN FD controller found in Renesas R-Car SoCs. The controller operates in CAN FD only mode by default. CAN FD mode supports both Classical CAN & CAN FD frame formats. The controller supports ISO 11898-1:2015 CAN FD format only. This controller supports two channels and the driver can enable either or both of the channels. Driver uses Rx FIFOs (one per channel) for reception & Common FIFOs (one per channel) for transmission. Rx filter rules are configured to the minimum (one per channel) and it accepts Standard, Extended, Data & Remote Frame combinations. Note: There are few documentation errors in R-Car Gen3 Hardware User Manual v0.5E with respect to CAN FD controller. They are listed below: 1. CAN FD interrupt numbers 29 & 30 are listed as per channel interrupts. However, they are common to both channels (i.e.) they are global and channel interrupts respectively. 2. CANFD clock is derived from PLL1. This is not documented. 3. CANFD clock is further divided by (1/2) within the CAN FD controller. This is not documented. 4. The minimum value of NTSEG1 in RSCFDnCFDCmNCFG register is 2 Tq. It is specified 4 Tq in the manual. 5. The maximum number of message RAM area the controller can use is 3584 bytes. It is specified 10752 bytes in the manual. Signed-off-by: Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com> Acked-by: Rob Herring <robh@kernel.org> Reviewed-by: Ulrich Hecht <ulrich.hecht+renesas@gmail.com> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2016-06-17 16:20:55 +08:00
source "drivers/net/can/rcar/Kconfig"
source "drivers/net/can/sja1000/Kconfig"
source "drivers/net/can/softing/Kconfig"
source "drivers/net/can/spi/Kconfig"
source "drivers/net/can/usb/Kconfig"
endif #CAN_NETLINK
config CAN_DEBUG_DEVICES
bool "CAN devices debugging messages"
help
Say Y here if you want the CAN device drivers to produce a bunch of
debug messages to the system log. Select this if you are having
a problem with CAN support and want to see more of what is going
on.
endif #CAN_DEV