linux/drivers/ufs/host/ufs-qcom.c

1963 lines
49 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
*/
#include <linux/acpi.h>
#include <linux/time.h>
#include <linux/clk.h>
#include <linux/delay.h>
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
#include <linux/interconnect.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#include <linux/gpio/consumer.h>
#include <linux/reset-controller.h>
#include <linux/devfreq.h>
#include <soc/qcom/ice.h>
#include <ufs/ufshcd.h>
#include "ufshcd-pltfrm.h"
#include <ufs/unipro.h>
#include "ufs-qcom.h"
#include <ufs/ufshci.h>
#include <ufs/ufs_quirks.h>
#define MCQ_QCFGPTR_MASK GENMASK(7, 0)
#define MCQ_QCFGPTR_UNIT 0x200
#define MCQ_SQATTR_OFFSET(c) \
((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT)
#define MCQ_QCFG_SIZE 0x40
enum {
TSTBUS_UAWM,
TSTBUS_UARM,
TSTBUS_TXUC,
TSTBUS_RXUC,
TSTBUS_DFC,
TSTBUS_TRLUT,
TSTBUS_TMRLUT,
TSTBUS_OCSC,
TSTBUS_UTP_HCI,
TSTBUS_COMBINED,
TSTBUS_WRAPPER,
TSTBUS_UNIPRO,
TSTBUS_MAX,
};
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
#define QCOM_UFS_MAX_GEAR 4
#define QCOM_UFS_MAX_LANE 2
enum {
MODE_MIN,
MODE_PWM,
MODE_HS_RA,
MODE_HS_RB,
MODE_MAX,
};
static const struct __ufs_qcom_bw_table {
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
u32 mem_bw;
u32 cfg_bw;
} ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = {
[MODE_MIN][0][0] = { 0, 0 }, /* Bandwidth values in KB/s */
[MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922, 1000 },
[MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844, 1000 },
[MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688, 1000 },
[MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376, 1000 },
[MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844, 1000 },
[MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688, 1000 },
[MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376, 1000 },
[MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752, 1000 },
[MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796, 1000 },
[MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591, 1000 },
[MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582, 102400 },
[MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200, 204800 },
[MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591, 1000 },
[MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181, 1000 },
[MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582, 204800 },
[MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200, 409600 },
[MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422, 1000 },
[MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189, 1000 },
[MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582, 102400 },
[MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200, 204800 },
[MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189, 1000 },
[MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378, 1000 },
[MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582, 204800 },
[MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200, 409600 },
[MODE_MAX][0][0] = { 7643136, 307200 },
};
static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS];
static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles);
static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd)
{
return container_of(rcd, struct ufs_qcom_host, rcdev);
}
#ifdef CONFIG_SCSI_UFS_CRYPTO
static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
{
if (host->hba->caps & UFSHCD_CAP_CRYPTO)
qcom_ice_enable(host->ice);
}
static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
{
struct ufs_hba *hba = host->hba;
struct device *dev = hba->dev;
struct qcom_ice *ice;
ice = of_qcom_ice_get(dev);
if (ice == ERR_PTR(-EOPNOTSUPP)) {
dev_warn(dev, "Disabling inline encryption support\n");
ice = NULL;
}
if (IS_ERR_OR_NULL(ice))
return PTR_ERR_OR_ZERO(ice);
host->ice = ice;
hba->caps |= UFSHCD_CAP_CRYPTO;
return 0;
}
static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
{
if (host->hba->caps & UFSHCD_CAP_CRYPTO)
return qcom_ice_resume(host->ice);
return 0;
}
static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
{
if (host->hba->caps & UFSHCD_CAP_CRYPTO)
return qcom_ice_suspend(host->ice);
return 0;
}
static int ufs_qcom_ice_program_key(struct ufs_hba *hba,
const union ufs_crypto_cfg_entry *cfg,
int slot)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
union ufs_crypto_cap_entry cap;
bool config_enable =
cfg->config_enable & UFS_CRYPTO_CONFIGURATION_ENABLE;
/* Only AES-256-XTS has been tested so far. */
cap = hba->crypto_cap_array[cfg->crypto_cap_idx];
if (cap.algorithm_id != UFS_CRYPTO_ALG_AES_XTS ||
cap.key_size != UFS_CRYPTO_KEY_SIZE_256)
return -EINVAL;
if (config_enable)
return qcom_ice_program_key(host->ice,
QCOM_ICE_CRYPTO_ALG_AES_XTS,
QCOM_ICE_CRYPTO_KEY_SIZE_256,
cfg->crypto_key,
cfg->data_unit_size, slot);
else
return qcom_ice_evict_key(host->ice, slot);
}
#else
#define ufs_qcom_ice_program_key NULL
static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
{
}
static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
{
return 0;
}
static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
{
return 0;
}
static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
{
return 0;
}
#endif
static int ufs_qcom_host_clk_get(struct device *dev,
const char *name, struct clk **clk_out, bool optional)
{
struct clk *clk;
int err = 0;
clk = devm_clk_get(dev, name);
if (!IS_ERR(clk)) {
*clk_out = clk;
return 0;
}
err = PTR_ERR(clk);
if (optional && err == -ENOENT) {
*clk_out = NULL;
return 0;
}
if (err != -EPROBE_DEFER)
dev_err(dev, "failed to get %s err %d\n", name, err);
return err;
}
static int ufs_qcom_host_clk_enable(struct device *dev,
const char *name, struct clk *clk)
{
int err = 0;
err = clk_prepare_enable(clk);
if (err)
dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err);
return err;
}
static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
{
if (!host->is_lane_clks_enabled)
return;
clk_disable_unprepare(host->tx_l1_sync_clk);
clk_disable_unprepare(host->tx_l0_sync_clk);
clk_disable_unprepare(host->rx_l1_sync_clk);
clk_disable_unprepare(host->rx_l0_sync_clk);
host->is_lane_clks_enabled = false;
}
static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
{
int err;
struct device *dev = host->hba->dev;
if (host->is_lane_clks_enabled)
return 0;
err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk",
host->rx_l0_sync_clk);
if (err)
return err;
err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk",
host->tx_l0_sync_clk);
if (err)
goto disable_rx_l0;
err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk",
host->rx_l1_sync_clk);
if (err)
goto disable_tx_l0;
err = ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk",
host->tx_l1_sync_clk);
if (err)
goto disable_rx_l1;
host->is_lane_clks_enabled = true;
return 0;
disable_rx_l1:
clk_disable_unprepare(host->rx_l1_sync_clk);
disable_tx_l0:
clk_disable_unprepare(host->tx_l0_sync_clk);
disable_rx_l0:
clk_disable_unprepare(host->rx_l0_sync_clk);
return err;
}
static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
if (has_acpi_companion(dev))
return 0;
err = ufs_qcom_host_clk_get(dev, "rx_lane0_sync_clk",
&host->rx_l0_sync_clk, false);
if (err)
return err;
err = ufs_qcom_host_clk_get(dev, "tx_lane0_sync_clk",
&host->tx_l0_sync_clk, false);
if (err)
return err;
/* In case of single lane per direction, don't read lane1 clocks */
if (host->hba->lanes_per_direction > 1) {
err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk",
&host->rx_l1_sync_clk, false);
if (err)
return err;
err = ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk",
&host->tx_l1_sync_clk, true);
}
return 0;
}
static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
{
int err;
u32 tx_fsm_val = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
do {
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err || tx_fsm_val == TX_FSM_HIBERN8)
break;
/* sleep for max. 200us */
usleep_range(100, 200);
} while (time_before(jiffies, timeout));
/*
* we might have scheduled out for long during polling so
* check the state again.
*/
if (time_after(jiffies, timeout))
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err) {
dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
__func__, err);
} else if (tx_fsm_val != TX_FSM_HIBERN8) {
err = tx_fsm_val;
dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
__func__, err);
}
return err;
}
static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
{
ufshcd_rmwl(host->hba, QUNIPRO_SEL,
ufs_qcom_cap_qunipro(host) ? QUNIPRO_SEL : 0,
REG_UFS_CFG1);
if (host->hw_ver.major >= 0x05)
ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
/* make sure above configuration is applied before we return */
mb();
}
/*
* ufs_qcom_host_reset - reset host controller and PHY
*/
static int ufs_qcom_host_reset(struct ufs_hba *hba)
{
int ret = 0;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
bool reenable_intr = false;
if (!host->core_reset) {
dev_warn(hba->dev, "%s: reset control not set\n", __func__);
return 0;
}
reenable_intr = hba->is_irq_enabled;
disable_irq(hba->irq);
hba->is_irq_enabled = false;
ret = reset_control_assert(host->core_reset);
if (ret) {
dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
__func__, ret);
return ret;
}
/*
* The hardware requirement for delay between assert/deassert
* is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
* ~125us (4/32768). To be on the safe side add 200us delay.
*/
usleep_range(200, 210);
ret = reset_control_deassert(host->core_reset);
if (ret)
dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
__func__, ret);
usleep_range(1000, 1100);
if (reenable_intr) {
enable_irq(hba->irq);
hba->is_irq_enabled = true;
}
return 0;
}
static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x1) {
/*
* HS-G3 operations may not reliably work on legacy QCOM
* UFS host controller hardware even though capability
* exchange during link startup phase may end up
* negotiating maximum supported gear as G3.
* Hence downgrade the maximum supported gear to HS-G2.
*/
return UFS_HS_G2;
} else if (host->hw_ver.major >= 0x4) {
return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0));
}
/* Default is HS-G3 */
return UFS_HS_G3;
}
static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int ret;
/* Reset UFS Host Controller and PHY */
ret = ufs_qcom_host_reset(hba);
if (ret)
dev_warn(hba->dev, "%s: host reset returned %d\n",
__func__, ret);
/* phy initialization - calibrate the phy */
ret = phy_init(phy);
if (ret) {
dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
__func__, ret);
return ret;
}
phy_set_mode_ext(phy, PHY_MODE_UFS_HS_B, host->hs_gear);
/* power on phy - start serdes and phy's power and clocks */
ret = phy_power_on(phy);
if (ret) {
dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
__func__, ret);
goto out_disable_phy;
}
ufs_qcom_select_unipro_mode(host);
return 0;
out_disable_phy:
phy_exit(phy);
return ret;
}
/*
* The UTP controller has a number of internal clock gating cells (CGCs).
* Internal hardware sub-modules within the UTP controller control the CGCs.
* Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
* in a specific operation, UTP controller CGCs are by default disabled and
* this function enables them (after every UFS link startup) to save some power
* leakage.
*/
static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
{
ufshcd_writel(hba,
ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL,
REG_UFS_CFG2);
/* Ensure that HW clock gating is enabled before next operations */
mb();
}
static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err = 0;
switch (status) {
case PRE_CHANGE:
ufs_qcom_power_up_sequence(hba);
/*
* The PHY PLL output is the source of tx/rx lane symbol
* clocks, hence, enable the lane clocks only after PHY
* is initialized.
*/
err = ufs_qcom_enable_lane_clks(host);
break;
case POST_CHANGE:
/* check if UFS PHY moved from DISABLED to HIBERN8 */
err = ufs_qcom_check_hibern8(hba);
ufs_qcom_enable_hw_clk_gating(hba);
scsi: ufs-qcom: Add Inline Crypto Engine support Add support for Qualcomm Inline Crypto Engine (ICE) to ufs-qcom. The standards-compliant parts, such as querying the crypto capabilities and enabling crypto for individual UFS requests, are already handled by ufshcd-crypto.c, which itself is wired into the blk-crypto framework. However, ICE requires vendor-specific init, enable, and resume logic, and it requires that keys be programmed and evicted by vendor-specific SMC calls. Make the ufs-qcom driver handle these details. I tested this on Dragonboard 845c, which is a publicly available development board that uses the Snapdragon 845 SoC and runs the upstream Linux kernel. This is the same SoC used in the Pixel 3 and Pixel 3 XL phones. This testing included (among other things) verifying that the expected ciphertext was produced, both manually using ext4 encryption and automatically using a block layer self-test I've written. I've also tested that this driver works nearly as-is on the Snapdragon 765 and Snapdragon 865 SoCs. And others have tested it on Snapdragon 850, Snapdragon 855, and Snapdragon 865 (see the Tested-by tags). This is based very loosely on the vendor-provided driver in the kernel source code for the Pixel 3, but I've greatly simplified it. Also, for now I've only included support for major version 3 of ICE, since that's all I have the hardware to test with the mainline kernel. Plus it appears that version 3 is easier to use than older versions of ICE. For now, only allow using AES-256-XTS. The hardware also declares support for AES-128-XTS, AES-{128,256}-ECB, and AES-{128,256}-CBC (BitLocker variant). But none of these others are really useful, and they'd need to be individually tested to be sure they worked properly. This commit also changes the name of the loadable module from "ufs-qcom" to "ufs_qcom", as this is necessary to compile it from multiple source files (unless we were to rename ufs-qcom.c). Link: https://lore.kernel.org/r/20200710072013.177481-6-ebiggers@kernel.org Tested-by: Steev Klimaszewski <steev@kali.org> # Lenovo Yoga C630 Tested-by: Thara Gopinath <thara.gopinath@linaro.org> # db845c, sm8150-mtp, sm8250-mtp Reviewed-by: Avri Altman <avri.altman@wdc.com> Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-07-10 15:20:12 +08:00
ufs_qcom_ice_enable(host);
break;
default:
dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
err = -EINVAL;
break;
}
return err;
}
/*
* Return: zero for success and non-zero in case of a failure.
*/
static int ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear,
u32 hs, u32 rate, bool update_link_startup_timer)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_clk_info *clki;
u32 core_clk_period_in_ns;
u32 tx_clk_cycles_per_us = 0;
unsigned long core_clk_rate = 0;
u32 core_clk_cycles_per_us = 0;
static u32 pwm_fr_table[][2] = {
{UFS_PWM_G1, 0x1},
{UFS_PWM_G2, 0x1},
{UFS_PWM_G3, 0x1},
{UFS_PWM_G4, 0x1},
};
static u32 hs_fr_table_rA[][2] = {
{UFS_HS_G1, 0x1F},
{UFS_HS_G2, 0x3e},
{UFS_HS_G3, 0x7D},
};
static u32 hs_fr_table_rB[][2] = {
{UFS_HS_G1, 0x24},
{UFS_HS_G2, 0x49},
{UFS_HS_G3, 0x92},
};
/*
* The Qunipro controller does not use following registers:
* SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG &
* UFS_REG_PA_LINK_STARTUP_TIMER
* But UTP controller uses SYS1CLK_1US_REG register for Interrupt
* Aggregation logic.
*/
if (ufs_qcom_cap_qunipro(host) && !ufshcd_is_intr_aggr_allowed(hba))
return 0;
if (gear == 0) {
dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear);
return -EINVAL;
}
list_for_each_entry(clki, &hba->clk_list_head, list) {
if (!strcmp(clki->name, "core_clk"))
core_clk_rate = clk_get_rate(clki->clk);
}
/* If frequency is smaller than 1MHz, set to 1MHz */
if (core_clk_rate < DEFAULT_CLK_RATE_HZ)
core_clk_rate = DEFAULT_CLK_RATE_HZ;
core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC;
if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (ufs_qcom_cap_qunipro(host))
return 0;
core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate;
core_clk_period_in_ns <<= OFFSET_CLK_NS_REG;
core_clk_period_in_ns &= MASK_CLK_NS_REG;
switch (hs) {
case FASTAUTO_MODE:
case FAST_MODE:
if (rate == PA_HS_MODE_A) {
if (gear > ARRAY_SIZE(hs_fr_table_rA)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rA));
return -EINVAL;
}
tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1];
} else if (rate == PA_HS_MODE_B) {
if (gear > ARRAY_SIZE(hs_fr_table_rB)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rB));
return -EINVAL;
}
tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1];
} else {
dev_err(hba->dev, "%s: invalid rate = %d\n",
__func__, rate);
return -EINVAL;
}
break;
case SLOWAUTO_MODE:
case SLOW_MODE:
if (gear > ARRAY_SIZE(pwm_fr_table)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(pwm_fr_table));
return -EINVAL;
}
tx_clk_cycles_per_us = pwm_fr_table[gear-1][1];
break;
case UNCHANGED:
default:
dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs);
return -EINVAL;
}
if (ufshcd_readl(hba, REG_UFS_TX_SYMBOL_CLK_NS_US) !=
(core_clk_period_in_ns | tx_clk_cycles_per_us)) {
/* this register 2 fields shall be written at once */
ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us,
REG_UFS_TX_SYMBOL_CLK_NS_US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (update_link_startup_timer && host->hw_ver.major != 0x5) {
ufshcd_writel(hba, ((core_clk_rate / MSEC_PER_SEC) * 100),
REG_UFS_CFG0);
/*
* make sure that this configuration is applied before
* we return
*/
mb();
}
return 0;
}
static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
int err = 0;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
switch (status) {
case PRE_CHANGE:
if (ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE,
0, true)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
return -EINVAL;
}
if (ufs_qcom_cap_qunipro(host))
/*
* set unipro core clock cycles to 150 & clear clock
* divider
*/
err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba,
150);
/*
* Some UFS devices (and may be host) have issues if LCC is
* enabled. So we are setting PA_Local_TX_LCC_Enable to 0
* before link startup which will make sure that both host
* and device TX LCC are disabled once link startup is
* completed.
*/
if (ufshcd_get_local_unipro_ver(hba) != UFS_UNIPRO_VER_1_41)
err = ufshcd_disable_host_tx_lcc(hba);
break;
default:
break;
}
return err;
}
static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
/* reset gpio is optional */
if (!host->device_reset)
return;
gpiod_set_value_cansleep(host->device_reset, asserted);
}
static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
if (status == PRE_CHANGE)
return 0;
if (ufs_qcom_is_link_off(hba)) {
/*
* Disable the tx/rx lane symbol clocks before PHY is
* powered down as the PLL source should be disabled
* after downstream clocks are disabled.
*/
ufs_qcom_disable_lane_clks(host);
phy_power_off(phy);
/* reset the connected UFS device during power down */
ufs_qcom_device_reset_ctrl(hba, true);
phy: ufs-qcom: Refactor all init steps into phy_poweron The phy code was using implicit sequencing between the PHY driver and the UFS driver to implement certain hardware requirements. Specifically, the PHY reset register in the UFS controller needs to be deasserted before serdes start occurs in the PHY. Before this change, the code was doing this by utilizing the two phy callbacks, phy_init() and phy_poweron(), as "init step 1" and "init step 2", where the UFS driver would deassert reset between these two steps. This makes it challenging to power off the regulators in suspend, as regulators are initialized in init, not in poweron(), but only poweroff() is called during suspend, not exit(). For UFS, move the actual firing up of the PHY to phy_poweron() and phy_poweroff() callbacks, rather than init()/exit(). UFS calls phy_poweroff() during suspend, so now all clocks and regulators for the phy can be powered down during suspend. QMP is a little tricky because the PHY is also shared with PCIe and USB3, which have their own definitions for init() and poweron(). Rename the meaty functions to _enable() and _disable() to disentangle from the PHY core names, and then create two different ops structures: one for UFS and one for the other PHY types. In phy-qcom-ufs, remove the 'is_powered_on' and 'is_started' guards, as the generic PHY code does the reference counting. The 14/20nm-specific init functions get collapsed into the generic power_on() function, with the addition of a calibrate() callback specific to 14/20nm. Signed-off-by: Evan Green <evgreen@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
2019-03-22 01:18:00 +08:00
} else if (!ufs_qcom_is_link_active(hba)) {
ufs_qcom_disable_lane_clks(host);
}
return ufs_qcom_ice_suspend(host);
}
static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int err;
phy: ufs-qcom: Refactor all init steps into phy_poweron The phy code was using implicit sequencing between the PHY driver and the UFS driver to implement certain hardware requirements. Specifically, the PHY reset register in the UFS controller needs to be deasserted before serdes start occurs in the PHY. Before this change, the code was doing this by utilizing the two phy callbacks, phy_init() and phy_poweron(), as "init step 1" and "init step 2", where the UFS driver would deassert reset between these two steps. This makes it challenging to power off the regulators in suspend, as regulators are initialized in init, not in poweron(), but only poweroff() is called during suspend, not exit(). For UFS, move the actual firing up of the PHY to phy_poweron() and phy_poweroff() callbacks, rather than init()/exit(). UFS calls phy_poweroff() during suspend, so now all clocks and regulators for the phy can be powered down during suspend. QMP is a little tricky because the PHY is also shared with PCIe and USB3, which have their own definitions for init() and poweron(). Rename the meaty functions to _enable() and _disable() to disentangle from the PHY core names, and then create two different ops structures: one for UFS and one for the other PHY types. In phy-qcom-ufs, remove the 'is_powered_on' and 'is_started' guards, as the generic PHY code does the reference counting. The 14/20nm-specific init functions get collapsed into the generic power_on() function, with the addition of a calibrate() callback specific to 14/20nm. Signed-off-by: Evan Green <evgreen@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
2019-03-22 01:18:00 +08:00
if (ufs_qcom_is_link_off(hba)) {
err = phy_power_on(phy);
if (err) {
dev_err(hba->dev, "%s: failed PHY power on: %d\n",
__func__, err);
return err;
}
phy: ufs-qcom: Refactor all init steps into phy_poweron The phy code was using implicit sequencing between the PHY driver and the UFS driver to implement certain hardware requirements. Specifically, the PHY reset register in the UFS controller needs to be deasserted before serdes start occurs in the PHY. Before this change, the code was doing this by utilizing the two phy callbacks, phy_init() and phy_poweron(), as "init step 1" and "init step 2", where the UFS driver would deassert reset between these two steps. This makes it challenging to power off the regulators in suspend, as regulators are initialized in init, not in poweron(), but only poweroff() is called during suspend, not exit(). For UFS, move the actual firing up of the PHY to phy_poweron() and phy_poweroff() callbacks, rather than init()/exit(). UFS calls phy_poweroff() during suspend, so now all clocks and regulators for the phy can be powered down during suspend. QMP is a little tricky because the PHY is also shared with PCIe and USB3, which have their own definitions for init() and poweron(). Rename the meaty functions to _enable() and _disable() to disentangle from the PHY core names, and then create two different ops structures: one for UFS and one for the other PHY types. In phy-qcom-ufs, remove the 'is_powered_on' and 'is_started' guards, as the generic PHY code does the reference counting. The 14/20nm-specific init functions get collapsed into the generic power_on() function, with the addition of a calibrate() callback specific to 14/20nm. Signed-off-by: Evan Green <evgreen@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
2019-03-22 01:18:00 +08:00
err = ufs_qcom_enable_lane_clks(host);
if (err)
return err;
phy: ufs-qcom: Refactor all init steps into phy_poweron The phy code was using implicit sequencing between the PHY driver and the UFS driver to implement certain hardware requirements. Specifically, the PHY reset register in the UFS controller needs to be deasserted before serdes start occurs in the PHY. Before this change, the code was doing this by utilizing the two phy callbacks, phy_init() and phy_poweron(), as "init step 1" and "init step 2", where the UFS driver would deassert reset between these two steps. This makes it challenging to power off the regulators in suspend, as regulators are initialized in init, not in poweron(), but only poweroff() is called during suspend, not exit(). For UFS, move the actual firing up of the PHY to phy_poweron() and phy_poweroff() callbacks, rather than init()/exit(). UFS calls phy_poweroff() during suspend, so now all clocks and regulators for the phy can be powered down during suspend. QMP is a little tricky because the PHY is also shared with PCIe and USB3, which have their own definitions for init() and poweron(). Rename the meaty functions to _enable() and _disable() to disentangle from the PHY core names, and then create two different ops structures: one for UFS and one for the other PHY types. In phy-qcom-ufs, remove the 'is_powered_on' and 'is_started' guards, as the generic PHY code does the reference counting. The 14/20nm-specific init functions get collapsed into the generic power_on() function, with the addition of a calibrate() callback specific to 14/20nm. Signed-off-by: Evan Green <evgreen@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
2019-03-22 01:18:00 +08:00
} else if (!ufs_qcom_is_link_active(hba)) {
err = ufs_qcom_enable_lane_clks(host);
if (err)
return err;
}
return ufs_qcom_ice_resume(host);
}
static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
{
if (host->dev_ref_clk_ctrl_mmio &&
(enable ^ host->is_dev_ref_clk_enabled)) {
u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
if (enable)
temp |= host->dev_ref_clk_en_mask;
else
temp &= ~host->dev_ref_clk_en_mask;
/*
* If we are here to disable this clock it might be immediately
* after entering into hibern8 in which case we need to make
* sure that device ref_clk is active for specific time after
* hibern8 enter.
*/
if (!enable) {
unsigned long gating_wait;
gating_wait = host->hba->dev_info.clk_gating_wait_us;
if (!gating_wait) {
udelay(1);
} else {
/*
* bRefClkGatingWaitTime defines the minimum
* time for which the reference clock is
* required by device during transition from
* HS-MODE to LS-MODE or HIBERN8 state. Give it
* more delay to be on the safe side.
*/
gating_wait += 10;
usleep_range(gating_wait, gating_wait + 10);
}
}
writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
/*
* Make sure the write to ref_clk reaches the destination and
* not stored in a Write Buffer (WB).
*/
readl(host->dev_ref_clk_ctrl_mmio);
/*
* If we call hibern8 exit after this, we need to make sure that
* device ref_clk is stable for at least 1us before the hibern8
* exit command.
*/
if (enable)
udelay(1);
host->is_dev_ref_clk_enabled = enable;
}
}
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw)
{
struct device *dev = host->hba->dev;
int ret;
ret = icc_set_bw(host->icc_ddr, 0, mem_bw);
if (ret < 0) {
dev_err(dev, "failed to set bandwidth request: %d\n", ret);
return ret;
}
ret = icc_set_bw(host->icc_cpu, 0, cfg_bw);
if (ret < 0) {
dev_err(dev, "failed to set bandwidth request: %d\n", ret);
return ret;
}
return 0;
}
static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host)
{
struct ufs_pa_layer_attr *p = &host->dev_req_params;
int gear = max_t(u32, p->gear_rx, p->gear_tx);
int lane = max_t(u32, p->lane_rx, p->lane_tx);
if (ufshcd_is_hs_mode(p)) {
if (p->hs_rate == PA_HS_MODE_B)
return ufs_qcom_bw_table[MODE_HS_RB][gear][lane];
else
return ufs_qcom_bw_table[MODE_HS_RA][gear][lane];
} else {
return ufs_qcom_bw_table[MODE_PWM][gear][lane];
}
}
static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host)
{
struct __ufs_qcom_bw_table bw_table;
bw_table = ufs_qcom_get_bw_table(host);
return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw);
}
static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_dev_params ufs_qcom_cap;
int ret = 0;
if (!dev_req_params) {
pr_err("%s: incoming dev_req_params is NULL\n", __func__);
return -EINVAL;
}
switch (status) {
case PRE_CHANGE:
ufshcd_init_pwr_dev_param(&ufs_qcom_cap);
ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE;
/* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */
ufs_qcom_cap.hs_tx_gear = ufs_qcom_cap.hs_rx_gear = ufs_qcom_get_hs_gear(hba);
ret = ufshcd_get_pwr_dev_param(&ufs_qcom_cap,
dev_max_params,
dev_req_params);
if (ret) {
dev_err(hba->dev, "%s: failed to determine capabilities\n",
__func__);
return ret;
}
/* Use the agreed gear */
host->hs_gear = dev_req_params->gear_tx;
/* enable the device ref clock before changing to HS mode */
if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
ufshcd_is_hs_mode(dev_req_params))
ufs_qcom_dev_ref_clk_ctrl(host, true);
if (host->hw_ver.major >= 0x4) {
ufshcd_dme_configure_adapt(hba,
dev_req_params->gear_tx,
PA_INITIAL_ADAPT);
}
break;
case POST_CHANGE:
if (ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate, false)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
/*
* we return error code at the end of the routine,
* but continue to configure UFS_PHY_TX_LANE_ENABLE
* and bus voting as usual
*/
ret = -EINVAL;
}
/* cache the power mode parameters to use internally */
memcpy(&host->dev_req_params,
dev_req_params, sizeof(*dev_req_params));
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
ufs_qcom_icc_update_bw(host);
/* disable the device ref clock if entered PWM mode */
if (ufshcd_is_hs_mode(&hba->pwr_info) &&
!ufshcd_is_hs_mode(dev_req_params))
ufs_qcom_dev_ref_clk_ctrl(host, false);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
{
int err;
u32 pa_vs_config_reg1;
err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
&pa_vs_config_reg1);
if (err)
return err;
/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
(pa_vs_config_reg1 | (1 << 12)));
}
static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
{
int err = 0;
if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
if (hba->dev_info.wmanufacturerid == UFS_VENDOR_WDC)
hba->dev_quirks |= UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE;
return err;
}
static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x1)
return ufshci_version(1, 1);
else
return ufshci_version(2, 0);
}
/**
* ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
* @hba: host controller instance
*
* QCOM UFS host controller might have some non standard behaviours (quirks)
* than what is specified by UFSHCI specification. Advertise all such
* quirks to standard UFS host controller driver so standard takes them into
* account.
*/
static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x01) {
hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE;
if (host->hw_ver.minor == 0x0001 && host->hw_ver.step == 0x0001)
hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR;
hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC;
}
if (host->hw_ver.major == 0x2) {
hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
if (!ufs_qcom_cap_qunipro(host))
/* Legacy UniPro mode still need following quirks */
hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP);
}
if (host->hw_ver.major > 0x3)
hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
}
static void ufs_qcom_set_caps(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING;
hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
hba->caps |= UFSHCD_CAP_WB_EN;
hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE;
hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
if (host->hw_ver.major >= 0x2) {
host->caps = UFS_QCOM_CAP_QUNIPRO |
UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE;
}
}
/**
* ufs_qcom_setup_clocks - enables/disable clocks
* @hba: host controller instance
* @on: If true, enable clocks else disable them.
* @status: PRE_CHANGE or POST_CHANGE notify
*
* Return: 0 on success, non-zero on failure.
*/
static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
/*
* In case ufs_qcom_init() is not yet done, simply ignore.
* This ufs_qcom_setup_clocks() shall be called from
* ufs_qcom_init() after init is done.
*/
if (!host)
return 0;
switch (status) {
case PRE_CHANGE:
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
if (on) {
ufs_qcom_icc_update_bw(host);
} else {
if (!ufs_qcom_is_link_active(hba)) {
/* disable device ref_clk */
ufs_qcom_dev_ref_clk_ctrl(host, false);
}
}
break;
case POST_CHANGE:
if (on) {
/* enable the device ref clock for HS mode*/
if (ufshcd_is_hs_mode(&hba->pwr_info))
ufs_qcom_dev_ref_clk_ctrl(host, true);
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
} else {
ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw,
ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw);
}
break;
}
return 0;
}
static int
ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id)
{
struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
ufs_qcom_assert_reset(host->hba);
/* provide 1ms delay to let the reset pulse propagate. */
usleep_range(1000, 1100);
return 0;
}
static int
ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id)
{
struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
ufs_qcom_deassert_reset(host->hba);
/*
* after reset deassertion, phy will need all ref clocks,
* voltage, current to settle down before starting serdes.
*/
usleep_range(1000, 1100);
return 0;
}
static const struct reset_control_ops ufs_qcom_reset_ops = {
.assert = ufs_qcom_reset_assert,
.deassert = ufs_qcom_reset_deassert,
};
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
static int ufs_qcom_icc_init(struct ufs_qcom_host *host)
{
struct device *dev = host->hba->dev;
int ret;
host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr");
if (IS_ERR(host->icc_ddr))
return dev_err_probe(dev, PTR_ERR(host->icc_ddr),
"failed to acquire interconnect path\n");
host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs");
if (IS_ERR(host->icc_cpu))
return dev_err_probe(dev, PTR_ERR(host->icc_cpu),
"failed to acquire interconnect path\n");
/*
* Set Maximum bandwidth vote before initializing the UFS controller and
* device. Ideally, a minimal interconnect vote would suffice for the
* initialization, but a max vote would allow faster initialization.
*/
ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw,
ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw);
if (ret < 0)
return dev_err_probe(dev, ret, "failed to set bandwidth request\n");
return 0;
}
/**
* ufs_qcom_init - bind phy with controller
* @hba: host controller instance
*
* Binds PHY with controller and powers up PHY enabling clocks
* and regulators.
*
* Return: -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_qcom_init(struct ufs_hba *hba)
{
int err;
struct device *dev = hba->dev;
struct platform_device *pdev = to_platform_device(dev);
struct ufs_qcom_host *host;
struct resource *res;
struct ufs_clk_info *clki;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
dev_err(dev, "%s: no memory for qcom ufs host\n", __func__);
return -ENOMEM;
}
/* Make a two way bind between the qcom host and the hba */
host->hba = hba;
ufshcd_set_variant(hba, host);
/* Setup the optional reset control of HCI */
host->core_reset = devm_reset_control_get_optional(hba->dev, "rst");
if (IS_ERR(host->core_reset)) {
err = dev_err_probe(dev, PTR_ERR(host->core_reset),
"Failed to get reset control\n");
goto out_variant_clear;
}
/* Fire up the reset controller. Failure here is non-fatal. */
host->rcdev.of_node = dev->of_node;
host->rcdev.ops = &ufs_qcom_reset_ops;
host->rcdev.owner = dev->driver->owner;
host->rcdev.nr_resets = 1;
err = devm_reset_controller_register(dev, &host->rcdev);
if (err)
dev_warn(dev, "Failed to register reset controller\n");
if (!has_acpi_companion(dev)) {
host->generic_phy = devm_phy_get(dev, "ufsphy");
if (IS_ERR(host->generic_phy)) {
err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n");
goto out_variant_clear;
}
}
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
err = ufs_qcom_icc_init(host);
if (err)
goto out_variant_clear;
host->device_reset = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(host->device_reset)) {
err = PTR_ERR(host->device_reset);
if (err != -EPROBE_DEFER)
dev_err(dev, "failed to acquire reset gpio: %d\n", err);
goto out_variant_clear;
}
ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
&host->hw_ver.minor, &host->hw_ver.step);
/*
* for newer controllers, device reference clock control bit has
* moved inside UFS controller register address space itself.
*/
if (host->hw_ver.major >= 0x02) {
host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
host->dev_ref_clk_en_mask = BIT(26);
} else {
/* "dev_ref_clk_ctrl_mem" is optional resource */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"dev_ref_clk_ctrl_mem");
if (res) {
host->dev_ref_clk_ctrl_mmio =
devm_ioremap_resource(dev, res);
if (IS_ERR(host->dev_ref_clk_ctrl_mmio))
host->dev_ref_clk_ctrl_mmio = NULL;
host->dev_ref_clk_en_mask = BIT(5);
}
}
list_for_each_entry(clki, &hba->clk_list_head, list) {
if (!strcmp(clki->name, "core_clk_unipro"))
clki->keep_link_active = true;
}
err = ufs_qcom_init_lane_clks(host);
if (err)
goto out_variant_clear;
ufs_qcom_set_caps(hba);
ufs_qcom_advertise_quirks(hba);
scsi: ufs-qcom: Add Inline Crypto Engine support Add support for Qualcomm Inline Crypto Engine (ICE) to ufs-qcom. The standards-compliant parts, such as querying the crypto capabilities and enabling crypto for individual UFS requests, are already handled by ufshcd-crypto.c, which itself is wired into the blk-crypto framework. However, ICE requires vendor-specific init, enable, and resume logic, and it requires that keys be programmed and evicted by vendor-specific SMC calls. Make the ufs-qcom driver handle these details. I tested this on Dragonboard 845c, which is a publicly available development board that uses the Snapdragon 845 SoC and runs the upstream Linux kernel. This is the same SoC used in the Pixel 3 and Pixel 3 XL phones. This testing included (among other things) verifying that the expected ciphertext was produced, both manually using ext4 encryption and automatically using a block layer self-test I've written. I've also tested that this driver works nearly as-is on the Snapdragon 765 and Snapdragon 865 SoCs. And others have tested it on Snapdragon 850, Snapdragon 855, and Snapdragon 865 (see the Tested-by tags). This is based very loosely on the vendor-provided driver in the kernel source code for the Pixel 3, but I've greatly simplified it. Also, for now I've only included support for major version 3 of ICE, since that's all I have the hardware to test with the mainline kernel. Plus it appears that version 3 is easier to use than older versions of ICE. For now, only allow using AES-256-XTS. The hardware also declares support for AES-128-XTS, AES-{128,256}-ECB, and AES-{128,256}-CBC (BitLocker variant). But none of these others are really useful, and they'd need to be individually tested to be sure they worked properly. This commit also changes the name of the loadable module from "ufs-qcom" to "ufs_qcom", as this is necessary to compile it from multiple source files (unless we were to rename ufs-qcom.c). Link: https://lore.kernel.org/r/20200710072013.177481-6-ebiggers@kernel.org Tested-by: Steev Klimaszewski <steev@kali.org> # Lenovo Yoga C630 Tested-by: Thara Gopinath <thara.gopinath@linaro.org> # db845c, sm8150-mtp, sm8250-mtp Reviewed-by: Avri Altman <avri.altman@wdc.com> Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-07-10 15:20:12 +08:00
err = ufs_qcom_ice_init(host);
if (err)
goto out_variant_clear;
ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
if (hba->dev->id < MAX_UFS_QCOM_HOSTS)
ufs_qcom_hosts[hba->dev->id] = host;
ufs_qcom_get_default_testbus_cfg(host);
err = ufs_qcom_testbus_config(host);
if (err)
/* Failure is non-fatal */
dev_warn(dev, "%s: failed to configure the testbus %d\n",
__func__, err);
/*
* Power up the PHY using the minimum supported gear (UFS_HS_G2).
* Switching to max gear will be performed during reinit if supported.
*/
host->hs_gear = UFS_HS_G2;
return 0;
out_variant_clear:
ufshcd_set_variant(hba, NULL);
return err;
}
static void ufs_qcom_exit(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
ufs_qcom_disable_lane_clks(host);
phy_power_off(host->generic_phy);
phy_exit(host->generic_phy);
}
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles)
{
int err;
u32 core_clk_ctrl_reg;
if (clk_cycles > DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK)
return -EINVAL;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
&core_clk_ctrl_reg);
if (err)
return err;
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK;
core_clk_ctrl_reg |= clk_cycles;
/* Clear CORE_CLK_DIV_EN */
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
return ufshcd_dme_set(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
core_clk_ctrl_reg);
}
static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba)
{
/* nothing to do as of now */
return 0;
}
static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (!ufs_qcom_cap_qunipro(host))
return 0;
/* set unipro core clock cycles to 150 and clear clock divider */
return ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 150);
}
static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err;
u32 core_clk_ctrl_reg;
if (!ufs_qcom_cap_qunipro(host))
return 0;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
&core_clk_ctrl_reg);
/* make sure CORE_CLK_DIV_EN is cleared */
if (!err &&
(core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
err = ufshcd_dme_set(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
core_clk_ctrl_reg);
}
return err;
}
static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (!ufs_qcom_cap_qunipro(host))
return 0;
/* set unipro core clock cycles to 75 and clear clock divider */
return ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 75);
}
static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba,
bool scale_up, enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_pa_layer_attr *dev_req_params = &host->dev_req_params;
int err = 0;
/* check the host controller state before sending hibern8 cmd */
if (!ufshcd_is_hba_active(hba))
return 0;
if (status == PRE_CHANGE) {
err = ufshcd_uic_hibern8_enter(hba);
if (err)
return err;
if (scale_up)
err = ufs_qcom_clk_scale_up_pre_change(hba);
else
err = ufs_qcom_clk_scale_down_pre_change(hba);
if (err)
ufshcd_uic_hibern8_exit(hba);
} else {
if (scale_up)
err = ufs_qcom_clk_scale_up_post_change(hba);
else
err = ufs_qcom_clk_scale_down_post_change(hba);
if (err) {
ufshcd_uic_hibern8_exit(hba);
return err;
}
ufs_qcom_cfg_timers(hba,
dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate,
false);
scsi: ufs: qcom: Add support for scaling interconnects Qcom SoCs require scaling the interconnect paths for proper working of the peripherals connected through interconnects. Even for accessing the UFS controller, someone should setup the interconnect paths. So far, the bootloaders used to setup the interconnect paths before booting Linux as they need to access the UFS storage for things like fetching boot firmware. But with the advent of multi boot options, bootloader nowadays like in SA8540p SoC do not setup the interconnect paths at all. So trying to configure UFS in the absence of the interconnect path configuration results in a boot crash. To fix this issue, and also to dynamically scale the interconnects (UFS-DDR and CPU-UFS), interconnect API support is added to the Qcom UFS driver. With this support, the interconnect paths are scaled dynamically based on the gear configuration. During the early stage of ufs_qcom_init(), ufs_qcom_icc_init() will setup the paths to max bandwidth to allow configuring the UFS registers. Touching the registers without configuring the icc paths would result in a crash. However, we don't really need to set max vote for the icc paths as any minimal vote would suffice. But the max value would allow initialization to be done faster. After init, the bandwidth will get updated using ufs_qcom_icc_update_bw() based on the gear and lane configuration. The bandwidth values defined in ufs_qcom_bw_table struct are taken from Qcom downstream vendor devicetree source and are calculated as per the UFS3.1 Spec, Section 6.4.1, HS Gear Rates. So it is fixed across platforms. Cc: Brian Masney <bmasney@redhat.com> Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> Link: https://lore.kernel.org/r/20230731145020.41262-3-manivannan.sadhasivam@linaro.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-07-31 22:50:20 +08:00
ufs_qcom_icc_update_bw(host);
ufshcd_uic_hibern8_exit(hba);
}
return 0;
}
static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
{
ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
}
static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
{
/* provide a legal default configuration */
host->testbus.select_major = TSTBUS_UNIPRO;
host->testbus.select_minor = 37;
}
static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
{
if (host->testbus.select_major >= TSTBUS_MAX) {
dev_err(host->hba->dev,
"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
__func__, host->testbus.select_major);
return false;
}
return true;
}
int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
{
int reg;
int offset;
u32 mask = TEST_BUS_SUB_SEL_MASK;
if (!host)
return -EINVAL;
if (!ufs_qcom_testbus_cfg_is_ok(host))
return -EPERM;
switch (host->testbus.select_major) {
case TSTBUS_UAWM:
reg = UFS_TEST_BUS_CTRL_0;
offset = 24;
break;
case TSTBUS_UARM:
reg = UFS_TEST_BUS_CTRL_0;
offset = 16;
break;
case TSTBUS_TXUC:
reg = UFS_TEST_BUS_CTRL_0;
offset = 8;
break;
case TSTBUS_RXUC:
reg = UFS_TEST_BUS_CTRL_0;
offset = 0;
break;
case TSTBUS_DFC:
reg = UFS_TEST_BUS_CTRL_1;
offset = 24;
break;
case TSTBUS_TRLUT:
reg = UFS_TEST_BUS_CTRL_1;
offset = 16;
break;
case TSTBUS_TMRLUT:
reg = UFS_TEST_BUS_CTRL_1;
offset = 8;
break;
case TSTBUS_OCSC:
reg = UFS_TEST_BUS_CTRL_1;
offset = 0;
break;
case TSTBUS_WRAPPER:
reg = UFS_TEST_BUS_CTRL_2;
offset = 16;
break;
case TSTBUS_COMBINED:
reg = UFS_TEST_BUS_CTRL_2;
offset = 8;
break;
case TSTBUS_UTP_HCI:
reg = UFS_TEST_BUS_CTRL_2;
offset = 0;
break;
case TSTBUS_UNIPRO:
reg = UFS_UNIPRO_CFG;
offset = 20;
mask = 0xFFF;
break;
/*
* No need for a default case, since
* ufs_qcom_testbus_cfg_is_ok() checks that the configuration
* is legal
*/
}
mask <<= offset;
ufshcd_rmwl(host->hba, TEST_BUS_SEL,
(u32)host->testbus.select_major << 19,
REG_UFS_CFG1);
ufshcd_rmwl(host->hba, mask,
(u32)host->testbus.select_minor << offset,
reg);
ufs_qcom_enable_test_bus(host);
/*
* Make sure the test bus configuration is
* committed before returning.
*/
mb();
return 0;
}
static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
{
u32 reg;
struct ufs_qcom_host *host;
host = ufshcd_get_variant(hba);
ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
"HCI Vendor Specific Registers ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
reg = ufshcd_readl(hba, REG_UFS_CFG1);
reg |= UTP_DBG_RAMS_EN;
ufshcd_writel(hba, reg, REG_UFS_CFG1);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
/* clear bit 17 - UTP_DBG_RAMS_EN */
ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
}
/**
* ufs_qcom_device_reset() - toggle the (optional) device reset line
* @hba: per-adapter instance
*
* Toggles the (optional) reset line to reset the attached device.
*/
static int ufs_qcom_device_reset(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
/* reset gpio is optional */
if (!host->device_reset)
return -EOPNOTSUPP;
/*
* The UFS device shall detect reset pulses of 1us, sleep for 10us to
* be on the safe side.
*/
ufs_qcom_device_reset_ctrl(hba, true);
usleep_range(10, 15);
ufs_qcom_device_reset_ctrl(hba, false);
usleep_range(10, 15);
return 0;
}
#if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND)
static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
struct devfreq_dev_profile *p,
struct devfreq_simple_ondemand_data *d)
{
p->polling_ms = 60;
p->timer = DEVFREQ_TIMER_DELAYED;
d->upthreshold = 70;
d->downdifferential = 5;
}
#else
static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
struct devfreq_dev_profile *p,
struct devfreq_simple_ondemand_data *data)
{
}
#endif
static void ufs_qcom_reinit_notify(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
phy_power_off(host->generic_phy);
}
/* Resources */
static const struct ufshcd_res_info ufs_res_info[RES_MAX] = {
{.name = "ufs_mem",},
{.name = "mcq",},
/* Submission Queue DAO */
{.name = "mcq_sqd",},
/* Submission Queue Interrupt Status */
{.name = "mcq_sqis",},
/* Completion Queue DAO */
{.name = "mcq_cqd",},
/* Completion Queue Interrupt Status */
{.name = "mcq_cqis",},
/* MCQ vendor specific */
{.name = "mcq_vs",},
};
static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba)
{
struct platform_device *pdev = to_platform_device(hba->dev);
struct ufshcd_res_info *res;
struct resource *res_mem, *res_mcq;
int i, ret = 0;
memcpy(hba->res, ufs_res_info, sizeof(ufs_res_info));
for (i = 0; i < RES_MAX; i++) {
res = &hba->res[i];
res->resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
res->name);
if (!res->resource) {
dev_info(hba->dev, "Resource %s not provided\n", res->name);
if (i == RES_UFS)
return -ENOMEM;
continue;
} else if (i == RES_UFS) {
res_mem = res->resource;
res->base = hba->mmio_base;
continue;
}
res->base = devm_ioremap_resource(hba->dev, res->resource);
if (IS_ERR(res->base)) {
dev_err(hba->dev, "Failed to map res %s, err=%d\n",
res->name, (int)PTR_ERR(res->base));
ret = PTR_ERR(res->base);
res->base = NULL;
return ret;
}
}
/* MCQ resource provided in DT */
res = &hba->res[RES_MCQ];
/* Bail if MCQ resource is provided */
if (res->base)
goto out;
/* Explicitly allocate MCQ resource from ufs_mem */
res_mcq = devm_kzalloc(hba->dev, sizeof(*res_mcq), GFP_KERNEL);
if (!res_mcq)
return -ENOMEM;
res_mcq->start = res_mem->start +
MCQ_SQATTR_OFFSET(hba->mcq_capabilities);
res_mcq->end = res_mcq->start + hba->nr_hw_queues * MCQ_QCFG_SIZE - 1;
res_mcq->flags = res_mem->flags;
res_mcq->name = "mcq";
ret = insert_resource(&iomem_resource, res_mcq);
if (ret) {
dev_err(hba->dev, "Failed to insert MCQ resource, err=%d\n",
ret);
return ret;
}
res->base = devm_ioremap_resource(hba->dev, res_mcq);
if (IS_ERR(res->base)) {
dev_err(hba->dev, "MCQ registers mapping failed, err=%d\n",
(int)PTR_ERR(res->base));
ret = PTR_ERR(res->base);
goto ioremap_err;
}
out:
hba->mcq_base = res->base;
return 0;
ioremap_err:
res->base = NULL;
remove_resource(res_mcq);
return ret;
}
static int ufs_qcom_op_runtime_config(struct ufs_hba *hba)
{
struct ufshcd_res_info *mem_res, *sqdao_res;
struct ufshcd_mcq_opr_info_t *opr;
int i;
mem_res = &hba->res[RES_UFS];
sqdao_res = &hba->res[RES_MCQ_SQD];
if (!mem_res->base || !sqdao_res->base)
return -EINVAL;
for (i = 0; i < OPR_MAX; i++) {
opr = &hba->mcq_opr[i];
opr->offset = sqdao_res->resource->start -
mem_res->resource->start + 0x40 * i;
opr->stride = 0x100;
opr->base = sqdao_res->base + 0x40 * i;
}
return 0;
}
static int ufs_qcom_get_hba_mac(struct ufs_hba *hba)
{
/* Qualcomm HC supports up to 64 */
return MAX_SUPP_MAC;
}
static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba,
unsigned long *ocqs)
{
struct ufshcd_res_info *mcq_vs_res = &hba->res[RES_MCQ_VS];
if (!mcq_vs_res->base)
return -EINVAL;
*ocqs = readl(mcq_vs_res->base + UFS_MEM_CQIS_VS);
return 0;
}
static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
struct device *dev = msi_desc_to_dev(desc);
struct ufs_hba *hba = dev_get_drvdata(dev);
ufshcd_mcq_config_esi(hba, msg);
}
static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data)
{
struct msi_desc *desc = data;
struct device *dev = msi_desc_to_dev(desc);
struct ufs_hba *hba = dev_get_drvdata(dev);
u32 id = desc->msi_index;
struct ufs_hw_queue *hwq = &hba->uhq[id];
ufshcd_mcq_write_cqis(hba, 0x1, id);
ufshcd_mcq_poll_cqe_lock(hba, hwq);
return IRQ_HANDLED;
}
static int ufs_qcom_config_esi(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct msi_desc *desc;
struct msi_desc *failed_desc = NULL;
int nr_irqs, ret;
if (host->esi_enabled)
return 0;
/*
* 1. We only handle CQs as of now.
* 2. Poll queues do not need ESI.
*/
nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
ret = platform_msi_domain_alloc_irqs(hba->dev, nr_irqs,
ufs_qcom_write_msi_msg);
if (ret) {
dev_err(hba->dev, "Failed to request Platform MSI %d\n", ret);
goto out;
}
msi_lock_descs(hba->dev);
msi_for_each_desc(desc, hba->dev, MSI_DESC_ALL) {
ret = devm_request_irq(hba->dev, desc->irq,
ufs_qcom_mcq_esi_handler,
IRQF_SHARED, "qcom-mcq-esi", desc);
if (ret) {
dev_err(hba->dev, "%s: Fail to request IRQ for %d, err = %d\n",
__func__, desc->irq, ret);
failed_desc = desc;
break;
}
}
msi_unlock_descs(hba->dev);
if (ret) {
/* Rewind */
msi_lock_descs(hba->dev);
msi_for_each_desc(desc, hba->dev, MSI_DESC_ALL) {
if (desc == failed_desc)
break;
devm_free_irq(hba->dev, desc->irq, hba);
}
msi_unlock_descs(hba->dev);
platform_msi_domain_free_irqs(hba->dev);
} else {
if (host->hw_ver.major == 6 && host->hw_ver.minor == 0 &&
host->hw_ver.step == 0) {
ufshcd_writel(hba,
ufshcd_readl(hba, REG_UFS_CFG3) | 0x1F000,
REG_UFS_CFG3);
}
ufshcd_mcq_enable_esi(hba);
}
out:
if (!ret)
host->esi_enabled = true;
return ret;
}
/*
* struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
*
* The variant operations configure the necessary controller and PHY
* handshake during initialization.
*/
static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
.name = "qcom",
.init = ufs_qcom_init,
.exit = ufs_qcom_exit,
.get_ufs_hci_version = ufs_qcom_get_ufs_hci_version,
.clk_scale_notify = ufs_qcom_clk_scale_notify,
.setup_clocks = ufs_qcom_setup_clocks,
.hce_enable_notify = ufs_qcom_hce_enable_notify,
.link_startup_notify = ufs_qcom_link_startup_notify,
.pwr_change_notify = ufs_qcom_pwr_change_notify,
.apply_dev_quirks = ufs_qcom_apply_dev_quirks,
.suspend = ufs_qcom_suspend,
.resume = ufs_qcom_resume,
.dbg_register_dump = ufs_qcom_dump_dbg_regs,
.device_reset = ufs_qcom_device_reset,
.config_scaling_param = ufs_qcom_config_scaling_param,
scsi: ufs-qcom: Add Inline Crypto Engine support Add support for Qualcomm Inline Crypto Engine (ICE) to ufs-qcom. The standards-compliant parts, such as querying the crypto capabilities and enabling crypto for individual UFS requests, are already handled by ufshcd-crypto.c, which itself is wired into the blk-crypto framework. However, ICE requires vendor-specific init, enable, and resume logic, and it requires that keys be programmed and evicted by vendor-specific SMC calls. Make the ufs-qcom driver handle these details. I tested this on Dragonboard 845c, which is a publicly available development board that uses the Snapdragon 845 SoC and runs the upstream Linux kernel. This is the same SoC used in the Pixel 3 and Pixel 3 XL phones. This testing included (among other things) verifying that the expected ciphertext was produced, both manually using ext4 encryption and automatically using a block layer self-test I've written. I've also tested that this driver works nearly as-is on the Snapdragon 765 and Snapdragon 865 SoCs. And others have tested it on Snapdragon 850, Snapdragon 855, and Snapdragon 865 (see the Tested-by tags). This is based very loosely on the vendor-provided driver in the kernel source code for the Pixel 3, but I've greatly simplified it. Also, for now I've only included support for major version 3 of ICE, since that's all I have the hardware to test with the mainline kernel. Plus it appears that version 3 is easier to use than older versions of ICE. For now, only allow using AES-256-XTS. The hardware also declares support for AES-128-XTS, AES-{128,256}-ECB, and AES-{128,256}-CBC (BitLocker variant). But none of these others are really useful, and they'd need to be individually tested to be sure they worked properly. This commit also changes the name of the loadable module from "ufs-qcom" to "ufs_qcom", as this is necessary to compile it from multiple source files (unless we were to rename ufs-qcom.c). Link: https://lore.kernel.org/r/20200710072013.177481-6-ebiggers@kernel.org Tested-by: Steev Klimaszewski <steev@kali.org> # Lenovo Yoga C630 Tested-by: Thara Gopinath <thara.gopinath@linaro.org> # db845c, sm8150-mtp, sm8250-mtp Reviewed-by: Avri Altman <avri.altman@wdc.com> Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-07-10 15:20:12 +08:00
.program_key = ufs_qcom_ice_program_key,
.reinit_notify = ufs_qcom_reinit_notify,
.mcq_config_resource = ufs_qcom_mcq_config_resource,
.get_hba_mac = ufs_qcom_get_hba_mac,
.op_runtime_config = ufs_qcom_op_runtime_config,
.get_outstanding_cqs = ufs_qcom_get_outstanding_cqs,
.config_esi = ufs_qcom_config_esi,
};
/**
* ufs_qcom_probe - probe routine of the driver
* @pdev: pointer to Platform device handle
*
* Return: zero for success and non-zero for failure.
*/
static int ufs_qcom_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
/* Perform generic probe */
err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
if (err)
return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n");
return 0;
}
/**
* ufs_qcom_remove - set driver_data of the device to NULL
* @pdev: pointer to platform device handle
*
* Always returns 0
*/
static int ufs_qcom_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
platform_msi_domain_free_irqs(hba->dev);
return 0;
}
static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = {
{ .compatible = "qcom,ufshc"},
{},
};
MODULE_DEVICE_TABLE(of, ufs_qcom_of_match);
#ifdef CONFIG_ACPI
static const struct acpi_device_id ufs_qcom_acpi_match[] = {
{ "QCOM24A5" },
{ },
};
MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match);
#endif
static const struct dev_pm_ops ufs_qcom_pm_ops = {
SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
scsi: ufs: core: Enable power management for wlun During runtime-suspend of ufs host, the SCSI devices are already suspended and so are the queues associated with them. However, the ufs host sends SSU (START_STOP_UNIT) to the wlun during runtime-suspend. During the process blk_queue_enter() checks if the queue is not in suspended state. If so, it waits for the queue to resume, and never comes out of it. Commit 52abca64fd94 ("scsi: block: Do not accept any requests while suspended") adds the check to see if the queue is in suspended state in blk_queue_enter(). Call trace: __switch_to+0x174/0x2c4 __schedule+0x478/0x764 schedule+0x9c/0xe0 blk_queue_enter+0x158/0x228 blk_mq_alloc_request+0x40/0xa4 blk_get_request+0x2c/0x70 __scsi_execute+0x60/0x1c4 ufshcd_set_dev_pwr_mode+0x124/0x1e4 ufshcd_suspend+0x208/0x83c ufshcd_runtime_suspend+0x40/0x154 ufshcd_pltfrm_runtime_suspend+0x14/0x20 pm_generic_runtime_suspend+0x28/0x3c __rpm_callback+0x80/0x2a4 rpm_suspend+0x308/0x614 rpm_idle+0x158/0x228 pm_runtime_work+0x84/0xac process_one_work+0x1f0/0x470 worker_thread+0x26c/0x4c8 kthread+0x13c/0x320 ret_from_fork+0x10/0x18 Fix this by registering ufs device wlun as a SCSI driver and registering it for block runtime-pm. Also make this a supplier for all other LUNs. This way the wlun device suspends after all the consumers and resumes after HBA resumes. This also registers a new SCSI driver for rpmb wlun. This new driver is mostly used to clear rpmb uac. [mkp: resolve merge conflict with 5.13-rc1 and fix doc warning] Fixed smatch warnings: Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Link: https://lore.kernel.org/r/4662c462e79e3e7f541f54f88f8993f421026d83.1619223249.git.asutoshd@codeaurora.org Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Co-developed-by: Can Guo <cang@codeaurora.org> Signed-off-by: Can Guo <cang@codeaurora.org> Signed-off-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-04-24 08:20:16 +08:00
.prepare = ufshcd_suspend_prepare,
.complete = ufshcd_resume_complete,
#ifdef CONFIG_PM_SLEEP
.suspend = ufshcd_system_suspend,
.resume = ufshcd_system_resume,
.freeze = ufshcd_system_freeze,
.restore = ufshcd_system_restore,
.thaw = ufshcd_system_thaw,
#endif
};
static struct platform_driver ufs_qcom_pltform = {
.probe = ufs_qcom_probe,
.remove = ufs_qcom_remove,
.driver = {
.name = "ufshcd-qcom",
.pm = &ufs_qcom_pm_ops,
.of_match_table = of_match_ptr(ufs_qcom_of_match),
.acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match),
},
};
module_platform_driver(ufs_qcom_pltform);
MODULE_LICENSE("GPL v2");