License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* Mostly platform independent upcall operations to Venus:
|
|
|
|
* -- upcalls
|
|
|
|
* -- upcall routines
|
|
|
|
*
|
|
|
|
* Linux 2.0 version
|
|
|
|
* Copyright (C) 1996 Peter J. Braam <braam@maths.ox.ac.uk>,
|
|
|
|
* Michael Callahan <callahan@maths.ox.ac.uk>
|
|
|
|
*
|
|
|
|
* Redone for Linux 2.1
|
|
|
|
* Copyright (C) 1997 Carnegie Mellon University
|
|
|
|
*
|
|
|
|
* Carnegie Mellon University encourages users of this code to contribute
|
|
|
|
* improvements to the Coda project. Contact Peter Braam <coda@cs.cmu.edu>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/signal.h>
|
2017-02-09 01:51:30 +08:00
|
|
|
#include <linux/sched/signal.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/time.h>
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/file.h>
|
|
|
|
#include <linux/stat.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/string.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
2010-10-25 14:03:46 +08:00
|
|
|
#include <linux/mutex.h>
|
2014-08-09 05:20:33 +08:00
|
|
|
#include <linux/uaccess.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/vfs.h>
|
|
|
|
|
|
|
|
#include <linux/coda.h>
|
|
|
|
#include <linux/coda_psdev.h>
|
2011-01-13 05:36:09 +08:00
|
|
|
#include "coda_linux.h"
|
|
|
|
#include "coda_cache.h"
|
2007-07-19 16:48:51 +08:00
|
|
|
|
|
|
|
#include "coda_int.h"
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
static int coda_upcall(struct venus_comm *vc, int inSize, int *outSize,
|
2005-04-17 06:20:36 +08:00
|
|
|
union inputArgs *buffer);
|
|
|
|
|
|
|
|
static void *alloc_upcall(int opcode, int size)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
|
2019-07-17 07:28:38 +08:00
|
|
|
inp = kvzalloc(size, GFP_KERNEL);
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!inp)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
inp->ih.opcode = opcode;
|
2013-01-31 10:50:54 +08:00
|
|
|
inp->ih.pid = task_pid_nr_ns(current, &init_pid_ns);
|
|
|
|
inp->ih.pgid = task_pgrp_nr_ns(current, &init_pid_ns);
|
2013-01-31 11:21:14 +08:00
|
|
|
inp->ih.uid = from_kuid(&init_user_ns, current_fsuid());
|
2008-07-25 16:46:34 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
return (void*)inp;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define UPARG(op)\
|
|
|
|
do {\
|
|
|
|
inp = (union inputArgs *)alloc_upcall(op, insize); \
|
|
|
|
if (IS_ERR(inp)) { return PTR_ERR(inp); }\
|
|
|
|
outp = (union outputArgs *)(inp); \
|
|
|
|
outsize = insize; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define INSIZE(tag) sizeof(struct coda_ ## tag ## _in)
|
|
|
|
#define OUTSIZE(tag) sizeof(struct coda_ ## tag ## _out)
|
|
|
|
#define SIZE(tag) max_t(unsigned int, INSIZE(tag), OUTSIZE(tag))
|
|
|
|
|
|
|
|
|
|
|
|
/* the upcalls */
|
|
|
|
int venus_rootfid(struct super_block *sb, struct CodaFid *fidp)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
|
|
|
|
insize = SIZE(root);
|
|
|
|
UPARG(CODA_ROOT);
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2007-07-19 16:48:48 +08:00
|
|
|
if (!error)
|
2005-04-17 06:20:36 +08:00
|
|
|
*fidp = outp->coda_root.VFid;
|
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_getattr(struct super_block *sb, struct CodaFid *fid,
|
|
|
|
struct coda_vattr *attr)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
|
|
|
|
insize = SIZE(getattr);
|
|
|
|
UPARG(CODA_GETATTR);
|
|
|
|
inp->coda_getattr.VFid = *fid;
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2007-07-19 16:48:48 +08:00
|
|
|
if (!error)
|
|
|
|
*attr = outp->coda_getattr.attr;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_setattr(struct super_block *sb, struct CodaFid *fid,
|
|
|
|
struct coda_vattr *vattr)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
|
|
|
|
insize = SIZE(setattr);
|
|
|
|
UPARG(CODA_SETATTR);
|
|
|
|
|
|
|
|
inp->coda_setattr.VFid = *fid;
|
|
|
|
inp->coda_setattr.attr = *vattr;
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_lookup(struct super_block *sb, struct CodaFid *fid,
|
|
|
|
const char *name, int length, int * type,
|
|
|
|
struct CodaFid *resfid)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
offset = INSIZE(lookup);
|
|
|
|
insize = max_t(unsigned int, offset + length +1, OUTSIZE(lookup));
|
|
|
|
UPARG(CODA_LOOKUP);
|
|
|
|
|
|
|
|
inp->coda_lookup.VFid = *fid;
|
|
|
|
inp->coda_lookup.name = offset;
|
|
|
|
inp->coda_lookup.flags = CLU_CASE_SENSITIVE;
|
|
|
|
/* send Venus a null terminated string */
|
|
|
|
memcpy((char *)(inp) + offset, name, length);
|
|
|
|
*((char *)inp + offset + length) = '\0';
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2007-07-19 16:48:48 +08:00
|
|
|
if (!error) {
|
|
|
|
*resfid = outp->coda_lookup.VFid;
|
|
|
|
*type = outp->coda_lookup.vtype;
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_close(struct super_block *sb, struct CodaFid *fid, int flags,
|
2013-01-31 11:21:14 +08:00
|
|
|
kuid_t uid)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
|
|
|
|
insize = SIZE(release);
|
|
|
|
UPARG(CODA_CLOSE);
|
|
|
|
|
2013-01-31 11:21:14 +08:00
|
|
|
inp->ih.uid = from_kuid(&init_user_ns, uid);
|
2005-04-17 06:20:36 +08:00
|
|
|
inp->coda_close.VFid = *fid;
|
|
|
|
inp->coda_close.flags = flags;
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_open(struct super_block *sb, struct CodaFid *fid,
|
|
|
|
int flags, struct file **fh)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
|
|
|
|
insize = SIZE(open_by_fd);
|
|
|
|
UPARG(CODA_OPEN_BY_FD);
|
|
|
|
|
2007-07-19 16:48:41 +08:00
|
|
|
inp->coda_open_by_fd.VFid = *fid;
|
|
|
|
inp->coda_open_by_fd.flags = flags;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2007-07-19 16:48:41 +08:00
|
|
|
if (!error)
|
|
|
|
*fh = outp->coda_open_by_fd.fh;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_mkdir(struct super_block *sb, struct CodaFid *dirfid,
|
|
|
|
const char *name, int length,
|
|
|
|
struct CodaFid *newfid, struct coda_vattr *attrs)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
offset = INSIZE(mkdir);
|
|
|
|
insize = max_t(unsigned int, offset + length + 1, OUTSIZE(mkdir));
|
|
|
|
UPARG(CODA_MKDIR);
|
|
|
|
|
|
|
|
inp->coda_mkdir.VFid = *dirfid;
|
|
|
|
inp->coda_mkdir.attr = *attrs;
|
|
|
|
inp->coda_mkdir.name = offset;
|
|
|
|
/* Venus must get null terminated string */
|
|
|
|
memcpy((char *)(inp) + offset, name, length);
|
|
|
|
*((char *)inp + offset + length) = '\0';
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2007-07-19 16:48:48 +08:00
|
|
|
if (!error) {
|
|
|
|
*attrs = outp->coda_mkdir.attr;
|
|
|
|
*newfid = outp->coda_mkdir.VFid;
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int venus_rename(struct super_block *sb, struct CodaFid *old_fid,
|
|
|
|
struct CodaFid *new_fid, size_t old_length,
|
|
|
|
size_t new_length, const char *old_name,
|
|
|
|
const char *new_name)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int offset, s;
|
|
|
|
|
|
|
|
offset = INSIZE(rename);
|
|
|
|
insize = max_t(unsigned int, offset + new_length + old_length + 8,
|
|
|
|
OUTSIZE(rename));
|
|
|
|
UPARG(CODA_RENAME);
|
|
|
|
|
|
|
|
inp->coda_rename.sourceFid = *old_fid;
|
|
|
|
inp->coda_rename.destFid = *new_fid;
|
|
|
|
inp->coda_rename.srcname = offset;
|
|
|
|
|
|
|
|
/* Venus must receive an null terminated string */
|
|
|
|
s = ( old_length & ~0x3) +4; /* round up to word boundary */
|
|
|
|
memcpy((char *)(inp) + offset, old_name, old_length);
|
|
|
|
*((char *)inp + offset + old_length) = '\0';
|
|
|
|
|
|
|
|
/* another null terminated string for Venus */
|
|
|
|
offset += s;
|
|
|
|
inp->coda_rename.destname = offset;
|
|
|
|
s = ( new_length & ~0x3) +4; /* round up to word boundary */
|
|
|
|
memcpy((char *)(inp) + offset, new_name, new_length);
|
|
|
|
*((char *)inp + offset + new_length) = '\0';
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_create(struct super_block *sb, struct CodaFid *dirfid,
|
|
|
|
const char *name, int length, int excl, int mode,
|
|
|
|
struct CodaFid *newfid, struct coda_vattr *attrs)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
offset = INSIZE(create);
|
|
|
|
insize = max_t(unsigned int, offset + length + 1, OUTSIZE(create));
|
|
|
|
UPARG(CODA_CREATE);
|
|
|
|
|
|
|
|
inp->coda_create.VFid = *dirfid;
|
|
|
|
inp->coda_create.attr.va_mode = mode;
|
|
|
|
inp->coda_create.excl = excl;
|
|
|
|
inp->coda_create.mode = mode;
|
|
|
|
inp->coda_create.name = offset;
|
|
|
|
|
|
|
|
/* Venus must get null terminated string */
|
|
|
|
memcpy((char *)(inp) + offset, name, length);
|
|
|
|
*((char *)inp + offset + length) = '\0';
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2007-07-19 16:48:48 +08:00
|
|
|
if (!error) {
|
|
|
|
*attrs = outp->coda_create.attr;
|
|
|
|
*newfid = outp->coda_create.VFid;
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_rmdir(struct super_block *sb, struct CodaFid *dirfid,
|
|
|
|
const char *name, int length)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
offset = INSIZE(rmdir);
|
|
|
|
insize = max_t(unsigned int, offset + length + 1, OUTSIZE(rmdir));
|
|
|
|
UPARG(CODA_RMDIR);
|
|
|
|
|
|
|
|
inp->coda_rmdir.VFid = *dirfid;
|
|
|
|
inp->coda_rmdir.name = offset;
|
|
|
|
memcpy((char *)(inp) + offset, name, length);
|
|
|
|
*((char *)inp + offset + length) = '\0';
|
2007-07-19 16:48:50 +08:00
|
|
|
|
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_remove(struct super_block *sb, struct CodaFid *dirfid,
|
|
|
|
const char *name, int length)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int error=0, insize, outsize, offset;
|
|
|
|
|
|
|
|
offset = INSIZE(remove);
|
|
|
|
insize = max_t(unsigned int, offset + length + 1, OUTSIZE(remove));
|
|
|
|
UPARG(CODA_REMOVE);
|
|
|
|
|
|
|
|
inp->coda_remove.VFid = *dirfid;
|
|
|
|
inp->coda_remove.name = offset;
|
|
|
|
memcpy((char *)(inp) + offset, name, length);
|
|
|
|
*((char *)inp + offset + length) = '\0';
|
2007-07-19 16:48:50 +08:00
|
|
|
|
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_readlink(struct super_block *sb, struct CodaFid *fid,
|
|
|
|
char *buffer, int *length)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int retlen;
|
|
|
|
char *result;
|
|
|
|
|
|
|
|
insize = max_t(unsigned int,
|
2015-09-10 06:38:01 +08:00
|
|
|
INSIZE(readlink), OUTSIZE(readlink)+ *length);
|
2005-04-17 06:20:36 +08:00
|
|
|
UPARG(CODA_READLINK);
|
|
|
|
|
|
|
|
inp->coda_readlink.VFid = *fid;
|
2007-07-19 16:48:48 +08:00
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2007-07-19 16:48:48 +08:00
|
|
|
if (!error) {
|
|
|
|
retlen = outp->coda_readlink.count;
|
2015-09-10 06:38:01 +08:00
|
|
|
if (retlen >= *length)
|
|
|
|
retlen = *length - 1;
|
2005-04-17 06:20:36 +08:00
|
|
|
*length = retlen;
|
|
|
|
result = (char *)outp + (long)outp->coda_readlink.data;
|
|
|
|
memcpy(buffer, result, retlen);
|
|
|
|
*(buffer + retlen) = '\0';
|
|
|
|
}
|
2007-07-19 16:48:48 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int venus_link(struct super_block *sb, struct CodaFid *fid,
|
|
|
|
struct CodaFid *dirfid, const char *name, int len )
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
offset = INSIZE(link);
|
|
|
|
insize = max_t(unsigned int, offset + len + 1, OUTSIZE(link));
|
|
|
|
UPARG(CODA_LINK);
|
|
|
|
|
|
|
|
inp->coda_link.sourceFid = *fid;
|
|
|
|
inp->coda_link.destFid = *dirfid;
|
|
|
|
inp->coda_link.tname = offset;
|
|
|
|
|
|
|
|
/* make sure strings are null terminated */
|
|
|
|
memcpy((char *)(inp) + offset, name, len);
|
|
|
|
*((char *)inp + offset + len) = '\0';
|
2007-07-19 16:48:50 +08:00
|
|
|
|
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_symlink(struct super_block *sb, struct CodaFid *fid,
|
|
|
|
const char *name, int len,
|
|
|
|
const char *symname, int symlen)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int offset, s;
|
|
|
|
|
|
|
|
offset = INSIZE(symlink);
|
|
|
|
insize = max_t(unsigned int, offset + len + symlen + 8, OUTSIZE(symlink));
|
|
|
|
UPARG(CODA_SYMLINK);
|
|
|
|
|
|
|
|
/* inp->coda_symlink.attr = *tva; XXXXXX */
|
|
|
|
inp->coda_symlink.VFid = *fid;
|
|
|
|
|
|
|
|
/* Round up to word boundary and null terminate */
|
|
|
|
inp->coda_symlink.srcname = offset;
|
|
|
|
s = ( symlen & ~0x3 ) + 4;
|
|
|
|
memcpy((char *)(inp) + offset, symname, symlen);
|
|
|
|
*((char *)inp + offset + symlen) = '\0';
|
|
|
|
|
|
|
|
/* Round up to word boundary and null terminate */
|
|
|
|
offset += s;
|
|
|
|
inp->coda_symlink.tname = offset;
|
|
|
|
s = (len & ~0x3) + 4;
|
|
|
|
memcpy((char *)(inp) + offset, name, len);
|
|
|
|
*((char *)inp + offset + len) = '\0';
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_fsync(struct super_block *sb, struct CodaFid *fid)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
|
|
|
|
insize=SIZE(fsync);
|
|
|
|
UPARG(CODA_FSYNC);
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
inp->coda_fsync.VFid = *fid;
|
2017-09-28 03:52:12 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
int venus_access(struct super_block *sb, struct CodaFid *fid, int mask)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
|
|
|
|
insize = SIZE(access);
|
|
|
|
UPARG(CODA_ACCESS);
|
|
|
|
|
|
|
|
inp->coda_access.VFid = *fid;
|
|
|
|
inp->coda_access.flags = mask;
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), insize, &outsize, inp);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int venus_pioctl(struct super_block *sb, struct CodaFid *fid,
|
|
|
|
unsigned int cmd, struct PioctlData *data)
|
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
int iocsize;
|
|
|
|
|
|
|
|
insize = VC_MAXMSGSIZE;
|
|
|
|
UPARG(CODA_IOCTL);
|
|
|
|
|
|
|
|
/* build packet for Venus */
|
|
|
|
if (data->vi.in_size > VC_MAXDATASIZE) {
|
|
|
|
error = -EINVAL;
|
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (data->vi.out_size > VC_MAXDATASIZE) {
|
|
|
|
error = -EINVAL;
|
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
inp->coda_ioctl.VFid = *fid;
|
|
|
|
|
|
|
|
/* the cmd field was mutated by increasing its size field to
|
|
|
|
* reflect the path and follow args. We need to subtract that
|
|
|
|
* out before sending the command to Venus. */
|
|
|
|
inp->coda_ioctl.cmd = (cmd & ~(PIOCPARM_MASK << 16));
|
|
|
|
iocsize = ((cmd >> 16) & PIOCPARM_MASK) - sizeof(char *) - sizeof(int);
|
|
|
|
inp->coda_ioctl.cmd |= (iocsize & PIOCPARM_MASK) << 16;
|
|
|
|
|
|
|
|
/* in->coda_ioctl.rwflag = flag; */
|
|
|
|
inp->coda_ioctl.len = data->vi.in_size;
|
|
|
|
inp->coda_ioctl.data = (char *)(INSIZE(ioctl));
|
|
|
|
|
|
|
|
/* get the data out of user space */
|
2014-06-07 05:36:18 +08:00
|
|
|
if (copy_from_user((char *)inp + (long)inp->coda_ioctl.data,
|
|
|
|
data->vi.in, data->vi.in_size)) {
|
2005-04-17 06:20:36 +08:00
|
|
|
error = -EINVAL;
|
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(sb), SIZE(ioctl) + data->vi.in_size,
|
|
|
|
&outsize, inp);
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
if (error) {
|
2014-06-07 05:36:20 +08:00
|
|
|
pr_warn("%s: Venus returns: %d for %s\n",
|
|
|
|
__func__, error, coda_f2s(fid));
|
2005-04-17 06:20:36 +08:00
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (outsize < (long)outp->coda_ioctl.data + outp->coda_ioctl.len) {
|
|
|
|
error = -EINVAL;
|
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy out the OUT buffer. */
|
|
|
|
if (outp->coda_ioctl.len > data->vi.out_size) {
|
|
|
|
error = -EINVAL;
|
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy out the OUT buffer. */
|
|
|
|
if (copy_to_user(data->vi.out,
|
|
|
|
(char *)outp + (long)outp->coda_ioctl.data,
|
|
|
|
outp->coda_ioctl.len)) {
|
|
|
|
error = -EFAULT;
|
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
exit:
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2006-06-23 17:02:58 +08:00
|
|
|
int venus_statfs(struct dentry *dentry, struct kstatfs *sfs)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
union inputArgs *inp;
|
|
|
|
union outputArgs *outp;
|
|
|
|
int insize, outsize, error;
|
|
|
|
|
|
|
|
insize = max_t(unsigned int, INSIZE(statfs), OUTSIZE(statfs));
|
|
|
|
UPARG(CODA_STATFS);
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
error = coda_upcall(coda_vcp(dentry->d_sb), insize, &outsize, inp);
|
2007-07-19 16:48:48 +08:00
|
|
|
if (!error) {
|
2005-04-17 06:20:36 +08:00
|
|
|
sfs->f_blocks = outp->coda_statfs.stat.f_blocks;
|
|
|
|
sfs->f_bfree = outp->coda_statfs.stat.f_bfree;
|
|
|
|
sfs->f_bavail = outp->coda_statfs.stat.f_bavail;
|
|
|
|
sfs->f_files = outp->coda_statfs.stat.f_files;
|
|
|
|
sfs->f_ffree = outp->coda_statfs.stat.f_ffree;
|
|
|
|
}
|
|
|
|
|
|
|
|
CODA_FREE(inp, insize);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* coda_upcall and coda_downcall routines.
|
|
|
|
*/
|
2007-07-20 07:23:31 +08:00
|
|
|
static void coda_block_signals(sigset_t *old)
|
2007-07-19 16:48:46 +08:00
|
|
|
{
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
|
|
*old = current->blocked;
|
|
|
|
|
|
|
|
sigfillset(¤t->blocked);
|
|
|
|
sigdelset(¤t->blocked, SIGKILL);
|
|
|
|
sigdelset(¤t->blocked, SIGSTOP);
|
|
|
|
sigdelset(¤t->blocked, SIGINT);
|
|
|
|
|
|
|
|
recalc_sigpending();
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
}
|
|
|
|
|
2007-07-20 07:23:31 +08:00
|
|
|
static void coda_unblock_signals(sigset_t *old)
|
2007-07-19 16:48:46 +08:00
|
|
|
{
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
|
|
current->blocked = *old;
|
|
|
|
recalc_sigpending();
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Don't allow signals to interrupt the following upcalls before venus
|
|
|
|
* has seen them,
|
|
|
|
* - CODA_CLOSE or CODA_RELEASE upcall (to avoid reference count problems)
|
|
|
|
* - CODA_STORE (to avoid data loss)
|
|
|
|
*/
|
|
|
|
#define CODA_INTERRUPTIBLE(r) (!coda_hard && \
|
|
|
|
(((r)->uc_opcode != CODA_CLOSE && \
|
|
|
|
(r)->uc_opcode != CODA_STORE && \
|
|
|
|
(r)->uc_opcode != CODA_RELEASE) || \
|
2010-08-03 19:22:51 +08:00
|
|
|
(r)->uc_flags & CODA_REQ_READ))
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2010-10-25 14:03:46 +08:00
|
|
|
static inline void coda_waitfor_upcall(struct venus_comm *vcp,
|
|
|
|
struct upc_req *req)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
DECLARE_WAITQUEUE(wait, current);
|
2007-07-19 16:48:46 +08:00
|
|
|
unsigned long timeout = jiffies + coda_timeout * HZ;
|
|
|
|
sigset_t old;
|
|
|
|
int blocked;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-07-20 07:23:31 +08:00
|
|
|
coda_block_signals(&old);
|
2007-07-19 16:48:46 +08:00
|
|
|
blocked = 1;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-07-19 16:48:46 +08:00
|
|
|
add_wait_queue(&req->uc_sleep, &wait);
|
2005-04-17 06:20:36 +08:00
|
|
|
for (;;) {
|
2007-07-19 16:48:46 +08:00
|
|
|
if (CODA_INTERRUPTIBLE(req))
|
2005-04-17 06:20:36 +08:00
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
else
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
|
|
|
|
/* got a reply */
|
2010-08-03 19:22:51 +08:00
|
|
|
if (req->uc_flags & (CODA_REQ_WRITE | CODA_REQ_ABORT))
|
2005-04-17 06:20:36 +08:00
|
|
|
break;
|
|
|
|
|
2007-07-19 16:48:46 +08:00
|
|
|
if (blocked && time_after(jiffies, timeout) &&
|
|
|
|
CODA_INTERRUPTIBLE(req))
|
|
|
|
{
|
2007-07-20 07:23:31 +08:00
|
|
|
coda_unblock_signals(&old);
|
2007-07-19 16:48:46 +08:00
|
|
|
blocked = 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2007-07-19 16:48:46 +08:00
|
|
|
|
|
|
|
if (signal_pending(current)) {
|
|
|
|
list_del(&req->uc_chain);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2010-10-25 14:03:46 +08:00
|
|
|
mutex_unlock(&vcp->vc_mutex);
|
2007-07-19 16:48:46 +08:00
|
|
|
if (blocked)
|
|
|
|
schedule_timeout(HZ);
|
|
|
|
else
|
|
|
|
schedule();
|
2010-10-25 14:03:46 +08:00
|
|
|
mutex_lock(&vcp->vc_mutex);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
2007-07-19 16:48:46 +08:00
|
|
|
if (blocked)
|
2007-07-20 07:23:31 +08:00
|
|
|
coda_unblock_signals(&old);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-07-19 16:48:46 +08:00
|
|
|
remove_wait_queue(&req->uc_sleep, &wait);
|
|
|
|
set_current_state(TASK_RUNNING);
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
/*
|
|
|
|
* coda_upcall will return an error in the case of
|
2005-04-17 06:20:36 +08:00
|
|
|
* failed communication with Venus _or_ will peek at Venus
|
|
|
|
* reply and return Venus' error.
|
|
|
|
*
|
|
|
|
* As venus has 2 types of errors, normal errors (positive) and internal
|
|
|
|
* errors (negative), normal errors are negated, while internal errors
|
|
|
|
* are all mapped to -EINTR, while showing a nice warning message. (jh)
|
|
|
|
*/
|
2007-07-19 16:48:50 +08:00
|
|
|
static int coda_upcall(struct venus_comm *vcp,
|
2007-07-19 16:48:46 +08:00
|
|
|
int inSize, int *outSize,
|
|
|
|
union inputArgs *buffer)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
|
|
|
union outputArgs *out;
|
2007-07-19 16:48:46 +08:00
|
|
|
union inputArgs *sig_inputArgs;
|
2010-10-25 14:03:45 +08:00
|
|
|
struct upc_req *req = NULL, *sig_req;
|
|
|
|
int error;
|
|
|
|
|
2010-10-25 14:03:46 +08:00
|
|
|
mutex_lock(&vcp->vc_mutex);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
if (!vcp->vc_inuse) {
|
2014-06-07 05:36:19 +08:00
|
|
|
pr_notice("Venus dead, not sending upcall\n");
|
2010-10-25 14:03:45 +08:00
|
|
|
error = -ENXIO;
|
|
|
|
goto exit;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Format the request message. */
|
2007-07-19 16:48:48 +08:00
|
|
|
req = kmalloc(sizeof(struct upc_req), GFP_KERNEL);
|
2010-10-25 14:03:45 +08:00
|
|
|
if (!req) {
|
|
|
|
error = -ENOMEM;
|
|
|
|
goto exit;
|
|
|
|
}
|
2007-07-19 16:48:46 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
req->uc_data = (void *)buffer;
|
|
|
|
req->uc_flags = 0;
|
|
|
|
req->uc_inSize = inSize;
|
|
|
|
req->uc_outSize = *outSize ? *outSize : inSize;
|
|
|
|
req->uc_opcode = ((union inputArgs *)buffer)->ih.opcode;
|
2007-07-19 16:48:50 +08:00
|
|
|
req->uc_unique = ++vcp->vc_seq;
|
2005-04-17 06:20:36 +08:00
|
|
|
init_waitqueue_head(&req->uc_sleep);
|
2007-07-19 16:48:46 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Fill in the common input args. */
|
|
|
|
((union inputArgs *)buffer)->ih.unique = req->uc_unique;
|
|
|
|
|
|
|
|
/* Append msg to pending queue and poke Venus. */
|
2007-07-19 16:48:50 +08:00
|
|
|
list_add_tail(&req->uc_chain, &vcp->vc_pending);
|
2007-07-19 16:48:46 +08:00
|
|
|
|
2007-07-19 16:48:50 +08:00
|
|
|
wake_up_interruptible(&vcp->vc_waitq);
|
2005-04-17 06:20:36 +08:00
|
|
|
/* We can be interrupted while we wait for Venus to process
|
|
|
|
* our request. If the interrupt occurs before Venus has read
|
|
|
|
* the request, we dequeue and return. If it occurs after the
|
|
|
|
* read but before the reply, we dequeue, send a signal
|
|
|
|
* message, and return. If it occurs after the reply we ignore
|
|
|
|
* it. In no case do we want to restart the syscall. If it
|
|
|
|
* was interrupted by a venus shutdown (psdev_close), return
|
|
|
|
* ENODEV. */
|
|
|
|
|
|
|
|
/* Go to sleep. Wake up on signals only after the timeout. */
|
2010-10-25 14:03:46 +08:00
|
|
|
coda_waitfor_upcall(vcp, req);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-07-19 16:48:46 +08:00
|
|
|
/* Op went through, interrupt or not... */
|
2010-08-03 19:22:51 +08:00
|
|
|
if (req->uc_flags & CODA_REQ_WRITE) {
|
2005-04-17 06:20:36 +08:00
|
|
|
out = (union outputArgs *)req->uc_data;
|
|
|
|
/* here we map positive Venus errors to kernel errors */
|
|
|
|
error = -out->oh.result;
|
|
|
|
*outSize = req->uc_outSize;
|
|
|
|
goto exit;
|
2007-07-19 16:48:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
error = -EINTR;
|
2010-08-03 19:22:51 +08:00
|
|
|
if ((req->uc_flags & CODA_REQ_ABORT) || !signal_pending(current)) {
|
2014-06-07 05:36:19 +08:00
|
|
|
pr_warn("Unexpected interruption.\n");
|
2005-04-17 06:20:36 +08:00
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
2007-07-19 16:48:46 +08:00
|
|
|
/* Interrupted before venus read it. */
|
2010-08-03 19:22:51 +08:00
|
|
|
if (!(req->uc_flags & CODA_REQ_READ))
|
2007-07-19 16:48:46 +08:00
|
|
|
goto exit;
|
|
|
|
|
|
|
|
/* Venus saw the upcall, make sure we can send interrupt signal */
|
2007-07-19 16:48:50 +08:00
|
|
|
if (!vcp->vc_inuse) {
|
2014-06-07 05:36:19 +08:00
|
|
|
pr_info("Venus dead, not sending signal.\n");
|
2007-07-19 16:48:46 +08:00
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = -ENOMEM;
|
2007-07-19 16:48:48 +08:00
|
|
|
sig_req = kmalloc(sizeof(struct upc_req), GFP_KERNEL);
|
2007-07-19 16:48:46 +08:00
|
|
|
if (!sig_req) goto exit;
|
|
|
|
|
2019-07-17 07:28:38 +08:00
|
|
|
sig_req->uc_data = kvzalloc(sizeof(struct coda_in_hdr), GFP_KERNEL);
|
2007-07-19 16:48:46 +08:00
|
|
|
if (!sig_req->uc_data) {
|
2007-07-19 16:48:48 +08:00
|
|
|
kfree(sig_req);
|
2007-07-19 16:48:46 +08:00
|
|
|
goto exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = -EINTR;
|
|
|
|
sig_inputArgs = (union inputArgs *)sig_req->uc_data;
|
|
|
|
sig_inputArgs->ih.opcode = CODA_SIGNAL;
|
|
|
|
sig_inputArgs->ih.unique = req->uc_unique;
|
|
|
|
|
2010-08-03 19:22:51 +08:00
|
|
|
sig_req->uc_flags = CODA_REQ_ASYNC;
|
2007-07-19 16:48:46 +08:00
|
|
|
sig_req->uc_opcode = sig_inputArgs->ih.opcode;
|
|
|
|
sig_req->uc_unique = sig_inputArgs->ih.unique;
|
|
|
|
sig_req->uc_inSize = sizeof(struct coda_in_hdr);
|
|
|
|
sig_req->uc_outSize = sizeof(struct coda_in_hdr);
|
|
|
|
|
|
|
|
/* insert at head of queue! */
|
2007-07-19 16:48:50 +08:00
|
|
|
list_add(&(sig_req->uc_chain), &vcp->vc_pending);
|
|
|
|
wake_up_interruptible(&vcp->vc_waitq);
|
2007-07-19 16:48:46 +08:00
|
|
|
|
|
|
|
exit:
|
2007-07-19 16:48:48 +08:00
|
|
|
kfree(req);
|
2010-10-25 14:03:46 +08:00
|
|
|
mutex_unlock(&vcp->vc_mutex);
|
2005-04-17 06:20:36 +08:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
The statements below are part of the Coda opportunistic
|
|
|
|
programming -- taken from the Mach/BSD kernel code for Coda.
|
|
|
|
You don't get correct semantics by stating what needs to be
|
|
|
|
done without guaranteeing the invariants needed for it to happen.
|
|
|
|
When will be have time to find out what exactly is going on? (pjb)
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There are 7 cases where cache invalidations occur. The semantics
|
|
|
|
* of each is listed here:
|
|
|
|
*
|
|
|
|
* CODA_FLUSH -- flush all entries from the name cache and the cnode cache.
|
|
|
|
* CODA_PURGEUSER -- flush all entries from the name cache for a specific user
|
|
|
|
* This call is a result of token expiration.
|
|
|
|
*
|
|
|
|
* The next arise as the result of callbacks on a file or directory.
|
|
|
|
* CODA_ZAPFILE -- flush the cached attributes for a file.
|
|
|
|
|
|
|
|
* CODA_ZAPDIR -- flush the attributes for the dir and
|
|
|
|
* force a new lookup for all the children
|
|
|
|
of this dir.
|
|
|
|
|
|
|
|
*
|
|
|
|
* The next is a result of Venus detecting an inconsistent file.
|
|
|
|
* CODA_PURGEFID -- flush the attribute for the file
|
|
|
|
* purge it and its children from the dcache
|
|
|
|
*
|
|
|
|
* The last allows Venus to replace local fids with global ones
|
|
|
|
* during reintegration.
|
|
|
|
*
|
|
|
|
* CODA_REPLACE -- replace one CodaFid with another throughout the name cache */
|
|
|
|
|
2019-07-17 07:28:16 +08:00
|
|
|
int coda_downcall(struct venus_comm *vcp, int opcode, union outputArgs *out,
|
|
|
|
size_t nbytes)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-07-19 16:48:49 +08:00
|
|
|
struct inode *inode = NULL;
|
2010-10-25 14:03:46 +08:00
|
|
|
struct CodaFid *fid = NULL, *newfid;
|
2010-10-25 14:03:45 +08:00
|
|
|
struct super_block *sb;
|
2007-07-19 16:48:49 +08:00
|
|
|
|
2019-07-17 07:28:16 +08:00
|
|
|
/*
|
|
|
|
* Make sure we have received enough data from the cache
|
|
|
|
* manager to populate the necessary fields in the buffer
|
|
|
|
*/
|
|
|
|
switch (opcode) {
|
|
|
|
case CODA_PURGEUSER:
|
|
|
|
if (nbytes < sizeof(struct coda_purgeuser_out))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_ZAPDIR:
|
|
|
|
if (nbytes < sizeof(struct coda_zapdir_out))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_ZAPFILE:
|
|
|
|
if (nbytes < sizeof(struct coda_zapfile_out))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_PURGEFID:
|
|
|
|
if (nbytes < sizeof(struct coda_purgefid_out))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_REPLACE:
|
|
|
|
if (nbytes < sizeof(struct coda_replace_out))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/* Handle invalidation requests. */
|
2010-10-25 14:03:46 +08:00
|
|
|
mutex_lock(&vcp->vc_mutex);
|
2010-10-25 14:03:45 +08:00
|
|
|
sb = vcp->vc_sb;
|
|
|
|
if (!sb || !sb->s_root)
|
|
|
|
goto unlock_out;
|
2007-07-19 16:48:49 +08:00
|
|
|
|
|
|
|
switch (opcode) {
|
|
|
|
case CODA_FLUSH:
|
|
|
|
coda_cache_clear_all(sb);
|
|
|
|
shrink_dcache_sb(sb);
|
2015-03-18 06:25:59 +08:00
|
|
|
if (d_really_is_positive(sb->s_root))
|
|
|
|
coda_flag_inode(d_inode(sb->s_root), C_FLUSH);
|
2007-07-19 16:48:49 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_PURGEUSER:
|
|
|
|
coda_cache_clear_all(sb);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_ZAPDIR:
|
|
|
|
fid = &out->coda_zapdir.CodaFid;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_ZAPFILE:
|
|
|
|
fid = &out->coda_zapfile.CodaFid;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_PURGEFID:
|
|
|
|
fid = &out->coda_purgefid.CodaFid;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_REPLACE:
|
|
|
|
fid = &out->coda_replace.OldFid;
|
|
|
|
break;
|
|
|
|
}
|
2010-10-25 14:03:46 +08:00
|
|
|
if (fid)
|
|
|
|
inode = coda_fid_to_inode(fid, sb);
|
2007-07-19 16:48:49 +08:00
|
|
|
|
2010-10-25 14:03:45 +08:00
|
|
|
unlock_out:
|
2010-10-25 14:03:46 +08:00
|
|
|
mutex_unlock(&vcp->vc_mutex);
|
|
|
|
|
|
|
|
if (!inode)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
switch (opcode) {
|
|
|
|
case CODA_ZAPDIR:
|
|
|
|
coda_flag_inode_children(inode, C_PURGE);
|
|
|
|
coda_flag_inode(inode, C_VATTR);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_ZAPFILE:
|
|
|
|
coda_flag_inode(inode, C_VATTR);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_PURGEFID:
|
|
|
|
coda_flag_inode_children(inode, C_PURGE);
|
2010-10-25 14:03:45 +08:00
|
|
|
|
2010-10-25 14:03:46 +08:00
|
|
|
/* catch the dentries later if some are still busy */
|
|
|
|
coda_flag_inode(inode, C_PURGE);
|
|
|
|
d_prune_aliases(inode);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CODA_REPLACE:
|
|
|
|
newfid = &out->coda_replace.NewFid;
|
|
|
|
coda_replace_fid(inode, fid, newfid);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
iput(inode);
|
2007-07-19 16:48:49 +08:00
|
|
|
return 0;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|