linux/drivers/usb/gadget/fsl_usb2_udc.c

2478 lines
65 KiB
C
Raw Normal View History

/*
* Copyright (C) 2004-2007 Freescale Semicondutor, Inc. All rights reserved.
*
* Author: Li Yang <leoli@freescale.com>
* Jiang Bo <tanya.jiang@freescale.com>
*
* Description:
* Freescale high-speed USB SOC DR module device controller driver.
* This can be found on MPC8349E/MPC8313E cpus.
* The driver is previously named as mpc_udc. Based on bare board
* code from Dave Liu and Shlomi Gridish.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#undef VERBOSE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/usb/ch9.h>
#include <linux/usb_gadget.h>
#include <linux/usb/otg.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/fsl_devices.h>
#include <linux/dmapool.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/unaligned.h>
#include <asm/dma.h>
#include <asm/cacheflush.h>
#include "fsl_usb2_udc.h"
#define DRIVER_DESC "Freescale High-Speed USB SOC Device Controller driver"
#define DRIVER_AUTHOR "Li Yang/Jiang Bo"
#define DRIVER_VERSION "Apr 20, 2007"
#define DMA_ADDR_INVALID (~(dma_addr_t)0)
static const char driver_name[] = "fsl-usb2-udc";
static const char driver_desc[] = DRIVER_DESC;
volatile static struct usb_dr_device *dr_regs = NULL;
volatile static struct usb_sys_interface *usb_sys_regs = NULL;
/* it is initialized in probe() */
static struct fsl_udc *udc_controller = NULL;
static const struct usb_endpoint_descriptor
fsl_ep0_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = USB_MAX_CTRL_PAYLOAD,
};
static int fsl_udc_suspend(struct platform_device *pdev, pm_message_t state);
static int fsl_udc_resume(struct platform_device *pdev);
static void fsl_ep_fifo_flush(struct usb_ep *_ep);
#ifdef CONFIG_PPC32
#define fsl_readl(addr) in_le32(addr)
#define fsl_writel(addr, val32) out_le32(val32, addr)
#else
#define fsl_readl(addr) readl(addr)
#define fsl_writel(addr, val32) writel(addr, val32)
#endif
/********************************************************************
* Internal Used Function
********************************************************************/
/*-----------------------------------------------------------------
* done() - retire a request; caller blocked irqs
* @status : request status to be set, only works when
* request is still in progress.
*--------------------------------------------------------------*/
static void done(struct fsl_ep *ep, struct fsl_req *req, int status)
{
struct fsl_udc *udc = NULL;
unsigned char stopped = ep->stopped;
struct ep_td_struct *curr_td, *next_td;
int j;
udc = (struct fsl_udc *)ep->udc;
/* Removed the req from fsl_ep->queue */
list_del_init(&req->queue);
/* req.status should be set as -EINPROGRESS in ep_queue() */
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
/* Free dtd for the request */
next_td = req->head;
for (j = 0; j < req->dtd_count; j++) {
curr_td = next_td;
if (j != req->dtd_count - 1) {
next_td = curr_td->next_td_virt;
}
dma_pool_free(udc->td_pool, curr_td, curr_td->td_dma);
}
if (req->mapped) {
dma_unmap_single(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
ep_is_in(ep)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->req.dma = DMA_ADDR_INVALID;
req->mapped = 0;
} else
dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
ep_is_in(ep)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
if (status && (status != -ESHUTDOWN))
VDBG("complete %s req %p stat %d len %u/%u",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
ep->stopped = 1;
spin_unlock(&ep->udc->lock);
/* complete() is from gadget layer,
* eg fsg->bulk_in_complete() */
if (req->req.complete)
req->req.complete(&ep->ep, &req->req);
spin_lock(&ep->udc->lock);
ep->stopped = stopped;
}
/*-----------------------------------------------------------------
* nuke(): delete all requests related to this ep
* called with spinlock held
*--------------------------------------------------------------*/
static void nuke(struct fsl_ep *ep, int status)
{
ep->stopped = 1;
/* Flush fifo */
fsl_ep_fifo_flush(&ep->ep);
/* Whether this eq has request linked */
while (!list_empty(&ep->queue)) {
struct fsl_req *req = NULL;
req = list_entry(ep->queue.next, struct fsl_req, queue);
done(ep, req, status);
}
}
/*------------------------------------------------------------------
Internal Hardware related function
------------------------------------------------------------------*/
static int dr_controller_setup(struct fsl_udc *udc)
{
unsigned int tmp = 0, portctrl = 0, ctrl = 0;
unsigned long timeout;
#define FSL_UDC_RESET_TIMEOUT 1000
/* before here, make sure dr_regs has been initialized */
if (!udc)
return -EINVAL;
/* Stop and reset the usb controller */
tmp = fsl_readl(&dr_regs->usbcmd);
tmp &= ~USB_CMD_RUN_STOP;
fsl_writel(tmp, &dr_regs->usbcmd);
tmp = fsl_readl(&dr_regs->usbcmd);
tmp |= USB_CMD_CTRL_RESET;
fsl_writel(tmp, &dr_regs->usbcmd);
/* Wait for reset to complete */
timeout = jiffies + FSL_UDC_RESET_TIMEOUT;
while (fsl_readl(&dr_regs->usbcmd) & USB_CMD_CTRL_RESET) {
if (time_after(jiffies, timeout)) {
ERR("udc reset timeout! \n");
return -ETIMEDOUT;
}
cpu_relax();
}
/* Set the controller as device mode */
tmp = fsl_readl(&dr_regs->usbmode);
tmp |= USB_MODE_CTRL_MODE_DEVICE;
/* Disable Setup Lockout */
tmp |= USB_MODE_SETUP_LOCK_OFF;
fsl_writel(tmp, &dr_regs->usbmode);
/* Clear the setup status */
fsl_writel(0, &dr_regs->usbsts);
tmp = udc->ep_qh_dma;
tmp &= USB_EP_LIST_ADDRESS_MASK;
fsl_writel(tmp, &dr_regs->endpointlistaddr);
VDBG("vir[qh_base] is %p phy[qh_base] is 0x%8x reg is 0x%8x",
(int)udc->ep_qh, (int)tmp,
fsl_readl(&dr_regs->endpointlistaddr));
/* Config PHY interface */
portctrl = fsl_readl(&dr_regs->portsc1);
portctrl &= ~(PORTSCX_PHY_TYPE_SEL | PORTSCX_PORT_WIDTH);
switch (udc->phy_mode) {
case FSL_USB2_PHY_ULPI:
portctrl |= PORTSCX_PTS_ULPI;
break;
case FSL_USB2_PHY_UTMI_WIDE:
portctrl |= PORTSCX_PTW_16BIT;
/* fall through */
case FSL_USB2_PHY_UTMI:
portctrl |= PORTSCX_PTS_UTMI;
break;
case FSL_USB2_PHY_SERIAL:
portctrl |= PORTSCX_PTS_FSLS;
break;
default:
return -EINVAL;
}
fsl_writel(portctrl, &dr_regs->portsc1);
/* Config control enable i/o output, cpu endian register */
ctrl = __raw_readl(&usb_sys_regs->control);
ctrl |= USB_CTRL_IOENB;
__raw_writel(ctrl, &usb_sys_regs->control);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
/* Turn on cache snooping hardware, since some PowerPC platforms
* wholly rely on hardware to deal with cache coherent. */
/* Setup Snooping for all the 4GB space */
tmp = SNOOP_SIZE_2GB; /* starts from 0x0, size 2G */
__raw_writel(tmp, &usb_sys_regs->snoop1);
tmp |= 0x80000000; /* starts from 0x8000000, size 2G */
__raw_writel(tmp, &usb_sys_regs->snoop2);
#endif
return 0;
}
/* Enable DR irq and set controller to run state */
static void dr_controller_run(struct fsl_udc *udc)
{
u32 temp;
/* Enable DR irq reg */
temp = USB_INTR_INT_EN | USB_INTR_ERR_INT_EN
| USB_INTR_PTC_DETECT_EN | USB_INTR_RESET_EN
| USB_INTR_DEVICE_SUSPEND | USB_INTR_SYS_ERR_EN;
fsl_writel(temp, &dr_regs->usbintr);
/* Clear stopped bit */
udc->stopped = 0;
/* Set the controller as device mode */
temp = fsl_readl(&dr_regs->usbmode);
temp |= USB_MODE_CTRL_MODE_DEVICE;
fsl_writel(temp, &dr_regs->usbmode);
/* Set controller to Run */
temp = fsl_readl(&dr_regs->usbcmd);
temp |= USB_CMD_RUN_STOP;
fsl_writel(temp, &dr_regs->usbcmd);
return;
}
static void dr_controller_stop(struct fsl_udc *udc)
{
unsigned int tmp;
/* disable all INTR */
fsl_writel(0, &dr_regs->usbintr);
/* Set stopped bit for isr */
udc->stopped = 1;
/* disable IO output */
/* usb_sys_regs->control = 0; */
/* set controller to Stop */
tmp = fsl_readl(&dr_regs->usbcmd);
tmp &= ~USB_CMD_RUN_STOP;
fsl_writel(tmp, &dr_regs->usbcmd);
return;
}
void dr_ep_setup(unsigned char ep_num, unsigned char dir, unsigned char ep_type)
{
unsigned int tmp_epctrl = 0;
tmp_epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]);
if (dir) {
if (ep_num)
tmp_epctrl |= EPCTRL_TX_DATA_TOGGLE_RST;
tmp_epctrl |= EPCTRL_TX_ENABLE;
tmp_epctrl |= ((unsigned int)(ep_type)
<< EPCTRL_TX_EP_TYPE_SHIFT);
} else {
if (ep_num)
tmp_epctrl |= EPCTRL_RX_DATA_TOGGLE_RST;
tmp_epctrl |= EPCTRL_RX_ENABLE;
tmp_epctrl |= ((unsigned int)(ep_type)
<< EPCTRL_RX_EP_TYPE_SHIFT);
}
fsl_writel(tmp_epctrl, &dr_regs->endptctrl[ep_num]);
}
static void
dr_ep_change_stall(unsigned char ep_num, unsigned char dir, int value)
{
u32 tmp_epctrl = 0;
tmp_epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]);
if (value) {
/* set the stall bit */
if (dir)
tmp_epctrl |= EPCTRL_TX_EP_STALL;
else
tmp_epctrl |= EPCTRL_RX_EP_STALL;
} else {
/* clear the stall bit and reset data toggle */
if (dir) {
tmp_epctrl &= ~EPCTRL_TX_EP_STALL;
tmp_epctrl |= EPCTRL_TX_DATA_TOGGLE_RST;
} else {
tmp_epctrl &= ~EPCTRL_RX_EP_STALL;
tmp_epctrl |= EPCTRL_RX_DATA_TOGGLE_RST;
}
}
fsl_writel(tmp_epctrl, &dr_regs->endptctrl[ep_num]);
}
/* Get stall status of a specific ep
Return: 0: not stalled; 1:stalled */
static int dr_ep_get_stall(unsigned char ep_num, unsigned char dir)
{
u32 epctrl;
epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]);
if (dir)
return (epctrl & EPCTRL_TX_EP_STALL) ? 1 : 0;
else
return (epctrl & EPCTRL_RX_EP_STALL) ? 1 : 0;
}
/********************************************************************
Internal Structure Build up functions
********************************************************************/
/*------------------------------------------------------------------
* struct_ep_qh_setup(): set the Endpoint Capabilites field of QH
* @zlt: Zero Length Termination Select (1: disable; 0: enable)
* @mult: Mult field
------------------------------------------------------------------*/
static void struct_ep_qh_setup(struct fsl_udc *udc, unsigned char ep_num,
unsigned char dir, unsigned char ep_type,
unsigned int max_pkt_len,
unsigned int zlt, unsigned char mult)
{
struct ep_queue_head *p_QH = &udc->ep_qh[2 * ep_num + dir];
unsigned int tmp = 0;
/* set the Endpoint Capabilites in QH */
switch (ep_type) {
case USB_ENDPOINT_XFER_CONTROL:
/* Interrupt On Setup (IOS). for control ep */
tmp = (max_pkt_len << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
| EP_QUEUE_HEAD_IOS;
break;
case USB_ENDPOINT_XFER_ISOC:
tmp = (max_pkt_len << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
| (mult << EP_QUEUE_HEAD_MULT_POS);
break;
case USB_ENDPOINT_XFER_BULK:
case USB_ENDPOINT_XFER_INT:
tmp = max_pkt_len << EP_QUEUE_HEAD_MAX_PKT_LEN_POS;
break;
default:
VDBG("error ep type is %d", ep_type);
return;
}
if (zlt)
tmp |= EP_QUEUE_HEAD_ZLT_SEL;
p_QH->max_pkt_length = cpu_to_le32(tmp);
return;
}
/* Setup qh structure and ep register for ep0. */
static void ep0_setup(struct fsl_udc *udc)
{
/* the intialization of an ep includes: fields in QH, Regs,
* fsl_ep struct */
struct_ep_qh_setup(udc, 0, USB_RECV, USB_ENDPOINT_XFER_CONTROL,
USB_MAX_CTRL_PAYLOAD, 0, 0);
struct_ep_qh_setup(udc, 0, USB_SEND, USB_ENDPOINT_XFER_CONTROL,
USB_MAX_CTRL_PAYLOAD, 0, 0);
dr_ep_setup(0, USB_RECV, USB_ENDPOINT_XFER_CONTROL);
dr_ep_setup(0, USB_SEND, USB_ENDPOINT_XFER_CONTROL);
return;
}
/***********************************************************************
Endpoint Management Functions
***********************************************************************/
/*-------------------------------------------------------------------------
* when configurations are set, or when interface settings change
* for example the do_set_interface() in gadget layer,
* the driver will enable or disable the relevant endpoints
* ep0 doesn't use this routine. It is always enabled.
-------------------------------------------------------------------------*/
static int fsl_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct fsl_udc *udc = NULL;
struct fsl_ep *ep = NULL;
unsigned short max = 0;
unsigned char mult = 0, zlt;
int retval = -EINVAL;
unsigned long flags = 0;
ep = container_of(_ep, struct fsl_ep, ep);
/* catch various bogus parameters */
if (!_ep || !desc || ep->desc
|| (desc->bDescriptorType != USB_DT_ENDPOINT))
return -EINVAL;
udc = ep->udc;
if (!udc->driver || (udc->gadget.speed == USB_SPEED_UNKNOWN))
return -ESHUTDOWN;
max = le16_to_cpu(desc->wMaxPacketSize);
/* Disable automatic zlp generation. Driver is reponsible to indicate
* explicitly through req->req.zero. This is needed to enable multi-td
* request. */
zlt = 1;
/* Assume the max packet size from gadget is always correct */
switch (desc->bmAttributes & 0x03) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_BULK:
case USB_ENDPOINT_XFER_INT:
/* mult = 0. Execute N Transactions as demonstrated by
* the USB variable length packet protocol where N is
* computed using the Maximum Packet Length (dQH) and
* the Total Bytes field (dTD) */
mult = 0;
break;
case USB_ENDPOINT_XFER_ISOC:
/* Calculate transactions needed for high bandwidth iso */
mult = (unsigned char)(1 + ((max >> 11) & 0x03));
max = max & 0x8ff; /* bit 0~10 */
/* 3 transactions at most */
if (mult > 3)
goto en_done;
break;
default:
goto en_done;
}
spin_lock_irqsave(&udc->lock, flags);
ep->ep.maxpacket = max;
ep->desc = desc;
ep->stopped = 0;
/* Controller related setup */
/* Init EPx Queue Head (Ep Capabilites field in QH
* according to max, zlt, mult) */
struct_ep_qh_setup(udc, (unsigned char) ep_index(ep),
(unsigned char) ((desc->bEndpointAddress & USB_DIR_IN)
? USB_SEND : USB_RECV),
(unsigned char) (desc->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK),
max, zlt, mult);
/* Init endpoint ctrl register */
dr_ep_setup((unsigned char) ep_index(ep),
(unsigned char) ((desc->bEndpointAddress & USB_DIR_IN)
? USB_SEND : USB_RECV),
(unsigned char) (desc->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK));
spin_unlock_irqrestore(&udc->lock, flags);
retval = 0;
VDBG("enabled %s (ep%d%s) maxpacket %d",ep->ep.name,
ep->desc->bEndpointAddress & 0x0f,
(desc->bEndpointAddress & USB_DIR_IN)
? "in" : "out", max);
en_done:
return retval;
}
/*---------------------------------------------------------------------
* @ep : the ep being unconfigured. May not be ep0
* Any pending and uncomplete req will complete with status (-ESHUTDOWN)
*---------------------------------------------------------------------*/
static int fsl_ep_disable(struct usb_ep *_ep)
{
struct fsl_udc *udc = NULL;
struct fsl_ep *ep = NULL;
unsigned long flags = 0;
u32 epctrl;
int ep_num;
ep = container_of(_ep, struct fsl_ep, ep);
if (!_ep || !ep->desc) {
VDBG("%s not enabled", _ep ? ep->ep.name : NULL);
return -EINVAL;
}
/* disable ep on controller */
ep_num = ep_index(ep);
epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]);
if (ep_is_in(ep))
epctrl &= ~EPCTRL_TX_ENABLE;
else
epctrl &= ~EPCTRL_RX_ENABLE;
fsl_writel(epctrl, &dr_regs->endptctrl[ep_num]);
udc = (struct fsl_udc *)ep->udc;
spin_lock_irqsave(&udc->lock, flags);
/* nuke all pending requests (does flush) */
nuke(ep, -ESHUTDOWN);
ep->desc = 0;
ep->stopped = 1;
spin_unlock_irqrestore(&udc->lock, flags);
VDBG("disabled %s OK", _ep->name);
return 0;
}
/*---------------------------------------------------------------------
* allocate a request object used by this endpoint
* the main operation is to insert the req->queue to the eq->queue
* Returns the request, or null if one could not be allocated
*---------------------------------------------------------------------*/
static struct usb_request *
fsl_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct fsl_req *req = NULL;
req = kzalloc(sizeof *req, gfp_flags);
if (!req)
return NULL;
req->req.dma = DMA_ADDR_INVALID;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void fsl_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct fsl_req *req = NULL;
req = container_of(_req, struct fsl_req, req);
if (_req)
kfree(req);
}
/*-------------------------------------------------------------------------*/
static int fsl_queue_td(struct fsl_ep *ep, struct fsl_req *req)
{
int i = ep_index(ep) * 2 + ep_is_in(ep);
u32 temp, bitmask, tmp_stat;
struct ep_queue_head *dQH = &ep->udc->ep_qh[i];
/* VDBG("QH addr Register 0x%8x", dr_regs->endpointlistaddr);
VDBG("ep_qh[%d] addr is 0x%8x", i, (u32)&(ep->udc->ep_qh[i])); */
bitmask = ep_is_in(ep)
? (1 << (ep_index(ep) + 16))
: (1 << (ep_index(ep)));
/* check if the pipe is empty */
if (!(list_empty(&ep->queue))) {
/* Add td to the end */
struct fsl_req *lastreq;
lastreq = list_entry(ep->queue.prev, struct fsl_req, queue);
lastreq->tail->next_td_ptr =
cpu_to_le32(req->head->td_dma & DTD_ADDR_MASK);
/* Read prime bit, if 1 goto done */
if (fsl_readl(&dr_regs->endpointprime) & bitmask)
goto out;
do {
/* Set ATDTW bit in USBCMD */
temp = fsl_readl(&dr_regs->usbcmd);
fsl_writel(temp | USB_CMD_ATDTW, &dr_regs->usbcmd);
/* Read correct status bit */
tmp_stat = fsl_readl(&dr_regs->endptstatus) & bitmask;
} while (!(fsl_readl(&dr_regs->usbcmd) & USB_CMD_ATDTW));
/* Write ATDTW bit to 0 */
temp = fsl_readl(&dr_regs->usbcmd);
fsl_writel(temp & ~USB_CMD_ATDTW, &dr_regs->usbcmd);
if (tmp_stat)
goto out;
}
/* Write dQH next pointer and terminate bit to 0 */
temp = req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
dQH->next_dtd_ptr = cpu_to_le32(temp);
/* Clear active and halt bit */
temp = cpu_to_le32(~(EP_QUEUE_HEAD_STATUS_ACTIVE
| EP_QUEUE_HEAD_STATUS_HALT));
dQH->size_ioc_int_sts &= temp;
/* Prime endpoint by writing 1 to ENDPTPRIME */
temp = ep_is_in(ep)
? (1 << (ep_index(ep) + 16))
: (1 << (ep_index(ep)));
fsl_writel(temp, &dr_regs->endpointprime);
out:
return 0;
}
/* Fill in the dTD structure
* @req: request that the transfer belongs to
* @length: return actually data length of the dTD
* @dma: return dma address of the dTD
* @is_last: return flag if it is the last dTD of the request
* return: pointer to the built dTD */
static struct ep_td_struct *fsl_build_dtd(struct fsl_req *req, unsigned *length,
dma_addr_t *dma, int *is_last)
{
u32 swap_temp;
struct ep_td_struct *dtd;
/* how big will this transfer be? */
*length = min(req->req.length - req->req.actual,
(unsigned)EP_MAX_LENGTH_TRANSFER);
dtd = dma_pool_alloc(udc_controller->td_pool, GFP_KERNEL, dma);
if (dtd == NULL)
return dtd;
dtd->td_dma = *dma;
/* Clear reserved field */
swap_temp = cpu_to_le32(dtd->size_ioc_sts);
swap_temp &= ~DTD_RESERVED_FIELDS;
dtd->size_ioc_sts = cpu_to_le32(swap_temp);
/* Init all of buffer page pointers */
swap_temp = (u32) (req->req.dma + req->req.actual);
dtd->buff_ptr0 = cpu_to_le32(swap_temp);
dtd->buff_ptr1 = cpu_to_le32(swap_temp + 0x1000);
dtd->buff_ptr2 = cpu_to_le32(swap_temp + 0x2000);
dtd->buff_ptr3 = cpu_to_le32(swap_temp + 0x3000);
dtd->buff_ptr4 = cpu_to_le32(swap_temp + 0x4000);
req->req.actual += *length;
/* zlp is needed if req->req.zero is set */
if (req->req.zero) {
if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
*is_last = 1;
else
*is_last = 0;
} else if (req->req.length == req->req.actual)
*is_last = 1;
else
*is_last = 0;
if ((*is_last) == 0)
VDBG("multi-dtd request!\n");
/* Fill in the transfer size; set active bit */
swap_temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
/* Enable interrupt for the last dtd of a request */
if (*is_last && !req->req.no_interrupt)
swap_temp |= DTD_IOC;
dtd->size_ioc_sts = cpu_to_le32(swap_temp);
mb();
VDBG("length = %d address= 0x%x", *length, (int)*dma);
return dtd;
}
/* Generate dtd chain for a request */
static int fsl_req_to_dtd(struct fsl_req *req)
{
unsigned count;
int is_last;
int is_first =1;
struct ep_td_struct *last_dtd = NULL, *dtd;
dma_addr_t dma;
do {
dtd = fsl_build_dtd(req, &count, &dma, &is_last);
if (dtd == NULL)
return -ENOMEM;
if (is_first) {
is_first = 0;
req->head = dtd;
} else {
last_dtd->next_td_ptr = cpu_to_le32(dma);
last_dtd->next_td_virt = dtd;
}
last_dtd = dtd;
req->dtd_count++;
} while (!is_last);
dtd->next_td_ptr = cpu_to_le32(DTD_NEXT_TERMINATE);
req->tail = dtd;
return 0;
}
/* queues (submits) an I/O request to an endpoint */
static int
fsl_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct fsl_ep *ep = container_of(_ep, struct fsl_ep, ep);
struct fsl_req *req = container_of(_req, struct fsl_req, req);
struct fsl_udc *udc;
unsigned long flags;
int is_iso = 0;
/* catch various bogus parameters */
if (!_req || !req->req.complete || !req->req.buf
|| !list_empty(&req->queue)) {
VDBG("%s, bad params\n", __FUNCTION__);
return -EINVAL;
}
if (!_ep || (!ep->desc && ep_index(ep))) {
VDBG("%s, bad ep\n", __FUNCTION__);
return -EINVAL;
}
if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
if (req->req.length > ep->ep.maxpacket)
return -EMSGSIZE;
is_iso = 1;
}
udc = ep->udc;
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
req->ep = ep;
/* map virtual address to hardware */
if (req->req.dma == DMA_ADDR_INVALID) {
req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
req->req.buf,
req->req.length, ep_is_in(ep)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->mapped = 1;
} else {
dma_sync_single_for_device(ep->udc->gadget.dev.parent,
req->req.dma, req->req.length,
ep_is_in(ep)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
req->mapped = 0;
}
req->req.status = -EINPROGRESS;
req->req.actual = 0;
req->dtd_count = 0;
spin_lock_irqsave(&udc->lock, flags);
/* build dtds and push them to device queue */
if (!fsl_req_to_dtd(req)) {
fsl_queue_td(ep, req);
} else {
spin_unlock_irqrestore(&udc->lock, flags);
return -ENOMEM;
}
/* Update ep0 state */
if ((ep_index(ep) == 0))
udc->ep0_state = DATA_STATE_XMIT;
/* irq handler advances the queue */
if (req != NULL)
list_add_tail(&req->queue, &ep->queue);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/* dequeues (cancels, unlinks) an I/O request from an endpoint */
static int fsl_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct fsl_ep *ep = container_of(_ep, struct fsl_ep, ep);
struct fsl_req *req;
unsigned long flags;
int ep_num, stopped, ret = 0;
u32 epctrl;
if (!_ep || !_req)
return -EINVAL;
spin_lock_irqsave(&ep->udc->lock, flags);
stopped = ep->stopped;
/* Stop the ep before we deal with the queue */
ep->stopped = 1;
ep_num = ep_index(ep);
epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]);
if (ep_is_in(ep))
epctrl &= ~EPCTRL_TX_ENABLE;
else
epctrl &= ~EPCTRL_RX_ENABLE;
fsl_writel(epctrl, &dr_regs->endptctrl[ep_num]);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
ret = -EINVAL;
goto out;
}
/* The request is in progress, or completed but not dequeued */
if (ep->queue.next == &req->queue) {
_req->status = -ECONNRESET;
fsl_ep_fifo_flush(_ep); /* flush current transfer */
/* The request isn't the last request in this ep queue */
if (req->queue.next != &ep->queue) {
struct ep_queue_head *qh;
struct fsl_req *next_req;
qh = ep->qh;
next_req = list_entry(req->queue.next, struct fsl_req,
queue);
/* Point the QH to the first TD of next request */
fsl_writel((u32) next_req->head, &qh->curr_dtd_ptr);
}
/* The request hasn't been processed, patch up the TD chain */
} else {
struct fsl_req *prev_req;
prev_req = list_entry(req->queue.prev, struct fsl_req, queue);
fsl_writel(fsl_readl(&req->tail->next_td_ptr),
&prev_req->tail->next_td_ptr);
}
done(ep, req, -ECONNRESET);
/* Enable EP */
out: epctrl = fsl_readl(&dr_regs->endptctrl[ep_num]);
if (ep_is_in(ep))
epctrl |= EPCTRL_TX_ENABLE;
else
epctrl |= EPCTRL_RX_ENABLE;
fsl_writel(epctrl, &dr_regs->endptctrl[ep_num]);
ep->stopped = stopped;
spin_unlock_irqrestore(&ep->udc->lock, flags);
return ret;
}
/*-------------------------------------------------------------------------*/
/*-----------------------------------------------------------------
* modify the endpoint halt feature
* @ep: the non-isochronous endpoint being stalled
* @value: 1--set halt 0--clear halt
* Returns zero, or a negative error code.
*----------------------------------------------------------------*/
static int fsl_ep_set_halt(struct usb_ep *_ep, int value)
{
struct fsl_ep *ep = NULL;
unsigned long flags = 0;
int status = -EOPNOTSUPP; /* operation not supported */
unsigned char ep_dir = 0, ep_num = 0;
struct fsl_udc *udc = NULL;
ep = container_of(_ep, struct fsl_ep, ep);
udc = ep->udc;
if (!_ep || !ep->desc) {
status = -EINVAL;
goto out;
}
if (ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
status = -EOPNOTSUPP;
goto out;
}
/* Attempt to halt IN ep will fail if any transfer requests
* are still queue */
if (value && ep_is_in(ep) && !list_empty(&ep->queue)) {
status = -EAGAIN;
goto out;
}
status = 0;
ep_dir = ep_is_in(ep) ? USB_SEND : USB_RECV;
ep_num = (unsigned char)(ep_index(ep));
spin_lock_irqsave(&ep->udc->lock, flags);
dr_ep_change_stall(ep_num, ep_dir, value);
spin_unlock_irqrestore(&ep->udc->lock, flags);
if (ep_index(ep) == 0) {
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = 0;
}
out:
VDBG(" %s %s halt stat %d", ep->ep.name,
value ? "set" : "clear", status);
return status;
}
static void fsl_ep_fifo_flush(struct usb_ep *_ep)
{
struct fsl_ep *ep;
int ep_num, ep_dir;
u32 bits;
unsigned long timeout;
#define FSL_UDC_FLUSH_TIMEOUT 1000
if (!_ep) {
return;
} else {
ep = container_of(_ep, struct fsl_ep, ep);
if (!ep->desc)
return;
}
ep_num = ep_index(ep);
ep_dir = ep_is_in(ep) ? USB_SEND : USB_RECV;
if (ep_num == 0)
bits = (1 << 16) | 1;
else if (ep_dir == USB_SEND)
bits = 1 << (16 + ep_num);
else
bits = 1 << ep_num;
timeout = jiffies + FSL_UDC_FLUSH_TIMEOUT;
do {
fsl_writel(bits, &dr_regs->endptflush);
/* Wait until flush complete */
while (fsl_readl(&dr_regs->endptflush)) {
if (time_after(jiffies, timeout)) {
ERR("ep flush timeout\n");
return;
}
cpu_relax();
}
/* See if we need to flush again */
} while (fsl_readl(&dr_regs->endptstatus) & bits);
}
static struct usb_ep_ops fsl_ep_ops = {
.enable = fsl_ep_enable,
.disable = fsl_ep_disable,
.alloc_request = fsl_alloc_request,
.free_request = fsl_free_request,
.queue = fsl_ep_queue,
.dequeue = fsl_ep_dequeue,
.set_halt = fsl_ep_set_halt,
.fifo_flush = fsl_ep_fifo_flush, /* flush fifo */
};
/*-------------------------------------------------------------------------
Gadget Driver Layer Operations
-------------------------------------------------------------------------*/
/*----------------------------------------------------------------------
* Get the current frame number (from DR frame_index Reg )
*----------------------------------------------------------------------*/
static int fsl_get_frame(struct usb_gadget *gadget)
{
return (int)(fsl_readl(&dr_regs->frindex) & USB_FRINDEX_MASKS);
}
/*-----------------------------------------------------------------------
* Tries to wake up the host connected to this gadget
-----------------------------------------------------------------------*/
static int fsl_wakeup(struct usb_gadget *gadget)
{
struct fsl_udc *udc = container_of(gadget, struct fsl_udc, gadget);
u32 portsc;
/* Remote wakeup feature not enabled by host */
if (!udc->remote_wakeup)
return -ENOTSUPP;
portsc = fsl_readl(&dr_regs->portsc1);
/* not suspended? */
if (!(portsc & PORTSCX_PORT_SUSPEND))
return 0;
/* trigger force resume */
portsc |= PORTSCX_PORT_FORCE_RESUME;
fsl_writel(portsc, &dr_regs->portsc1);
return 0;
}
static int can_pullup(struct fsl_udc *udc)
{
return udc->driver && udc->softconnect && udc->vbus_active;
}
/* Notify controller that VBUS is powered, Called by whatever
detects VBUS sessions */
static int fsl_vbus_session(struct usb_gadget *gadget, int is_active)
{
struct fsl_udc *udc;
unsigned long flags;
udc = container_of(gadget, struct fsl_udc, gadget);
spin_lock_irqsave(&udc->lock, flags);
VDBG("VBUS %s\n", is_active ? "on" : "off");
udc->vbus_active = (is_active != 0);
if (can_pullup(udc))
fsl_writel((fsl_readl(&dr_regs->usbcmd) | USB_CMD_RUN_STOP),
&dr_regs->usbcmd);
else
fsl_writel((fsl_readl(&dr_regs->usbcmd) & ~USB_CMD_RUN_STOP),
&dr_regs->usbcmd);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/* constrain controller's VBUS power usage
* This call is used by gadget drivers during SET_CONFIGURATION calls,
* reporting how much power the device may consume. For example, this
* could affect how quickly batteries are recharged.
*
* Returns zero on success, else negative errno.
*/
static int fsl_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
struct fsl_udc *udc;
udc = container_of(gadget, struct fsl_udc, gadget);
if (udc->transceiver)
return otg_set_power(udc->transceiver, mA);
return -ENOTSUPP;
}
/* Change Data+ pullup status
* this func is used by usb_gadget_connect/disconnet
*/
static int fsl_pullup(struct usb_gadget *gadget, int is_on)
{
struct fsl_udc *udc;
udc = container_of(gadget, struct fsl_udc, gadget);
udc->softconnect = (is_on != 0);
if (can_pullup(udc))
fsl_writel((fsl_readl(&dr_regs->usbcmd) | USB_CMD_RUN_STOP),
&dr_regs->usbcmd);
else
fsl_writel((fsl_readl(&dr_regs->usbcmd) & ~USB_CMD_RUN_STOP),
&dr_regs->usbcmd);
return 0;
}
/* defined in usb_gadget.h */
static struct usb_gadget_ops fsl_gadget_ops = {
.get_frame = fsl_get_frame,
.wakeup = fsl_wakeup,
/* .set_selfpowered = fsl_set_selfpowered, */ /* Always selfpowered */
.vbus_session = fsl_vbus_session,
.vbus_draw = fsl_vbus_draw,
.pullup = fsl_pullup,
};
/* Set protocol stall on ep0, protocol stall will automatically be cleared
on new transaction */
static void ep0stall(struct fsl_udc *udc)
{
u32 tmp;
/* must set tx and rx to stall at the same time */
tmp = fsl_readl(&dr_regs->endptctrl[0]);
tmp |= EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL;
fsl_writel(tmp, &dr_regs->endptctrl[0]);
udc->ep0_state = WAIT_FOR_SETUP;
udc->ep0_dir = 0;
}
/* Prime a status phase for ep0 */
static int ep0_prime_status(struct fsl_udc *udc, int direction)
{
struct fsl_req *req = udc->status_req;
struct fsl_ep *ep;
int status = 0;
if (direction == EP_DIR_IN)
udc->ep0_dir = USB_DIR_IN;
else
udc->ep0_dir = USB_DIR_OUT;
ep = &udc->eps[0];
udc->ep0_state = WAIT_FOR_OUT_STATUS;
req->ep = ep;
req->req.length = 0;
req->req.status = -EINPROGRESS;
req->req.actual = 0;
req->req.complete = NULL;
req->dtd_count = 0;
if (fsl_req_to_dtd(req) == 0)
status = fsl_queue_td(ep, req);
else
return -ENOMEM;
if (status)
ERR("Can't queue ep0 status request \n");
list_add_tail(&req->queue, &ep->queue);
return status;
}
static inline int udc_reset_ep_queue(struct fsl_udc *udc, u8 pipe)
{
struct fsl_ep *ep = get_ep_by_pipe(udc, pipe);
if (!ep->name)
return 0;
nuke(ep, -ESHUTDOWN);
return 0;
}
/*
* ch9 Set address
*/
static void ch9setaddress(struct fsl_udc *udc, u16 value, u16 index, u16 length)
{
/* Save the new address to device struct */
udc->device_address = (u8) value;
/* Update usb state */
udc->usb_state = USB_STATE_ADDRESS;
/* Status phase */
if (ep0_prime_status(udc, EP_DIR_IN))
ep0stall(udc);
}
/*
* ch9 Get status
*/
static void ch9getstatus(struct fsl_udc *udc, u8 request_type, u16 value,
u16 index, u16 length)
{
u16 tmp = 0; /* Status, cpu endian */
struct fsl_req *req;
struct fsl_ep *ep;
int status = 0;
ep = &udc->eps[0];
if ((request_type & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
/* Get device status */
tmp = 1 << USB_DEVICE_SELF_POWERED;
tmp |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
} else if ((request_type & USB_RECIP_MASK) == USB_RECIP_INTERFACE) {
/* Get interface status */
/* We don't have interface information in udc driver */
tmp = 0;
} else if ((request_type & USB_RECIP_MASK) == USB_RECIP_ENDPOINT) {
/* Get endpoint status */
struct fsl_ep *target_ep;
target_ep = get_ep_by_pipe(udc, get_pipe_by_windex(index));
/* stall if endpoint doesn't exist */
if (!target_ep->desc)
goto stall;
tmp = dr_ep_get_stall(ep_index(target_ep), ep_is_in(target_ep))
<< USB_ENDPOINT_HALT;
}
udc->ep0_dir = USB_DIR_IN;
/* Borrow the per device status_req */
req = udc->status_req;
/* Fill in the reqest structure */
*((u16 *) req->req.buf) = cpu_to_le16(tmp);
req->ep = ep;
req->req.length = 2;
req->req.status = -EINPROGRESS;
req->req.actual = 0;
req->req.complete = NULL;
req->dtd_count = 0;
/* prime the data phase */
if ((fsl_req_to_dtd(req) == 0))
status = fsl_queue_td(ep, req);
else /* no mem */
goto stall;
if (status) {
ERR("Can't respond to getstatus request \n");
goto stall;
}
list_add_tail(&req->queue, &ep->queue);
udc->ep0_state = DATA_STATE_XMIT;
return;
stall:
ep0stall(udc);
}
static void setup_received_irq(struct fsl_udc *udc,
struct usb_ctrlrequest *setup)
{
u16 wValue = le16_to_cpu(setup->wValue);
u16 wIndex = le16_to_cpu(setup->wIndex);
u16 wLength = le16_to_cpu(setup->wLength);
udc_reset_ep_queue(udc, 0);
/* We process some stardard setup requests here */
switch (setup->bRequest) {
case USB_REQ_GET_STATUS:
/* Data+Status phase from udc */
if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
!= (USB_DIR_IN | USB_TYPE_STANDARD))
break;
ch9getstatus(udc, setup->bRequestType, wValue, wIndex, wLength);
return;
case USB_REQ_SET_ADDRESS:
/* Status phase from udc */
if (setup->bRequestType != (USB_DIR_OUT | USB_TYPE_STANDARD
| USB_RECIP_DEVICE))
break;
ch9setaddress(udc, wValue, wIndex, wLength);
return;
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
/* Status phase from udc */
{
int rc = -EOPNOTSUPP;
if ((setup->bRequestType & (USB_RECIP_MASK | USB_TYPE_MASK))
== (USB_RECIP_ENDPOINT | USB_TYPE_STANDARD)) {
int pipe = get_pipe_by_windex(wIndex);
struct fsl_ep *ep;
if (wValue != 0 || wLength != 0 || pipe > udc->max_ep)
break;
ep = get_ep_by_pipe(udc, pipe);
spin_unlock(&udc->lock);
rc = fsl_ep_set_halt(&ep->ep,
(setup->bRequest == USB_REQ_SET_FEATURE)
? 1 : 0);
spin_lock(&udc->lock);
} else if ((setup->bRequestType & (USB_RECIP_MASK
| USB_TYPE_MASK)) == (USB_RECIP_DEVICE
| USB_TYPE_STANDARD)) {
/* Note: The driver has not include OTG support yet.
* This will be set when OTG support is added */
if (!gadget_is_otg(udc->gadget))
break;
else if (setup->bRequest == USB_DEVICE_B_HNP_ENABLE)
udc->gadget.b_hnp_enable = 1;
else if (setup->bRequest == USB_DEVICE_A_HNP_SUPPORT)
udc->gadget.a_hnp_support = 1;
else if (setup->bRequest ==
USB_DEVICE_A_ALT_HNP_SUPPORT)
udc->gadget.a_alt_hnp_support = 1;
else
break;
rc = 0;
} else
break;
if (rc == 0) {
if (ep0_prime_status(udc, EP_DIR_IN))
ep0stall(udc);
}
return;
}
default:
break;
}
/* Requests handled by gadget */
if (wLength) {
/* Data phase from gadget, status phase from udc */
udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
? USB_DIR_IN : USB_DIR_OUT;
spin_unlock(&udc->lock);
if (udc->driver->setup(&udc->gadget,
&udc->local_setup_buff) < 0)
ep0stall(udc);
spin_lock(&udc->lock);
udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
? DATA_STATE_XMIT : DATA_STATE_RECV;
} else {
/* No data phase, IN status from gadget */
udc->ep0_dir = USB_DIR_IN;
spin_unlock(&udc->lock);
if (udc->driver->setup(&udc->gadget,
&udc->local_setup_buff) < 0)
ep0stall(udc);
spin_lock(&udc->lock);
udc->ep0_state = WAIT_FOR_OUT_STATUS;
}
}
/* Process request for Data or Status phase of ep0
* prime status phase if needed */
static void ep0_req_complete(struct fsl_udc *udc, struct fsl_ep *ep0,
struct fsl_req *req)
{
if (udc->usb_state == USB_STATE_ADDRESS) {
/* Set the new address */
u32 new_address = (u32) udc->device_address;
fsl_writel(new_address << USB_DEVICE_ADDRESS_BIT_POS,
&dr_regs->deviceaddr);
}
done(ep0, req, 0);
switch (udc->ep0_state) {
case DATA_STATE_XMIT:
/* receive status phase */
if (ep0_prime_status(udc, EP_DIR_OUT))
ep0stall(udc);
break;
case DATA_STATE_RECV:
/* send status phase */
if (ep0_prime_status(udc, EP_DIR_IN))
ep0stall(udc);
break;
case WAIT_FOR_OUT_STATUS:
udc->ep0_state = WAIT_FOR_SETUP;
break;
case WAIT_FOR_SETUP:
ERR("Unexpect ep0 packets \n");
break;
default:
ep0stall(udc);
break;
}
}
/* Tripwire mechanism to ensure a setup packet payload is extracted without
* being corrupted by another incoming setup packet */
static void tripwire_handler(struct fsl_udc *udc, u8 ep_num, u8 *buffer_ptr)
{
u32 temp;
struct ep_queue_head *qh;
qh = &udc->ep_qh[ep_num * 2 + EP_DIR_OUT];
/* Clear bit in ENDPTSETUPSTAT */
temp = fsl_readl(&dr_regs->endptsetupstat);
fsl_writel(temp | (1 << ep_num), &dr_regs->endptsetupstat);
/* while a hazard exists when setup package arrives */
do {
/* Set Setup Tripwire */
temp = fsl_readl(&dr_regs->usbcmd);
fsl_writel(temp | USB_CMD_SUTW, &dr_regs->usbcmd);
/* Copy the setup packet to local buffer */
memcpy(buffer_ptr, (u8 *) qh->setup_buffer, 8);
} while (!(fsl_readl(&dr_regs->usbcmd) & USB_CMD_SUTW));
/* Clear Setup Tripwire */
temp = fsl_readl(&dr_regs->usbcmd);
fsl_writel(temp & ~USB_CMD_SUTW, &dr_regs->usbcmd);
}
/* process-ep_req(): free the completed Tds for this req */
static int process_ep_req(struct fsl_udc *udc, int pipe,
struct fsl_req *curr_req)
{
struct ep_td_struct *curr_td;
int td_complete, actual, remaining_length, j, tmp;
int status = 0;
int errors = 0;
struct ep_queue_head *curr_qh = &udc->ep_qh[pipe];
int direction = pipe % 2;
curr_td = curr_req->head;
td_complete = 0;
actual = curr_req->req.length;
for (j = 0; j < curr_req->dtd_count; j++) {
remaining_length = (le32_to_cpu(curr_td->size_ioc_sts)
& DTD_PACKET_SIZE)
>> DTD_LENGTH_BIT_POS;
actual -= remaining_length;
if ((errors = le32_to_cpu(curr_td->size_ioc_sts) &
DTD_ERROR_MASK)) {
if (errors & DTD_STATUS_HALTED) {
ERR("dTD error %08x QH=%d\n", errors, pipe);
/* Clear the errors and Halt condition */
tmp = le32_to_cpu(curr_qh->size_ioc_int_sts);
tmp &= ~errors;
curr_qh->size_ioc_int_sts = cpu_to_le32(tmp);
status = -EPIPE;
/* FIXME: continue with next queued TD? */
break;
}
if (errors & DTD_STATUS_DATA_BUFF_ERR) {
VDBG("Transfer overflow");
status = -EPROTO;
break;
} else if (errors & DTD_STATUS_TRANSACTION_ERR) {
VDBG("ISO error");
status = -EILSEQ;
break;
} else
ERR("Unknown error has occured (0x%x)!\r\n",
errors);
} else if (le32_to_cpu(curr_td->size_ioc_sts)
& DTD_STATUS_ACTIVE) {
VDBG("Request not complete");
status = REQ_UNCOMPLETE;
return status;
} else if (remaining_length) {
if (direction) {
VDBG("Transmit dTD remaining length not zero");
status = -EPROTO;
break;
} else {
td_complete++;
break;
}
} else {
td_complete++;
VDBG("dTD transmitted successful ");
}
if (j != curr_req->dtd_count - 1)
curr_td = (struct ep_td_struct *)curr_td->next_td_virt;
}
if (status)
return status;
curr_req->req.actual = actual;
return 0;
}
/* Process a DTD completion interrupt */
static void dtd_complete_irq(struct fsl_udc *udc)
{
u32 bit_pos;
int i, ep_num, direction, bit_mask, status;
struct fsl_ep *curr_ep;
struct fsl_req *curr_req, *temp_req;
/* Clear the bits in the register */
bit_pos = fsl_readl(&dr_regs->endptcomplete);
fsl_writel(bit_pos, &dr_regs->endptcomplete);
if (!bit_pos)
return;
for (i = 0; i < udc->max_ep * 2; i++) {
ep_num = i >> 1;
direction = i % 2;
bit_mask = 1 << (ep_num + 16 * direction);
if (!(bit_pos & bit_mask))
continue;
curr_ep = get_ep_by_pipe(udc, i);
/* If the ep is configured */
if (curr_ep->name == NULL) {
WARN("Invalid EP?");
continue;
}
/* process the req queue until an uncomplete request */
list_for_each_entry_safe(curr_req, temp_req, &curr_ep->queue,
queue) {
status = process_ep_req(udc, i, curr_req);
VDBG("status of process_ep_req= %d, ep = %d",
status, ep_num);
if (status == REQ_UNCOMPLETE)
break;
/* write back status to req */
curr_req->req.status = status;
if (ep_num == 0) {
ep0_req_complete(udc, curr_ep, curr_req);
break;
} else
done(curr_ep, curr_req, status);
}
}
}
/* Process a port change interrupt */
static void port_change_irq(struct fsl_udc *udc)
{
u32 speed;
if (udc->bus_reset)
udc->bus_reset = 0;
/* Bus resetting is finished */
if (!(fsl_readl(&dr_regs->portsc1) & PORTSCX_PORT_RESET)) {
/* Get the speed */
speed = (fsl_readl(&dr_regs->portsc1)
& PORTSCX_PORT_SPEED_MASK);
switch (speed) {
case PORTSCX_PORT_SPEED_HIGH:
udc->gadget.speed = USB_SPEED_HIGH;
break;
case PORTSCX_PORT_SPEED_FULL:
udc->gadget.speed = USB_SPEED_FULL;
break;
case PORTSCX_PORT_SPEED_LOW:
udc->gadget.speed = USB_SPEED_LOW;
break;
default:
udc->gadget.speed = USB_SPEED_UNKNOWN;
break;
}
}
/* Update USB state */
if (!udc->resume_state)
udc->usb_state = USB_STATE_DEFAULT;
}
/* Process suspend interrupt */
static void suspend_irq(struct fsl_udc *udc)
{
udc->resume_state = udc->usb_state;
udc->usb_state = USB_STATE_SUSPENDED;
/* report suspend to the driver, serial.c does not support this */
if (udc->driver->suspend)
udc->driver->suspend(&udc->gadget);
}
static void bus_resume(struct fsl_udc *udc)
{
udc->usb_state = udc->resume_state;
udc->resume_state = 0;
/* report resume to the driver, serial.c does not support this */
if (udc->driver->resume)
udc->driver->resume(&udc->gadget);
}
/* Clear up all ep queues */
static int reset_queues(struct fsl_udc *udc)
{
u8 pipe;
for (pipe = 0; pipe < udc->max_pipes; pipe++)
udc_reset_ep_queue(udc, pipe);
/* report disconnect; the driver is already quiesced */
udc->driver->disconnect(&udc->gadget);
return 0;
}
/* Process reset interrupt */
static void reset_irq(struct fsl_udc *udc)
{
u32 temp;
unsigned long timeout;
/* Clear the device address */
temp = fsl_readl(&dr_regs->deviceaddr);
fsl_writel(temp & ~USB_DEVICE_ADDRESS_MASK, &dr_regs->deviceaddr);
udc->device_address = 0;
/* Clear usb state */
udc->resume_state = 0;
udc->ep0_dir = 0;
udc->ep0_state = WAIT_FOR_SETUP;
udc->remote_wakeup = 0; /* default to 0 on reset */
udc->gadget.b_hnp_enable = 0;
udc->gadget.a_hnp_support = 0;
udc->gadget.a_alt_hnp_support = 0;
/* Clear all the setup token semaphores */
temp = fsl_readl(&dr_regs->endptsetupstat);
fsl_writel(temp, &dr_regs->endptsetupstat);
/* Clear all the endpoint complete status bits */
temp = fsl_readl(&dr_regs->endptcomplete);
fsl_writel(temp, &dr_regs->endptcomplete);
timeout = jiffies + 100;
while (fsl_readl(&dr_regs->endpointprime)) {
/* Wait until all endptprime bits cleared */
if (time_after(jiffies, timeout)) {
ERR("Timeout for reset\n");
break;
}
cpu_relax();
}
/* Write 1s to the flush register */
fsl_writel(0xffffffff, &dr_regs->endptflush);
if (fsl_readl(&dr_regs->portsc1) & PORTSCX_PORT_RESET) {
VDBG("Bus reset");
/* Bus is reseting */
udc->bus_reset = 1;
/* Reset all the queues, include XD, dTD, EP queue
* head and TR Queue */
reset_queues(udc);
udc->usb_state = USB_STATE_DEFAULT;
} else {
VDBG("Controller reset");
/* initialize usb hw reg except for regs for EP, not
* touch usbintr reg */
dr_controller_setup(udc);
/* Reset all internal used Queues */
reset_queues(udc);
ep0_setup(udc);
/* Enable DR IRQ reg, Set Run bit, change udc state */
dr_controller_run(udc);
udc->usb_state = USB_STATE_ATTACHED;
}
}
/*
* USB device controller interrupt handler
*/
static irqreturn_t fsl_udc_irq(int irq, void *_udc)
{
struct fsl_udc *udc = _udc;
u32 irq_src;
irqreturn_t status = IRQ_NONE;
unsigned long flags;
/* Disable ISR for OTG host mode */
if (udc->stopped)
return IRQ_NONE;
spin_lock_irqsave(&udc->lock, flags);
irq_src = fsl_readl(&dr_regs->usbsts) & fsl_readl(&dr_regs->usbintr);
/* Clear notification bits */
fsl_writel(irq_src, &dr_regs->usbsts);
/* VDBG("irq_src [0x%8x]", irq_src); */
/* Need to resume? */
if (udc->usb_state == USB_STATE_SUSPENDED)
if ((fsl_readl(&dr_regs->portsc1) & PORTSCX_PORT_SUSPEND) == 0)
bus_resume(udc);
/* USB Interrupt */
if (irq_src & USB_STS_INT) {
VDBG("Packet int");
/* Setup package, we only support ep0 as control ep */
if (fsl_readl(&dr_regs->endptsetupstat) & EP_SETUP_STATUS_EP0) {
tripwire_handler(udc, 0,
(u8 *) (&udc->local_setup_buff));
setup_received_irq(udc, &udc->local_setup_buff);
status = IRQ_HANDLED;
}
/* completion of dtd */
if (fsl_readl(&dr_regs->endptcomplete)) {
dtd_complete_irq(udc);
status = IRQ_HANDLED;
}
}
/* SOF (for ISO transfer) */
if (irq_src & USB_STS_SOF) {
status = IRQ_HANDLED;
}
/* Port Change */
if (irq_src & USB_STS_PORT_CHANGE) {
port_change_irq(udc);
status = IRQ_HANDLED;
}
/* Reset Received */
if (irq_src & USB_STS_RESET) {
reset_irq(udc);
status = IRQ_HANDLED;
}
/* Sleep Enable (Suspend) */
if (irq_src & USB_STS_SUSPEND) {
suspend_irq(udc);
status = IRQ_HANDLED;
}
if (irq_src & (USB_STS_ERR | USB_STS_SYS_ERR)) {
VDBG("Error IRQ %x ", irq_src);
}
spin_unlock_irqrestore(&udc->lock, flags);
return status;
}
/*----------------------------------------------------------------*
* Hook to gadget drivers
* Called by initialization code of gadget drivers
*----------------------------------------------------------------*/
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
int retval = -ENODEV;
unsigned long flags = 0;
if (!udc_controller)
return -ENODEV;
if (!driver || (driver->speed != USB_SPEED_FULL
&& driver->speed != USB_SPEED_HIGH)
|| !driver->bind || !driver->disconnect
|| !driver->setup)
return -EINVAL;
if (udc_controller->driver)
return -EBUSY;
/* lock is needed but whether should use this lock or another */
spin_lock_irqsave(&udc_controller->lock, flags);
driver->driver.bus = 0;
/* hook up the driver */
udc_controller->driver = driver;
udc_controller->gadget.dev.driver = &driver->driver;
spin_unlock_irqrestore(&udc_controller->lock, flags);
/* bind udc driver to gadget driver */
retval = driver->bind(&udc_controller->gadget);
if (retval) {
VDBG("bind to %s --> %d", driver->driver.name, retval);
udc_controller->gadget.dev.driver = 0;
udc_controller->driver = 0;
goto out;
}
/* Enable DR IRQ reg and Set usbcmd reg Run bit */
dr_controller_run(udc_controller);
udc_controller->usb_state = USB_STATE_ATTACHED;
udc_controller->ep0_state = WAIT_FOR_SETUP;
udc_controller->ep0_dir = 0;
printk(KERN_INFO "%s: bind to driver %s \n",
udc_controller->gadget.name, driver->driver.name);
out:
if (retval)
printk("retval %d \n", retval);
return retval;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
/* Disconnect from gadget driver */
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct fsl_ep *loop_ep;
unsigned long flags;
if (!udc_controller)
return -ENODEV;
if (!driver || driver != udc_controller->driver || !driver->unbind)
return -EINVAL;
if (udc_controller->transceiver)
(void)otg_set_peripheral(udc_controller->transceiver, 0);
/* stop DR, disable intr */
dr_controller_stop(udc_controller);
/* in fact, no needed */
udc_controller->usb_state = USB_STATE_ATTACHED;
udc_controller->ep0_state = WAIT_FOR_SETUP;
udc_controller->ep0_dir = 0;
/* stand operation */
spin_lock_irqsave(&udc_controller->lock, flags);
udc_controller->gadget.speed = USB_SPEED_UNKNOWN;
nuke(&udc_controller->eps[0], -ESHUTDOWN);
list_for_each_entry(loop_ep, &udc_controller->gadget.ep_list,
ep.ep_list)
nuke(loop_ep, -ESHUTDOWN);
spin_unlock_irqrestore(&udc_controller->lock, flags);
/* unbind gadget and unhook driver. */
driver->unbind(&udc_controller->gadget);
udc_controller->gadget.dev.driver = 0;
udc_controller->driver = 0;
printk("unregistered gadget driver '%s'\r\n", driver->driver.name);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
/*-------------------------------------------------------------------------
PROC File System Support
-------------------------------------------------------------------------*/
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
#include <linux/seq_file.h>
static const char proc_filename[] = "driver/fsl_usb2_udc";
static int fsl_proc_read(char *page, char **start, off_t off, int count,
int *eof, void *_dev)
{
char *buf = page;
char *next = buf;
unsigned size = count;
unsigned long flags;
int t, i;
u32 tmp_reg;
struct fsl_ep *ep = NULL;
struct fsl_req *req;
struct fsl_udc *udc = udc_controller;
if (off != 0)
return 0;
spin_lock_irqsave(&udc->lock, flags);
/* ------basic driver infomation ---- */
t = scnprintf(next, size,
DRIVER_DESC "\n"
"%s version: %s\n"
"Gadget driver: %s\n\n",
driver_name, DRIVER_VERSION,
udc->driver ? udc->driver->driver.name : "(none)");
size -= t;
next += t;
/* ------ DR Registers ----- */
tmp_reg = fsl_readl(&dr_regs->usbcmd);
t = scnprintf(next, size,
"USBCMD reg:\n"
"SetupTW: %d\n"
"Run/Stop: %s\n\n",
(tmp_reg & USB_CMD_SUTW) ? 1 : 0,
(tmp_reg & USB_CMD_RUN_STOP) ? "Run" : "Stop");
size -= t;
next += t;
tmp_reg = fsl_readl(&dr_regs->usbsts);
t = scnprintf(next, size,
"USB Status Reg:\n"
"Dr Suspend: %d" "Reset Received: %d" "System Error: %s"
"USB Error Interrupt: %s\n\n",
(tmp_reg & USB_STS_SUSPEND) ? 1 : 0,
(tmp_reg & USB_STS_RESET) ? 1 : 0,
(tmp_reg & USB_STS_SYS_ERR) ? "Err" : "Normal",
(tmp_reg & USB_STS_ERR) ? "Err detected" : "No err");
size -= t;
next += t;
tmp_reg = fsl_readl(&dr_regs->usbintr);
t = scnprintf(next, size,
"USB Intrrupt Enable Reg:\n"
"Sleep Enable: %d" "SOF Received Enable: %d"
"Reset Enable: %d\n"
"System Error Enable: %d"
"Port Change Dectected Enable: %d\n"
"USB Error Intr Enable: %d" "USB Intr Enable: %d\n\n",
(tmp_reg & USB_INTR_DEVICE_SUSPEND) ? 1 : 0,
(tmp_reg & USB_INTR_SOF_EN) ? 1 : 0,
(tmp_reg & USB_INTR_RESET_EN) ? 1 : 0,
(tmp_reg & USB_INTR_SYS_ERR_EN) ? 1 : 0,
(tmp_reg & USB_INTR_PTC_DETECT_EN) ? 1 : 0,
(tmp_reg & USB_INTR_ERR_INT_EN) ? 1 : 0,
(tmp_reg & USB_INTR_INT_EN) ? 1 : 0);
size -= t;
next += t;
tmp_reg = fsl_readl(&dr_regs->frindex);
t = scnprintf(next, size,
"USB Frame Index Reg:" "Frame Number is 0x%x\n\n",
(tmp_reg & USB_FRINDEX_MASKS));
size -= t;
next += t;
tmp_reg = fsl_readl(&dr_regs->deviceaddr);
t = scnprintf(next, size,
"USB Device Address Reg:" "Device Addr is 0x%x\n\n",
(tmp_reg & USB_DEVICE_ADDRESS_MASK));
size -= t;
next += t;
tmp_reg = fsl_readl(&dr_regs->endpointlistaddr);
t = scnprintf(next, size,
"USB Endpoint List Address Reg:"
"Device Addr is 0x%x\n\n",
(tmp_reg & USB_EP_LIST_ADDRESS_MASK));
size -= t;
next += t;
tmp_reg = fsl_readl(&dr_regs->portsc1);
t = scnprintf(next, size,
"USB Port Status&Control Reg:\n"
"Port Transceiver Type : %s" "Port Speed: %s \n"
"PHY Low Power Suspend: %s" "Port Reset: %s"
"Port Suspend Mode: %s \n" "Over-current Change: %s"
"Port Enable/Disable Change: %s\n"
"Port Enabled/Disabled: %s"
"Current Connect Status: %s\n\n", ( {
char *s;
switch (tmp_reg & PORTSCX_PTS_FSLS) {
case PORTSCX_PTS_UTMI:
s = "UTMI"; break;
case PORTSCX_PTS_ULPI:
s = "ULPI "; break;
case PORTSCX_PTS_FSLS:
s = "FS/LS Serial"; break;
default:
s = "None"; break;
}
s;} ), ( {
char *s;
switch (tmp_reg & PORTSCX_PORT_SPEED_UNDEF) {
case PORTSCX_PORT_SPEED_FULL:
s = "Full Speed"; break;
case PORTSCX_PORT_SPEED_LOW:
s = "Low Speed"; break;
case PORTSCX_PORT_SPEED_HIGH:
s = "High Speed"; break;
default:
s = "Undefined"; break;
}
s;
} ),
(tmp_reg & PORTSCX_PHY_LOW_POWER_SPD) ?
"Normal PHY mode" : "Low power mode",
(tmp_reg & PORTSCX_PORT_RESET) ? "In Reset" :
"Not in Reset",
(tmp_reg & PORTSCX_PORT_SUSPEND) ? "In " : "Not in",
(tmp_reg & PORTSCX_OVER_CURRENT_CHG) ? "Dected" :
"No",
(tmp_reg & PORTSCX_PORT_EN_DIS_CHANGE) ? "Disable" :
"Not change",
(tmp_reg & PORTSCX_PORT_ENABLE) ? "Enable" :
"Not correct",
(tmp_reg & PORTSCX_CURRENT_CONNECT_STATUS) ?
"Attached" : "Not-Att");
size -= t;
next += t;
tmp_reg = fsl_readl(&dr_regs->usbmode);
t = scnprintf(next, size,
"USB Mode Reg:" "Controller Mode is : %s\n\n", ( {
char *s;
switch (tmp_reg & USB_MODE_CTRL_MODE_HOST) {
case USB_MODE_CTRL_MODE_IDLE:
s = "Idle"; break;
case USB_MODE_CTRL_MODE_DEVICE:
s = "Device Controller"; break;
case USB_MODE_CTRL_MODE_HOST:
s = "Host Controller"; break;
default:
s = "None"; break;
}
s;
} ));
size -= t;
next += t;
tmp_reg = fsl_readl(&dr_regs->endptsetupstat);
t = scnprintf(next, size,
"Endpoint Setup Status Reg:" "SETUP on ep 0x%x\n\n",
(tmp_reg & EP_SETUP_STATUS_MASK));
size -= t;
next += t;
for (i = 0; i < udc->max_ep / 2; i++) {
tmp_reg = fsl_readl(&dr_regs->endptctrl[i]);
t = scnprintf(next, size, "EP Ctrl Reg [0x%x]: = [0x%x]\n",
i, tmp_reg);
size -= t;
next += t;
}
tmp_reg = fsl_readl(&dr_regs->endpointprime);
t = scnprintf(next, size, "EP Prime Reg = [0x%x]\n", tmp_reg);
size -= t;
next += t;
tmp_reg = usb_sys_regs->snoop1;
t = scnprintf(next, size, "\nSnoop1 Reg : = [0x%x]\n\n", tmp_reg);
size -= t;
next += t;
tmp_reg = usb_sys_regs->control;
t = scnprintf(next, size, "General Control Reg : = [0x%x]\n\n",
tmp_reg);
size -= t;
next += t;
/* ------fsl_udc, fsl_ep, fsl_request structure information ----- */
ep = &udc->eps[0];
t = scnprintf(next, size, "For %s Maxpkt is 0x%x index is 0x%x\n",
ep->ep.name, ep_maxpacket(ep), ep_index(ep));
size -= t;
next += t;
if (list_empty(&ep->queue)) {
t = scnprintf(next, size, "its req queue is empty\n\n");
size -= t;
next += t;
} else {
list_for_each_entry(req, &ep->queue, queue) {
t = scnprintf(next, size,
"req %p actual 0x%x length 0x%x buf %p\n",
&req->req, req->req.actual,
req->req.length, req->req.buf);
size -= t;
next += t;
}
}
/* other gadget->eplist ep */
list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
if (ep->desc) {
t = scnprintf(next, size,
"\nFor %s Maxpkt is 0x%x "
"index is 0x%x\n",
ep->ep.name, ep_maxpacket(ep),
ep_index(ep));
size -= t;
next += t;
if (list_empty(&ep->queue)) {
t = scnprintf(next, size,
"its req queue is empty\n\n");
size -= t;
next += t;
} else {
list_for_each_entry(req, &ep->queue, queue) {
t = scnprintf(next, size,
"req %p actual 0x%x length"
"0x%x buf %p\n",
&req->req, req->req.actual,
req->req.length, req->req.buf);
size -= t;
next += t;
} /* end for each_entry of ep req */
} /* end for else */
} /* end for if(ep->queue) */
} /* end (ep->desc) */
spin_unlock_irqrestore(&udc->lock, flags);
*eof = 1;
return count - size;
}
#define create_proc_file() create_proc_read_entry(proc_filename, \
0, NULL, fsl_proc_read, NULL)
#define remove_proc_file() remove_proc_entry(proc_filename, NULL)
#else /* !CONFIG_USB_GADGET_DEBUG_FILES */
#define create_proc_file() do {} while (0)
#define remove_proc_file() do {} while (0)
#endif /* CONFIG_USB_GADGET_DEBUG_FILES */
/*-------------------------------------------------------------------------*/
/* Release udc structures */
static void fsl_udc_release(struct device *dev)
{
complete(udc_controller->done);
dma_free_coherent(dev, udc_controller->ep_qh_size,
udc_controller->ep_qh, udc_controller->ep_qh_dma);
kfree(udc_controller);
}
/******************************************************************
Internal structure setup functions
*******************************************************************/
/*------------------------------------------------------------------
* init resource for globle controller
* Return the udc handle on success or NULL on failure
------------------------------------------------------------------*/
static int __init struct_udc_setup(struct fsl_udc *udc,
struct platform_device *pdev)
{
struct fsl_usb2_platform_data *pdata;
size_t size;
pdata = pdev->dev.platform_data;
udc->phy_mode = pdata->phy_mode;
udc->eps = kzalloc(sizeof(struct fsl_ep) * udc->max_ep, GFP_KERNEL);
if (!udc->eps) {
ERR("malloc fsl_ep failed\n");
return -1;
}
/* initialized QHs, take care of alignment */
size = udc->max_ep * sizeof(struct ep_queue_head);
if (size < QH_ALIGNMENT)
size = QH_ALIGNMENT;
else if ((size % QH_ALIGNMENT) != 0) {
size += QH_ALIGNMENT + 1;
size &= ~(QH_ALIGNMENT - 1);
}
udc->ep_qh = dma_alloc_coherent(&pdev->dev, size,
&udc->ep_qh_dma, GFP_KERNEL);
if (!udc->ep_qh) {
ERR("malloc QHs for udc failed\n");
kfree(udc->eps);
return -1;
}
udc->ep_qh_size = size;
/* Initialize ep0 status request structure */
/* FIXME: fsl_alloc_request() ignores ep argument */
udc->status_req = container_of(fsl_alloc_request(NULL, GFP_KERNEL),
struct fsl_req, req);
/* allocate a small amount of memory to get valid address */
udc->status_req->req.buf = kmalloc(8, GFP_KERNEL);
udc->status_req->req.dma = virt_to_phys(udc->status_req->req.buf);
udc->resume_state = USB_STATE_NOTATTACHED;
udc->usb_state = USB_STATE_POWERED;
udc->ep0_dir = 0;
udc->remote_wakeup = 0; /* default to 0 on reset */
spin_lock_init(&udc->lock);
return 0;
}
/*----------------------------------------------------------------
* Setup the fsl_ep struct for eps
* Link fsl_ep->ep to gadget->ep_list
* ep0out is not used so do nothing here
* ep0in should be taken care
*--------------------------------------------------------------*/
static int __init struct_ep_setup(struct fsl_udc *udc, unsigned char index,
char *name, int link)
{
struct fsl_ep *ep = &udc->eps[index];
ep->udc = udc;
strcpy(ep->name, name);
ep->ep.name = ep->name;
ep->ep.ops = &fsl_ep_ops;
ep->stopped = 0;
/* for ep0: maxP defined in desc
* for other eps, maxP is set by epautoconfig() called by gadget layer
*/
ep->ep.maxpacket = (unsigned short) ~0;
/* the queue lists any req for this ep */
INIT_LIST_HEAD(&ep->queue);
/* gagdet.ep_list used for ep_autoconfig so no ep0 */
if (link)
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
ep->gadget = &udc->gadget;
ep->qh = &udc->ep_qh[index];
return 0;
}
/* Driver probe function
* all intialization operations implemented here except enabling usb_intr reg
* board setup should have been done in the platform code
*/
static int __init fsl_udc_probe(struct platform_device *pdev)
{
struct resource *res;
int ret = -ENODEV;
unsigned int i;
u32 dccparams;
if (strcmp(pdev->name, driver_name)) {
VDBG("Wrong device\n");
return -ENODEV;
}
udc_controller = kzalloc(sizeof(struct fsl_udc), GFP_KERNEL);
if (udc_controller == NULL) {
ERR("malloc udc failed\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
kfree(udc_controller);
return -ENXIO;
}
if (!request_mem_region(res->start, res->end - res->start + 1,
driver_name)) {
ERR("request mem region for %s failed \n", pdev->name);
kfree(udc_controller);
return -EBUSY;
}
dr_regs = ioremap(res->start, res->end - res->start + 1);
if (!dr_regs) {
ret = -ENOMEM;
goto err1;
}
usb_sys_regs = (struct usb_sys_interface *)
((u32)dr_regs + USB_DR_SYS_OFFSET);
/* Read Device Controller Capability Parameters register */
dccparams = fsl_readl(&dr_regs->dccparams);
if (!(dccparams & DCCPARAMS_DC)) {
ERR("This SOC doesn't support device role\n");
ret = -ENODEV;
goto err2;
}
/* Get max device endpoints */
/* DEN is bidirectional ep number, max_ep doubles the number */
udc_controller->max_ep = (dccparams & DCCPARAMS_DEN_MASK) * 2;
udc_controller->irq = platform_get_irq(pdev, 0);
if (!udc_controller->irq) {
ret = -ENODEV;
goto err2;
}
ret = request_irq(udc_controller->irq, fsl_udc_irq, IRQF_SHARED,
driver_name, udc_controller);
if (ret != 0) {
ERR("cannot request irq %d err %d \n",
udc_controller->irq, ret);
goto err2;
}
/* Initialize the udc structure including QH member and other member */
if (struct_udc_setup(udc_controller, pdev)) {
ERR("Can't initialize udc data structure\n");
ret = -ENOMEM;
goto err3;
}
/* initialize usb hw reg except for regs for EP,
* leave usbintr reg untouched */
dr_controller_setup(udc_controller);
/* Setup gadget structure */
udc_controller->gadget.ops = &fsl_gadget_ops;
udc_controller->gadget.is_dualspeed = 1;
udc_controller->gadget.ep0 = &udc_controller->eps[0].ep;
INIT_LIST_HEAD(&udc_controller->gadget.ep_list);
udc_controller->gadget.speed = USB_SPEED_UNKNOWN;
udc_controller->gadget.name = driver_name;
/* Setup gadget.dev and register with kernel */
strcpy(udc_controller->gadget.dev.bus_id, "gadget");
udc_controller->gadget.dev.release = fsl_udc_release;
udc_controller->gadget.dev.parent = &pdev->dev;
ret = device_register(&udc_controller->gadget.dev);
if (ret < 0)
goto err3;
/* setup QH and epctrl for ep0 */
ep0_setup(udc_controller);
/* setup udc->eps[] for ep0 */
struct_ep_setup(udc_controller, 0, "ep0", 0);
/* for ep0: the desc defined here;
* for other eps, gadget layer called ep_enable with defined desc
*/
udc_controller->eps[0].desc = &fsl_ep0_desc;
udc_controller->eps[0].ep.maxpacket = USB_MAX_CTRL_PAYLOAD;
/* setup the udc->eps[] for non-control endpoints and link
* to gadget.ep_list */
for (i = 1; i < (int)(udc_controller->max_ep / 2); i++) {
char name[14];
sprintf(name, "ep%dout", i);
struct_ep_setup(udc_controller, i * 2, name, 1);
sprintf(name, "ep%din", i);
struct_ep_setup(udc_controller, i * 2 + 1, name, 1);
}
/* use dma_pool for TD management */
udc_controller->td_pool = dma_pool_create("udc_td", &pdev->dev,
sizeof(struct ep_td_struct),
DTD_ALIGNMENT, UDC_DMA_BOUNDARY);
if (udc_controller->td_pool == NULL) {
ret = -ENOMEM;
goto err4;
}
create_proc_file();
return 0;
err4:
device_unregister(&udc_controller->gadget.dev);
err3:
free_irq(udc_controller->irq, udc_controller);
err2:
iounmap(dr_regs);
err1:
release_mem_region(res->start, res->end - res->start + 1);
kfree(udc_controller);
return ret;
}
/* Driver removal function
* Free resources and finish pending transactions
*/
static int __exit fsl_udc_remove(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
DECLARE_COMPLETION(done);
if (!udc_controller)
return -ENODEV;
udc_controller->done = &done;
/* DR has been stopped in usb_gadget_unregister_driver() */
remove_proc_file();
/* Free allocated memory */
kfree(udc_controller->status_req->req.buf);
kfree(udc_controller->status_req);
kfree(udc_controller->eps);
dma_pool_destroy(udc_controller->td_pool);
free_irq(udc_controller->irq, udc_controller);
iounmap(dr_regs);
release_mem_region(res->start, res->end - res->start + 1);
device_unregister(&udc_controller->gadget.dev);
/* free udc --wait for the release() finished */
wait_for_completion(&done);
return 0;
}
/*-----------------------------------------------------------------
* Modify Power management attributes
* Used by OTG statemachine to disable gadget temporarily
-----------------------------------------------------------------*/
static int fsl_udc_suspend(struct platform_device *pdev, pm_message_t state)
{
dr_controller_stop(udc_controller);
return 0;
}
/*-----------------------------------------------------------------
* Invoked on USB resume. May be called in_interrupt.
* Here we start the DR controller and enable the irq
*-----------------------------------------------------------------*/
static int fsl_udc_resume(struct platform_device *pdev)
{
/* Enable DR irq reg and set controller Run */
if (udc_controller->stopped) {
dr_controller_setup(udc_controller);
dr_controller_run(udc_controller);
}
udc_controller->usb_state = USB_STATE_ATTACHED;
udc_controller->ep0_state = WAIT_FOR_SETUP;
udc_controller->ep0_dir = 0;
return 0;
}
/*-------------------------------------------------------------------------
Register entry point for the peripheral controller driver
--------------------------------------------------------------------------*/
static struct platform_driver udc_driver = {
.remove = __exit_p(fsl_udc_remove),
/* these suspend and resume are not usb suspend and resume */
.suspend = fsl_udc_suspend,
.resume = fsl_udc_resume,
.driver = {
.name = (char *)driver_name,
.owner = THIS_MODULE,
},
};
static int __init udc_init(void)
{
printk(KERN_INFO "%s (%s)\n", driver_desc, DRIVER_VERSION);
return platform_driver_probe(&udc_driver, fsl_udc_probe);
}
module_init(udc_init);
static void __exit udc_exit(void)
{
platform_driver_unregister(&udc_driver);
printk("%s unregistered \n", driver_desc);
}
module_exit(udc_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");