linux/drivers/net/ethernet/intel/ixgbe/ixgbe_xsk.c

763 lines
18 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2018 Intel Corporation. */
#include <linux/bpf_trace.h>
#include <net/xdp_sock.h>
#include <net/xdp.h>
#include "ixgbe.h"
#include "ixgbe_txrx_common.h"
struct xdp_umem *ixgbe_xsk_umem(struct ixgbe_adapter *adapter,
struct ixgbe_ring *ring)
{
bool xdp_on = READ_ONCE(adapter->xdp_prog);
int qid = ring->ring_idx;
if (!xdp_on || !test_bit(qid, adapter->af_xdp_zc_qps))
return NULL;
return xdp_get_umem_from_qid(adapter->netdev, qid);
}
static int ixgbe_xsk_umem_dma_map(struct ixgbe_adapter *adapter,
struct xdp_umem *umem)
{
struct device *dev = &adapter->pdev->dev;
unsigned int i, j;
dma_addr_t dma;
for (i = 0; i < umem->npgs; i++) {
dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
DMA_BIDIRECTIONAL, IXGBE_RX_DMA_ATTR);
if (dma_mapping_error(dev, dma))
goto out_unmap;
umem->pages[i].dma = dma;
}
return 0;
out_unmap:
for (j = 0; j < i; j++) {
dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, IXGBE_RX_DMA_ATTR);
umem->pages[i].dma = 0;
}
return -1;
}
static void ixgbe_xsk_umem_dma_unmap(struct ixgbe_adapter *adapter,
struct xdp_umem *umem)
{
struct device *dev = &adapter->pdev->dev;
unsigned int i;
for (i = 0; i < umem->npgs; i++) {
dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, IXGBE_RX_DMA_ATTR);
umem->pages[i].dma = 0;
}
}
static int ixgbe_xsk_umem_enable(struct ixgbe_adapter *adapter,
struct xdp_umem *umem,
u16 qid)
{
struct net_device *netdev = adapter->netdev;
struct xdp_umem_fq_reuse *reuseq;
bool if_running;
int err;
if (qid >= adapter->num_rx_queues)
return -EINVAL;
if (qid >= netdev->real_num_rx_queues ||
qid >= netdev->real_num_tx_queues)
return -EINVAL;
reuseq = xsk_reuseq_prepare(adapter->rx_ring[0]->count);
if (!reuseq)
return -ENOMEM;
xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
err = ixgbe_xsk_umem_dma_map(adapter, umem);
if (err)
return err;
if_running = netif_running(adapter->netdev) &&
ixgbe_enabled_xdp_adapter(adapter);
if (if_running)
ixgbe_txrx_ring_disable(adapter, qid);
set_bit(qid, adapter->af_xdp_zc_qps);
if (if_running) {
ixgbe_txrx_ring_enable(adapter, qid);
/* Kick start the NAPI context so that receiving will start */
err = ixgbe_xsk_wakeup(adapter->netdev, qid, XDP_WAKEUP_RX);
if (err)
return err;
}
return 0;
}
static int ixgbe_xsk_umem_disable(struct ixgbe_adapter *adapter, u16 qid)
{
struct xdp_umem *umem;
bool if_running;
umem = xdp_get_umem_from_qid(adapter->netdev, qid);
if (!umem)
return -EINVAL;
if_running = netif_running(adapter->netdev) &&
ixgbe_enabled_xdp_adapter(adapter);
if (if_running)
ixgbe_txrx_ring_disable(adapter, qid);
clear_bit(qid, adapter->af_xdp_zc_qps);
ixgbe_xsk_umem_dma_unmap(adapter, umem);
if (if_running)
ixgbe_txrx_ring_enable(adapter, qid);
return 0;
}
int ixgbe_xsk_umem_setup(struct ixgbe_adapter *adapter, struct xdp_umem *umem,
u16 qid)
{
return umem ? ixgbe_xsk_umem_enable(adapter, umem, qid) :
ixgbe_xsk_umem_disable(adapter, qid);
}
static int ixgbe_run_xdp_zc(struct ixgbe_adapter *adapter,
struct ixgbe_ring *rx_ring,
struct xdp_buff *xdp)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
int err, result = IXGBE_XDP_PASS;
u64 offset = umem->headroom;
struct bpf_prog *xdp_prog;
struct xdp_frame *xdpf;
u32 act;
rcu_read_lock();
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
act = bpf_prog_run_xdp(xdp_prog, xdp);
offset += xdp->data - xdp->data_hard_start;
xdp->handle = xsk_umem_adjust_offset(umem, xdp->handle, offset);
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
xdpf = convert_to_xdp_frame(xdp);
if (unlikely(!xdpf)) {
result = IXGBE_XDP_CONSUMED;
break;
}
result = ixgbe_xmit_xdp_ring(adapter, xdpf);
break;
case XDP_REDIRECT:
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
result = !err ? IXGBE_XDP_REDIR : IXGBE_XDP_CONSUMED;
break;
default:
bpf_warn_invalid_xdp_action(act);
/* fallthrough */
case XDP_ABORTED:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
/* fallthrough -- handle aborts by dropping packet */
case XDP_DROP:
result = IXGBE_XDP_CONSUMED;
break;
}
rcu_read_unlock();
return result;
}
static struct
ixgbe_rx_buffer *ixgbe_get_rx_buffer_zc(struct ixgbe_ring *rx_ring,
unsigned int size)
{
struct ixgbe_rx_buffer *bi;
bi = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
bi->dma, 0,
size,
DMA_BIDIRECTIONAL);
return bi;
}
static void ixgbe_reuse_rx_buffer_zc(struct ixgbe_ring *rx_ring,
struct ixgbe_rx_buffer *obi)
{
u16 nta = rx_ring->next_to_alloc;
struct ixgbe_rx_buffer *nbi;
nbi = &rx_ring->rx_buffer_info[rx_ring->next_to_alloc];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* transfer page from old buffer to new buffer */
nbi->dma = obi->dma;
nbi->addr = obi->addr;
nbi->handle = obi->handle;
obi->addr = NULL;
obi->skb = NULL;
}
void ixgbe_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
{
struct ixgbe_rx_buffer *bi;
struct ixgbe_ring *rx_ring;
u64 hr, mask;
u16 nta;
rx_ring = container_of(alloc, struct ixgbe_ring, zca);
hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
mask = rx_ring->xsk_umem->chunk_mask;
nta = rx_ring->next_to_alloc;
bi = rx_ring->rx_buffer_info;
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
handle &= mask;
bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
bi->dma += hr;
bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
bi->addr += hr;
bi->handle = (u64)handle;
}
static bool ixgbe_alloc_buffer_zc(struct ixgbe_ring *rx_ring,
struct ixgbe_rx_buffer *bi)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
void *addr = bi->addr;
u64 handle, hr;
if (addr)
return true;
if (!xsk_umem_peek_addr(umem, &handle)) {
rx_ring->rx_stats.alloc_rx_page_failed++;
return false;
}
hr = umem->headroom + XDP_PACKET_HEADROOM;
bi->dma = xdp_umem_get_dma(umem, handle);
bi->dma += hr;
bi->addr = xdp_umem_get_data(umem, handle);
bi->addr += hr;
bi->handle = handle;
xsk_umem_discard_addr(umem);
return true;
}
static bool ixgbe_alloc_buffer_slow_zc(struct ixgbe_ring *rx_ring,
struct ixgbe_rx_buffer *bi)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
u64 handle, hr;
if (!xsk_umem_peek_addr_rq(umem, &handle)) {
rx_ring->rx_stats.alloc_rx_page_failed++;
return false;
}
handle &= rx_ring->xsk_umem->chunk_mask;
hr = umem->headroom + XDP_PACKET_HEADROOM;
bi->dma = xdp_umem_get_dma(umem, handle);
bi->dma += hr;
bi->addr = xdp_umem_get_data(umem, handle);
bi->addr += hr;
bi->handle = handle;
xsk_umem_discard_addr_rq(umem);
return true;
}
static __always_inline bool
__ixgbe_alloc_rx_buffers_zc(struct ixgbe_ring *rx_ring, u16 cleaned_count,
bool alloc(struct ixgbe_ring *rx_ring,
struct ixgbe_rx_buffer *bi))
{
union ixgbe_adv_rx_desc *rx_desc;
struct ixgbe_rx_buffer *bi;
u16 i = rx_ring->next_to_use;
bool ok = true;
/* nothing to do */
if (!cleaned_count)
return true;
rx_desc = IXGBE_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer_info[i];
i -= rx_ring->count;
do {
if (!alloc(rx_ring, bi)) {
ok = false;
break;
}
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
bi->page_offset,
rx_ring->rx_buf_len,
DMA_BIDIRECTIONAL);
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = IXGBE_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer_info;
i -= rx_ring->count;
}
/* clear the length for the next_to_use descriptor */
rx_desc->wb.upper.length = 0;
cleaned_count--;
} while (cleaned_count);
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
rx_ring->next_to_use = i;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(i, rx_ring->tail);
}
return ok;
}
void ixgbe_alloc_rx_buffers_zc(struct ixgbe_ring *rx_ring, u16 count)
{
__ixgbe_alloc_rx_buffers_zc(rx_ring, count,
ixgbe_alloc_buffer_slow_zc);
}
static bool ixgbe_alloc_rx_buffers_fast_zc(struct ixgbe_ring *rx_ring,
u16 count)
{
return __ixgbe_alloc_rx_buffers_zc(rx_ring, count,
ixgbe_alloc_buffer_zc);
}
static struct sk_buff *ixgbe_construct_skb_zc(struct ixgbe_ring *rx_ring,
struct ixgbe_rx_buffer *bi,
struct xdp_buff *xdp)
{
unsigned int metasize = xdp->data - xdp->data_meta;
unsigned int datasize = xdp->data_end - xdp->data;
struct sk_buff *skb;
/* allocate a skb to store the frags */
skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
xdp->data_end - xdp->data_hard_start,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, xdp->data - xdp->data_hard_start);
memcpy(__skb_put(skb, datasize), xdp->data, datasize);
if (metasize)
skb_metadata_set(skb, metasize);
ixgbe_reuse_rx_buffer_zc(rx_ring, bi);
return skb;
}
static void ixgbe_inc_ntc(struct ixgbe_ring *rx_ring)
{
u32 ntc = rx_ring->next_to_clean + 1;
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(IXGBE_RX_DESC(rx_ring, ntc));
}
int ixgbe_clean_rx_irq_zc(struct ixgbe_q_vector *q_vector,
struct ixgbe_ring *rx_ring,
const int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
struct ixgbe_adapter *adapter = q_vector->adapter;
u16 cleaned_count = ixgbe_desc_unused(rx_ring);
unsigned int xdp_res, xdp_xmit = 0;
bool failure = false;
struct sk_buff *skb;
struct xdp_buff xdp;
xdp.rxq = &rx_ring->xdp_rxq;
while (likely(total_rx_packets < budget)) {
union ixgbe_adv_rx_desc *rx_desc;
struct ixgbe_rx_buffer *bi;
unsigned int size;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IXGBE_RX_BUFFER_WRITE) {
failure = failure ||
!ixgbe_alloc_rx_buffers_fast_zc(rx_ring,
cleaned_count);
cleaned_count = 0;
}
rx_desc = IXGBE_RX_DESC(rx_ring, rx_ring->next_to_clean);
size = le16_to_cpu(rx_desc->wb.upper.length);
if (!size)
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* descriptor has been written back
*/
dma_rmb();
bi = ixgbe_get_rx_buffer_zc(rx_ring, size);
if (unlikely(!ixgbe_test_staterr(rx_desc,
IXGBE_RXD_STAT_EOP))) {
struct ixgbe_rx_buffer *next_bi;
ixgbe_reuse_rx_buffer_zc(rx_ring, bi);
ixgbe_inc_ntc(rx_ring);
next_bi =
&rx_ring->rx_buffer_info[rx_ring->next_to_clean];
next_bi->skb = ERR_PTR(-EINVAL);
continue;
}
if (unlikely(bi->skb)) {
ixgbe_reuse_rx_buffer_zc(rx_ring, bi);
ixgbe_inc_ntc(rx_ring);
continue;
}
xdp.data = bi->addr;
xdp.data_meta = xdp.data;
xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
xdp.data_end = xdp.data + size;
xdp.handle = bi->handle;
xdp_res = ixgbe_run_xdp_zc(adapter, rx_ring, &xdp);
if (xdp_res) {
if (xdp_res & (IXGBE_XDP_TX | IXGBE_XDP_REDIR)) {
xdp_xmit |= xdp_res;
bi->addr = NULL;
bi->skb = NULL;
} else {
ixgbe_reuse_rx_buffer_zc(rx_ring, bi);
}
total_rx_packets++;
total_rx_bytes += size;
cleaned_count++;
ixgbe_inc_ntc(rx_ring);
continue;
}
/* XDP_PASS path */
skb = ixgbe_construct_skb_zc(rx_ring, bi, &xdp);
if (!skb) {
rx_ring->rx_stats.alloc_rx_buff_failed++;
break;
}
cleaned_count++;
ixgbe_inc_ntc(rx_ring);
if (eth_skb_pad(skb))
continue;
total_rx_bytes += skb->len;
total_rx_packets++;
ixgbe_process_skb_fields(rx_ring, rx_desc, skb);
ixgbe_rx_skb(q_vector, skb);
}
if (xdp_xmit & IXGBE_XDP_REDIR)
xdp_do_flush_map();
if (xdp_xmit & IXGBE_XDP_TX) {
struct ixgbe_ring *ring = adapter->xdp_ring[smp_processor_id()];
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch.
*/
wmb();
writel(ring->next_to_use, ring->tail);
}
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->stats.packets += total_rx_packets;
rx_ring->stats.bytes += total_rx_bytes;
u64_stats_update_end(&rx_ring->syncp);
q_vector->rx.total_packets += total_rx_packets;
q_vector->rx.total_bytes += total_rx_bytes;
if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
else
xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);
return (int)total_rx_packets;
}
return failure ? budget : (int)total_rx_packets;
}
void ixgbe_xsk_clean_rx_ring(struct ixgbe_ring *rx_ring)
{
u16 i = rx_ring->next_to_clean;
struct ixgbe_rx_buffer *bi = &rx_ring->rx_buffer_info[i];
while (i != rx_ring->next_to_alloc) {
xsk_umem_fq_reuse(rx_ring->xsk_umem, bi->handle);
i++;
bi++;
if (i == rx_ring->count) {
i = 0;
bi = rx_ring->rx_buffer_info;
}
}
}
static bool ixgbe_xmit_zc(struct ixgbe_ring *xdp_ring, unsigned int budget)
{
union ixgbe_adv_tx_desc *tx_desc = NULL;
struct ixgbe_tx_buffer *tx_bi;
bool work_done = true;
struct xdp_desc desc;
dma_addr_t dma;
u32 cmd_type;
while (budget-- > 0) {
if (unlikely(!ixgbe_desc_unused(xdp_ring)) ||
!netif_carrier_ok(xdp_ring->netdev)) {
work_done = false;
break;
}
if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
break;
dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
DMA_BIDIRECTIONAL);
tx_bi = &xdp_ring->tx_buffer_info[xdp_ring->next_to_use];
tx_bi->bytecount = desc.len;
tx_bi->xdpf = NULL;
tx_bi->gso_segs = 1;
tx_desc = IXGBE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
/* put descriptor type bits */
cmd_type = IXGBE_ADVTXD_DTYP_DATA |
IXGBE_ADVTXD_DCMD_DEXT |
IXGBE_ADVTXD_DCMD_IFCS;
cmd_type |= desc.len | IXGBE_TXD_CMD;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
tx_desc->read.olinfo_status =
cpu_to_le32(desc.len << IXGBE_ADVTXD_PAYLEN_SHIFT);
xdp_ring->next_to_use++;
if (xdp_ring->next_to_use == xdp_ring->count)
xdp_ring->next_to_use = 0;
}
if (tx_desc) {
ixgbe_xdp_ring_update_tail(xdp_ring);
xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem))
xsk_clear_tx_need_wakeup(xdp_ring->xsk_umem);
}
return !!budget && work_done;
}
static void ixgbe_clean_xdp_tx_buffer(struct ixgbe_ring *tx_ring,
struct ixgbe_tx_buffer *tx_bi)
{
xdp_return_frame(tx_bi->xdpf);
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_bi, dma),
dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
dma_unmap_len_set(tx_bi, len, 0);
}
bool ixgbe_clean_xdp_tx_irq(struct ixgbe_q_vector *q_vector,
struct ixgbe_ring *tx_ring, int napi_budget)
{
unsigned int total_packets = 0, total_bytes = 0;
u32 i = tx_ring->next_to_clean, xsk_frames = 0;
unsigned int budget = q_vector->tx.work_limit;
struct xdp_umem *umem = tx_ring->xsk_umem;
union ixgbe_adv_tx_desc *tx_desc;
struct ixgbe_tx_buffer *tx_bi;
bool xmit_done;
tx_bi = &tx_ring->tx_buffer_info[i];
tx_desc = IXGBE_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
if (!(tx_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
break;
total_bytes += tx_bi->bytecount;
total_packets += tx_bi->gso_segs;
if (tx_bi->xdpf)
ixgbe_clean_xdp_tx_buffer(tx_ring, tx_bi);
else
xsk_frames++;
tx_bi->xdpf = NULL;
tx_bi++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_bi = tx_ring->tx_buffer_info;
tx_desc = IXGBE_TX_DESC(tx_ring, 0);
}
/* issue prefetch for next Tx descriptor */
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->stats.bytes += total_bytes;
tx_ring->stats.packets += total_packets;
u64_stats_update_end(&tx_ring->syncp);
q_vector->tx.total_bytes += total_bytes;
q_vector->tx.total_packets += total_packets;
if (xsk_frames)
xsk_umem_complete_tx(umem, xsk_frames);
if (xsk_umem_uses_need_wakeup(tx_ring->xsk_umem)) {
if (tx_ring->next_to_clean == tx_ring->next_to_use)
xsk_set_tx_need_wakeup(tx_ring->xsk_umem);
else
xsk_clear_tx_need_wakeup(tx_ring->xsk_umem);
}
xmit_done = ixgbe_xmit_zc(tx_ring, q_vector->tx.work_limit);
return budget > 0 && xmit_done;
}
int ixgbe_xsk_wakeup(struct net_device *dev, u32 qid, u32 flags)
{
struct ixgbe_adapter *adapter = netdev_priv(dev);
struct ixgbe_ring *ring;
if (test_bit(__IXGBE_DOWN, &adapter->state))
return -ENETDOWN;
if (!READ_ONCE(adapter->xdp_prog))
return -ENXIO;
if (qid >= adapter->num_xdp_queues)
return -ENXIO;
if (!adapter->xdp_ring[qid]->xsk_umem)
return -ENXIO;
ring = adapter->xdp_ring[qid];
if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) {
u64 eics = BIT_ULL(ring->q_vector->v_idx);
ixgbe_irq_rearm_queues(adapter, eics);
}
return 0;
}
void ixgbe_xsk_clean_tx_ring(struct ixgbe_ring *tx_ring)
{
u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
struct xdp_umem *umem = tx_ring->xsk_umem;
struct ixgbe_tx_buffer *tx_bi;
u32 xsk_frames = 0;
while (ntc != ntu) {
tx_bi = &tx_ring->tx_buffer_info[ntc];
if (tx_bi->xdpf)
ixgbe_clean_xdp_tx_buffer(tx_ring, tx_bi);
else
xsk_frames++;
tx_bi->xdpf = NULL;
ntc++;
if (ntc == tx_ring->count)
ntc = 0;
}
if (xsk_frames)
xsk_umem_complete_tx(umem, xsk_frames);
}