linux/drivers/hwmon/ad7414.c

270 lines
7.0 KiB
C
Raw Normal View History

/*
* An hwmon driver for the Analog Devices AD7414
*
* Copyright 2006 Stefan Roese <sr at denx.de>, DENX Software Engineering
*
* Copyright (c) 2008 PIKA Technologies
* Sean MacLennan <smaclennan@pikatech.com>
*
* Copyright (c) 2008 Spansion Inc.
* Frank Edelhaeuser <frank.edelhaeuser at spansion.com>
* (converted to "new style" I2C driver model, removed checkpatch.pl warnings)
*
* Based on ad7418.c
* Copyright 2006 Tower Technologies, Alessandro Zummo <a.zummo at towertech.it>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
/* AD7414 registers */
#define AD7414_REG_TEMP 0x00
#define AD7414_REG_CONF 0x01
#define AD7414_REG_T_HIGH 0x02
#define AD7414_REG_T_LOW 0x03
static u8 AD7414_REG_LIMIT[] = { AD7414_REG_T_HIGH, AD7414_REG_T_LOW };
struct ad7414_data {
struct device *hwmon_dev;
struct mutex lock; /* atomic read data updates */
char valid; /* !=0 if following fields are valid */
unsigned long next_update; /* In jiffies */
s16 temp_input; /* Register values */
s8 temps[ARRAY_SIZE(AD7414_REG_LIMIT)];
};
/* REG: (0.25C/bit, two's complement) << 6 */
static inline int ad7414_temp_from_reg(s16 reg)
{
/* use integer division instead of equivalent right shift to
* guarantee arithmetic shift and preserve the sign
*/
return ((int)reg / 64) * 250;
}
static inline int ad7414_read(struct i2c_client *client, u8 reg)
{
if (reg == AD7414_REG_TEMP) {
int value = i2c_smbus_read_word_data(client, reg);
return (value < 0) ? value : swab16(value);
} else
return i2c_smbus_read_byte_data(client, reg);
}
static inline int ad7414_write(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
static struct ad7414_data *ad7414_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct ad7414_data *data = i2c_get_clientdata(client);
mutex_lock(&data->lock);
if (time_after(jiffies, data->next_update) || !data->valid) {
int value, i;
dev_dbg(&client->dev, "starting ad7414 update\n");
value = ad7414_read(client, AD7414_REG_TEMP);
if (value < 0)
dev_dbg(&client->dev, "AD7414_REG_TEMP err %d\n",
value);
else
data->temp_input = value;
for (i = 0; i < ARRAY_SIZE(AD7414_REG_LIMIT); ++i) {
value = ad7414_read(client, AD7414_REG_LIMIT[i]);
if (value < 0)
dev_dbg(&client->dev, "AD7414 reg %d err %d\n",
AD7414_REG_LIMIT[i], value);
else
data->temps[i] = value;
}
data->next_update = jiffies + HZ + HZ / 2;
data->valid = 1;
}
mutex_unlock(&data->lock);
return data;
}
static ssize_t show_temp_input(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ad7414_data *data = ad7414_update_device(dev);
return sprintf(buf, "%d\n", ad7414_temp_from_reg(data->temp_input));
}
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp_input, NULL, 0);
static ssize_t show_max_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
int index = to_sensor_dev_attr(attr)->index;
struct ad7414_data *data = ad7414_update_device(dev);
return sprintf(buf, "%d\n", data->temps[index] * 1000);
}
static ssize_t set_max_min(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct ad7414_data *data = i2c_get_clientdata(client);
int index = to_sensor_dev_attr(attr)->index;
u8 reg = AD7414_REG_LIMIT[index];
long temp = simple_strtol(buf, NULL, 10);
temp = SENSORS_LIMIT(temp, -40000, 85000);
temp = (temp + (temp < 0 ? -500 : 500)) / 1000;
mutex_lock(&data->lock);
data->temps[index] = temp;
ad7414_write(client, reg, temp);
mutex_unlock(&data->lock);
return count;
}
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO,
show_max_min, set_max_min, 0);
static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO,
show_max_min, set_max_min, 1);
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct ad7414_data *data = ad7414_update_device(dev);
int value = (data->temp_input >> bitnr) & 1;
return sprintf(buf, "%d\n", value);
}
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 4);
static struct attribute *ad7414_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group ad7414_group = {
.attrs = ad7414_attributes,
};
static int ad7414_probe(struct i2c_client *client,
const struct i2c_device_id *dev_id)
{
struct ad7414_data *data;
int conf;
int err = 0;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_READ_WORD_DATA))
goto exit;
data = kzalloc(sizeof(struct ad7414_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(client, data);
mutex_init(&data->lock);
dev_info(&client->dev, "chip found\n");
/* Make sure the chip is powered up. */
conf = i2c_smbus_read_byte_data(client, AD7414_REG_CONF);
if (conf < 0)
dev_warn(&client->dev,
"ad7414_probe unable to read config register.\n");
else {
conf &= ~(1 << 7);
i2c_smbus_write_byte_data(client, AD7414_REG_CONF, conf);
}
/* Register sysfs hooks */
err = sysfs_create_group(&client->dev.kobj, &ad7414_group);
if (err)
goto exit_free;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
sysfs_remove_group(&client->dev.kobj, &ad7414_group);
exit_free:
kfree(data);
exit:
return err;
}
static int __devexit ad7414_remove(struct i2c_client *client)
{
struct ad7414_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &ad7414_group);
kfree(data);
return 0;
}
static const struct i2c_device_id ad7414_id[] = {
{ "ad7414", 0 },
{}
};
static struct i2c_driver ad7414_driver = {
.driver = {
.name = "ad7414",
},
.probe = ad7414_probe,
.remove = __devexit_p(ad7414_remove),
.id_table = ad7414_id,
};
static int __init ad7414_init(void)
{
return i2c_add_driver(&ad7414_driver);
}
module_init(ad7414_init);
static void __exit ad7414_exit(void)
{
i2c_del_driver(&ad7414_driver);
}
module_exit(ad7414_exit);
MODULE_AUTHOR("Stefan Roese <sr at denx.de>, "
"Frank Edelhaeuser <frank.edelhaeuser at spansion.com>");
MODULE_DESCRIPTION("AD7414 driver");
MODULE_LICENSE("GPL");