linux/arch/mips/mm/cerr-sb1.c

582 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) 2001,2002,2003 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/sched.h>
#include <asm/mipsregs.h>
#include <asm/sibyte/sb1250.h>
#include <asm/sibyte/sb1250_regs.h>
#if !defined(CONFIG_SIBYTE_BUS_WATCHER) || defined(CONFIG_SIBYTE_BW_TRACE)
#include <asm/io.h>
#include <asm/sibyte/sb1250_scd.h>
#endif
/*
* We'd like to dump the L2_ECC_TAG register on errors, but errata make
* that unsafe... So for now we don't. (BCM1250/BCM112x erratum SOC-48.)
*/
#undef DUMP_L2_ECC_TAG_ON_ERROR
/* SB1 definitions */
/* XXX should come from config1 XXX */
#define SB1_CACHE_INDEX_MASK 0x1fe0
#define CP0_ERRCTL_RECOVERABLE (1 << 31)
#define CP0_ERRCTL_DCACHE (1 << 30)
#define CP0_ERRCTL_ICACHE (1 << 29)
#define CP0_ERRCTL_MULTIBUS (1 << 23)
#define CP0_ERRCTL_MC_TLB (1 << 15)
#define CP0_ERRCTL_MC_TIMEOUT (1 << 14)
#define CP0_CERRI_TAG_PARITY (1 << 29)
#define CP0_CERRI_DATA_PARITY (1 << 28)
#define CP0_CERRI_EXTERNAL (1 << 26)
#define CP0_CERRI_IDX_VALID(c) (!((c) & CP0_CERRI_EXTERNAL))
#define CP0_CERRI_DATA (CP0_CERRI_DATA_PARITY)
#define CP0_CERRD_MULTIPLE (1 << 31)
#define CP0_CERRD_TAG_STATE (1 << 30)
#define CP0_CERRD_TAG_ADDRESS (1 << 29)
#define CP0_CERRD_DATA_SBE (1 << 28)
#define CP0_CERRD_DATA_DBE (1 << 27)
#define CP0_CERRD_EXTERNAL (1 << 26)
#define CP0_CERRD_LOAD (1 << 25)
#define CP0_CERRD_STORE (1 << 24)
#define CP0_CERRD_FILLWB (1 << 23)
#define CP0_CERRD_COHERENCY (1 << 22)
#define CP0_CERRD_DUPTAG (1 << 21)
#define CP0_CERRD_DPA_VALID(c) (!((c) & CP0_CERRD_EXTERNAL))
#define CP0_CERRD_IDX_VALID(c) \
(((c) & (CP0_CERRD_LOAD | CP0_CERRD_STORE)) ? (!((c) & CP0_CERRD_EXTERNAL)) : 0)
#define CP0_CERRD_CAUSES \
(CP0_CERRD_LOAD | CP0_CERRD_STORE | CP0_CERRD_FILLWB | CP0_CERRD_COHERENCY | CP0_CERRD_DUPTAG)
#define CP0_CERRD_TYPES \
(CP0_CERRD_TAG_STATE | CP0_CERRD_TAG_ADDRESS | CP0_CERRD_DATA_SBE | CP0_CERRD_DATA_DBE | CP0_CERRD_EXTERNAL)
#define CP0_CERRD_DATA (CP0_CERRD_DATA_SBE | CP0_CERRD_DATA_DBE)
static uint32_t extract_ic(unsigned short addr, int data);
static uint32_t extract_dc(unsigned short addr, int data);
static inline void breakout_errctl(unsigned int val)
{
if (val & CP0_ERRCTL_RECOVERABLE)
printk(" recoverable");
if (val & CP0_ERRCTL_DCACHE)
printk(" dcache");
if (val & CP0_ERRCTL_ICACHE)
printk(" icache");
if (val & CP0_ERRCTL_MULTIBUS)
printk(" multiple-buserr");
printk("\n");
}
static inline void breakout_cerri(unsigned int val)
{
if (val & CP0_CERRI_TAG_PARITY)
printk(" tag-parity");
if (val & CP0_CERRI_DATA_PARITY)
printk(" data-parity");
if (val & CP0_CERRI_EXTERNAL)
printk(" external");
printk("\n");
}
static inline void breakout_cerrd(unsigned int val)
{
switch (val & CP0_CERRD_CAUSES) {
case CP0_CERRD_LOAD:
printk(" load,");
break;
case CP0_CERRD_STORE:
printk(" store,");
break;
case CP0_CERRD_FILLWB:
printk(" fill/wb,");
break;
case CP0_CERRD_COHERENCY:
printk(" coherency,");
break;
case CP0_CERRD_DUPTAG:
printk(" duptags,");
break;
default:
printk(" NO CAUSE,");
break;
}
if (!(val & CP0_CERRD_TYPES))
printk(" NO TYPE");
else {
if (val & CP0_CERRD_MULTIPLE)
printk(" multi-err");
if (val & CP0_CERRD_TAG_STATE)
printk(" tag-state");
if (val & CP0_CERRD_TAG_ADDRESS)
printk(" tag-address");
if (val & CP0_CERRD_DATA_SBE)
printk(" data-SBE");
if (val & CP0_CERRD_DATA_DBE)
printk(" data-DBE");
if (val & CP0_CERRD_EXTERNAL)
printk(" external");
}
printk("\n");
}
#ifndef CONFIG_SIBYTE_BUS_WATCHER
static void check_bus_watcher(void)
{
uint32_t status, l2_err, memio_err;
#ifdef DUMP_L2_ECC_TAG_ON_ERROR
uint64_t l2_tag;
#endif
/* Destructive read, clears register and interrupt */
status = csr_in32(IOADDR(A_SCD_BUS_ERR_STATUS));
/* Bit 31 is always on, but there's no #define for that */
if (status & ~(1UL << 31)) {
l2_err = csr_in32(IOADDR(A_BUS_L2_ERRORS));
#ifdef DUMP_L2_ECC_TAG_ON_ERROR
l2_tag = in64(IO_SPACE_BASE | A_L2_ECC_TAG);
#endif
memio_err = csr_in32(IOADDR(A_BUS_MEM_IO_ERRORS));
printk("Bus watcher error counters: %08x %08x\n", l2_err, memio_err);
printk("\nLast recorded signature:\n");
printk("Request %02x from %d, answered by %d with Dcode %d\n",
(unsigned int)(G_SCD_BERR_TID(status) & 0x3f),
(int)(G_SCD_BERR_TID(status) >> 6),
(int)G_SCD_BERR_RID(status),
(int)G_SCD_BERR_DCODE(status));
#ifdef DUMP_L2_ECC_TAG_ON_ERROR
printk("Last L2 tag w/ bad ECC: %016llx\n", l2_tag);
#endif
} else {
printk("Bus watcher indicates no error\n");
}
}
#else
extern void check_bus_watcher(void);
#endif
asmlinkage void sb1_cache_error(void)
{
uint32_t errctl, cerr_i, cerr_d, dpalo, dpahi, eepc, res;
unsigned long long cerr_dpa;
#ifdef CONFIG_SIBYTE_BW_TRACE
/* Freeze the trace buffer now */
#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
csr_out32(M_BCM1480_SCD_TRACE_CFG_FREEZE, IO_SPACE_BASE | A_SCD_TRACE_CFG);
#else
csr_out32(M_SCD_TRACE_CFG_FREEZE, IO_SPACE_BASE | A_SCD_TRACE_CFG);
#endif
printk("Trace buffer frozen\n");
#endif
printk("Cache error exception on CPU %x:\n",
(read_c0_prid() >> 25) & 0x7);
__asm__ __volatile__ (
" .set push\n\t"
" .set mips64\n\t"
" .set noat\n\t"
" mfc0 %0, $26\n\t"
" mfc0 %1, $27\n\t"
" mfc0 %2, $27, 1\n\t"
" dmfc0 $1, $27, 3\n\t"
" dsrl32 %3, $1, 0 \n\t"
" sll %4, $1, 0 \n\t"
" mfc0 %5, $30\n\t"
" .set pop"
: "=r" (errctl), "=r" (cerr_i), "=r" (cerr_d),
"=r" (dpahi), "=r" (dpalo), "=r" (eepc));
cerr_dpa = (((uint64_t)dpahi) << 32) | dpalo;
printk(" c0_errorepc == %08x\n", eepc);
printk(" c0_errctl == %08x", errctl);
breakout_errctl(errctl);
if (errctl & CP0_ERRCTL_ICACHE) {
printk(" c0_cerr_i == %08x", cerr_i);
breakout_cerri(cerr_i);
if (CP0_CERRI_IDX_VALID(cerr_i)) {
/* Check index of EPC, allowing for delay slot */
if (((eepc & SB1_CACHE_INDEX_MASK) != (cerr_i & SB1_CACHE_INDEX_MASK)) &&
((eepc & SB1_CACHE_INDEX_MASK) != ((cerr_i & SB1_CACHE_INDEX_MASK) - 4)))
printk(" cerr_i idx doesn't match eepc\n");
else {
res = extract_ic(cerr_i & SB1_CACHE_INDEX_MASK,
(cerr_i & CP0_CERRI_DATA) != 0);
if (!(res & cerr_i))
printk("...didn't see indicated icache problem\n");
}
}
}
if (errctl & CP0_ERRCTL_DCACHE) {
printk(" c0_cerr_d == %08x", cerr_d);
breakout_cerrd(cerr_d);
if (CP0_CERRD_DPA_VALID(cerr_d)) {
printk(" c0_cerr_dpa == %010llx\n", cerr_dpa);
if (!CP0_CERRD_IDX_VALID(cerr_d)) {
res = extract_dc(cerr_dpa & SB1_CACHE_INDEX_MASK,
(cerr_d & CP0_CERRD_DATA) != 0);
if (!(res & cerr_d))
printk("...didn't see indicated dcache problem\n");
} else {
if ((cerr_dpa & SB1_CACHE_INDEX_MASK) != (cerr_d & SB1_CACHE_INDEX_MASK))
printk(" cerr_d idx doesn't match cerr_dpa\n");
else {
res = extract_dc(cerr_d & SB1_CACHE_INDEX_MASK,
(cerr_d & CP0_CERRD_DATA) != 0);
if (!(res & cerr_d))
printk("...didn't see indicated problem\n");
}
}
}
}
check_bus_watcher();
/*
* Calling panic() when a fatal cache error occurs scrambles the
* state of the system (and the cache), making it difficult to
* investigate after the fact. However, if you just stall the CPU,
* the other CPU may keep on running, which is typically very
* undesirable.
*/
#ifdef CONFIG_SB1_CERR_STALL
while (1)
;
#else
panic("unhandled cache error");
#endif
}
/* Parity lookup table. */
static const uint8_t parity[256] = {
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
};
/* Masks to select bits for Hamming parity, mask_72_64[i] for bit[i] */
static const uint64_t mask_72_64[8] = {
0x0738C808099264FFULL,
0x38C808099264FF07ULL,
0xC808099264FF0738ULL,
0x08099264FF0738C8ULL,
0x099264FF0738C808ULL,
0x9264FF0738C80809ULL,
0x64FF0738C8080992ULL,
0xFF0738C808099264ULL
};
/* Calculate the parity on a range of bits */
static char range_parity(uint64_t dword, int max, int min)
{
char parity = 0;
int i;
dword >>= min;
for (i=max-min; i>=0; i--) {
if (dword & 0x1)
parity = !parity;
dword >>= 1;
}
return parity;
}
/* Calculate the 4-bit even byte-parity for an instruction */
static unsigned char inst_parity(uint32_t word)
{
int i, j;
char parity = 0;
for (j=0; j<4; j++) {
char byte_parity = 0;
for (i=0; i<8; i++) {
if (word & 0x80000000)
byte_parity = !byte_parity;
word <<= 1;
}
parity <<= 1;
parity |= byte_parity;
}
return parity;
}
static uint32_t extract_ic(unsigned short addr, int data)
{
unsigned short way;
int valid;
uint32_t taghi, taglolo, taglohi;
unsigned long long taglo, va;
uint64_t tlo_tmp;
uint8_t lru;
int res = 0;
printk("Icache index 0x%04x ", addr);
for (way = 0; way < 4; way++) {
/* Index-load-tag-I */
__asm__ __volatile__ (
" .set push \n\t"
" .set noreorder \n\t"
" .set mips64 \n\t"
" .set noat \n\t"
" cache 4, 0(%3) \n\t"
" mfc0 %0, $29 \n\t"
" dmfc0 $1, $28 \n\t"
" dsrl32 %1, $1, 0 \n\t"
" sll %2, $1, 0 \n\t"
" .set pop"
: "=r" (taghi), "=r" (taglohi), "=r" (taglolo)
: "r" ((way << 13) | addr));
taglo = ((unsigned long long)taglohi << 32) | taglolo;
if (way == 0) {
lru = (taghi >> 14) & 0xff;
printk("[Bank %d Set 0x%02x] LRU > %d %d %d %d > MRU\n",
((addr >> 5) & 0x3), /* bank */
((addr >> 7) & 0x3f), /* index */
(lru & 0x3),
((lru >> 2) & 0x3),
((lru >> 4) & 0x3),
((lru >> 6) & 0x3));
}
va = (taglo & 0xC0000FFFFFFFE000ULL) | addr;
if ((taglo & (1 << 31)) && (((taglo >> 62) & 0x3) == 3))
va |= 0x3FFFF00000000000ULL;
valid = ((taghi >> 29) & 1);
if (valid) {
tlo_tmp = taglo & 0xfff3ff;
if (((taglo >> 10) & 1) ^ range_parity(tlo_tmp, 23, 0)) {
printk(" ** bad parity in VTag0/G/ASID\n");
res |= CP0_CERRI_TAG_PARITY;
}
if (((taglo >> 11) & 1) ^ range_parity(taglo, 63, 24)) {
printk(" ** bad parity in R/VTag1\n");
res |= CP0_CERRI_TAG_PARITY;
}
}
if (valid ^ ((taghi >> 27) & 1)) {
printk(" ** bad parity for valid bit\n");
res |= CP0_CERRI_TAG_PARITY;
}
printk(" %d [VA %016llx] [Vld? %d] raw tags: %08X-%016llX\n",
way, va, valid, taghi, taglo);
if (data) {
uint32_t datahi, insta, instb;
uint8_t predecode;
int offset;
/* (hit all banks and ways) */
for (offset = 0; offset < 4; offset++) {
/* Index-load-data-I */
__asm__ __volatile__ (
" .set push\n\t"
" .set noreorder\n\t"
" .set mips64\n\t"
" .set noat\n\t"
" cache 6, 0(%3) \n\t"
" mfc0 %0, $29, 1\n\t"
" dmfc0 $1, $28, 1\n\t"
" dsrl32 %1, $1, 0 \n\t"
" sll %2, $1, 0 \n\t"
" .set pop \n"
: "=r" (datahi), "=r" (insta), "=r" (instb)
: "r" ((way << 13) | addr | (offset << 3)));
predecode = (datahi >> 8) & 0xff;
if (((datahi >> 16) & 1) != (uint32_t)range_parity(predecode, 7, 0)) {
printk(" ** bad parity in predecode\n");
res |= CP0_CERRI_DATA_PARITY;
}
/* XXXKW should/could check predecode bits themselves */
if (((datahi >> 4) & 0xf) ^ inst_parity(insta)) {
printk(" ** bad parity in instruction a\n");
res |= CP0_CERRI_DATA_PARITY;
}
if ((datahi & 0xf) ^ inst_parity(instb)) {
printk(" ** bad parity in instruction b\n");
res |= CP0_CERRI_DATA_PARITY;
}
printk(" %05X-%08X%08X", datahi, insta, instb);
}
printk("\n");
}
}
return res;
}
/* Compute the ECC for a data doubleword */
static uint8_t dc_ecc(uint64_t dword)
{
uint64_t t;
uint32_t w;
uint8_t p;
int i;
p = 0;
for (i = 7; i >= 0; i--)
{
p <<= 1;
t = dword & mask_72_64[i];
w = (uint32_t)(t >> 32);
p ^= (parity[w>>24] ^ parity[(w>>16) & 0xFF]
^ parity[(w>>8) & 0xFF] ^ parity[w & 0xFF]);
w = (uint32_t)(t & 0xFFFFFFFF);
p ^= (parity[w>>24] ^ parity[(w>>16) & 0xFF]
^ parity[(w>>8) & 0xFF] ^ parity[w & 0xFF]);
}
return p;
}
struct dc_state {
unsigned char val;
char *name;
};
static struct dc_state dc_states[] = {
{ 0x00, "INVALID" },
{ 0x0f, "COH-SHD" },
{ 0x13, "NCO-E-C" },
{ 0x19, "NCO-E-D" },
{ 0x16, "COH-E-C" },
{ 0x1c, "COH-E-D" },
{ 0xff, "*ERROR*" }
};
#define DC_TAG_VALID(state) \
(((state) == 0x0) || ((state) == 0xf) || ((state) == 0x13) || \
((state) == 0x19) || ((state) == 0x16) || ((state) == 0x1c))
static char *dc_state_str(unsigned char state)
{
struct dc_state *dsc = dc_states;
while (dsc->val != 0xff) {
if (dsc->val == state)
break;
dsc++;
}
return dsc->name;
}
static uint32_t extract_dc(unsigned short addr, int data)
{
int valid, way;
unsigned char state;
uint32_t taghi, taglolo, taglohi;
unsigned long long taglo, pa;
uint8_t ecc, lru;
int res = 0;
printk("Dcache index 0x%04x ", addr);
for (way = 0; way < 4; way++) {
__asm__ __volatile__ (
" .set push\n\t"
" .set noreorder\n\t"
" .set mips64\n\t"
" .set noat\n\t"
" cache 5, 0(%3)\n\t" /* Index-load-tag-D */
" mfc0 %0, $29, 2\n\t"
" dmfc0 $1, $28, 2\n\t"
" dsrl32 %1, $1, 0\n\t"
" sll %2, $1, 0\n\t"
" .set pop"
: "=r" (taghi), "=r" (taglohi), "=r" (taglolo)
: "r" ((way << 13) | addr));
taglo = ((unsigned long long)taglohi << 32) | taglolo;
pa = (taglo & 0xFFFFFFE000ULL) | addr;
if (way == 0) {
lru = (taghi >> 14) & 0xff;
printk("[Bank %d Set 0x%02x] LRU > %d %d %d %d > MRU\n",
((addr >> 11) & 0x2) | ((addr >> 5) & 1), /* bank */
((addr >> 6) & 0x3f), /* index */
(lru & 0x3),
((lru >> 2) & 0x3),
((lru >> 4) & 0x3),
((lru >> 6) & 0x3));
}
state = (taghi >> 25) & 0x1f;
valid = DC_TAG_VALID(state);
printk(" %d [PA %010llx] [state %s (%02x)] raw tags: %08X-%016llX\n",
way, pa, dc_state_str(state), state, taghi, taglo);
if (valid) {
if (((taglo >> 11) & 1) ^ range_parity(taglo, 39, 26)) {
printk(" ** bad parity in PTag1\n");
res |= CP0_CERRD_TAG_ADDRESS;
}
if (((taglo >> 10) & 1) ^ range_parity(taglo, 25, 13)) {
printk(" ** bad parity in PTag0\n");
res |= CP0_CERRD_TAG_ADDRESS;
}
} else {
res |= CP0_CERRD_TAG_STATE;
}
if (data) {
uint32_t datalohi, datalolo, datahi;
unsigned long long datalo;
int offset;
char bad_ecc = 0;
for (offset = 0; offset < 4; offset++) {
/* Index-load-data-D */
__asm__ __volatile__ (
" .set push\n\t"
" .set noreorder\n\t"
" .set mips64\n\t"
" .set noat\n\t"
" cache 7, 0(%3)\n\t" /* Index-load-data-D */
" mfc0 %0, $29, 3\n\t"
" dmfc0 $1, $28, 3\n\t"
" dsrl32 %1, $1, 0 \n\t"
" sll %2, $1, 0 \n\t"
" .set pop"
: "=r" (datahi), "=r" (datalohi), "=r" (datalolo)
: "r" ((way << 13) | addr | (offset << 3)));
datalo = ((unsigned long long)datalohi << 32) | datalolo;
ecc = dc_ecc(datalo);
if (ecc != datahi) {
int bits = 0;
bad_ecc |= 1 << (3-offset);
ecc ^= datahi;
while (ecc) {
if (ecc & 1) bits++;
ecc >>= 1;
}
res |= (bits == 1) ? CP0_CERRD_DATA_SBE : CP0_CERRD_DATA_DBE;
}
printk(" %02X-%016llX", datahi, datalo);
}
printk("\n");
if (bad_ecc)
printk(" dwords w/ bad ECC: %d %d %d %d\n",
!!(bad_ecc & 8), !!(bad_ecc & 4),
!!(bad_ecc & 2), !!(bad_ecc & 1));
}
}
return res;
}