2010-12-07 08:29:22 +08:00
|
|
|
/*
|
|
|
|
* Xen leaves the responsibility for maintaining p2m mappings to the
|
|
|
|
* guests themselves, but it must also access and update the p2m array
|
|
|
|
* during suspend/resume when all the pages are reallocated.
|
|
|
|
*
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
* The logical flat p2m table is mapped to a linear kernel memory area.
|
|
|
|
* For accesses by Xen a three-level tree linked via mfns only is set up to
|
|
|
|
* allow the address space to be sparse.
|
2010-12-07 08:29:22 +08:00
|
|
|
*
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
* Xen
|
|
|
|
* |
|
|
|
|
* p2m_top_mfn
|
|
|
|
* / \
|
|
|
|
* p2m_mid_mfn p2m_mid_mfn
|
|
|
|
* / /
|
|
|
|
* p2m p2m p2m ...
|
2010-12-07 08:29:22 +08:00
|
|
|
*
|
|
|
|
* The p2m_mid_mfn pages are mapped by p2m_top_mfn_p.
|
|
|
|
*
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
* The p2m_top_mfn level is limited to 1 page, so the maximum representable
|
|
|
|
* pseudo-physical address space is:
|
2010-12-07 08:29:22 +08:00
|
|
|
* P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages
|
|
|
|
*
|
|
|
|
* P2M_PER_PAGE depends on the architecture, as a mfn is always
|
|
|
|
* unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to
|
2012-06-29 10:12:36 +08:00
|
|
|
* 512 and 1024 entries respectively.
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
*
|
|
|
|
* In short, these structures contain the Machine Frame Number (MFN) of the PFN.
|
|
|
|
*
|
|
|
|
* However not all entries are filled with MFNs. Specifically for all other
|
|
|
|
* leaf entries, or for the top root, or middle one, for which there is a void
|
|
|
|
* entry, we assume it is "missing". So (for example)
|
|
|
|
* pfn_to_mfn(0x90909090)=INVALID_P2M_ENTRY.
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
* We have a dedicated page p2m_missing with all entries being
|
|
|
|
* INVALID_P2M_ENTRY. This page may be referenced multiple times in the p2m
|
|
|
|
* list/tree in case there are multiple areas with P2M_PER_PAGE invalid pfns.
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
*
|
|
|
|
* We also have the possibility of setting 1-1 mappings on certain regions, so
|
|
|
|
* that:
|
|
|
|
* pfn_to_mfn(0xc0000)=0xc0000
|
|
|
|
*
|
|
|
|
* The benefit of this is, that we can assume for non-RAM regions (think
|
2014-01-07 19:44:32 +08:00
|
|
|
* PCI BARs, or ACPI spaces), we can create mappings easily because we
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
* get the PFN value to match the MFN.
|
|
|
|
*
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
* For this to work efficiently we have one new page p2m_identity. All entries
|
|
|
|
* in p2m_identity are set to INVALID_P2M_ENTRY type (Xen toolstack only
|
|
|
|
* recognizes that and MFNs, no other fancy value).
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
*
|
|
|
|
* On lookup we spot that the entry points to p2m_identity and return the
|
|
|
|
* identity value instead of dereferencing and returning INVALID_P2M_ENTRY.
|
|
|
|
* If the entry points to an allocated page, we just proceed as before and
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
* return the PFN. If the PFN has IDENTITY_FRAME_BIT set we unmask that in
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
* appropriate functions (pfn_to_mfn).
|
|
|
|
*
|
|
|
|
* The reason for having the IDENTITY_FRAME_BIT instead of just returning the
|
|
|
|
* PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
|
|
|
|
* non-identity pfn. To protect ourselves against we elect to set (and get) the
|
|
|
|
* IDENTITY_FRAME_BIT on all identity mapped PFNs.
|
2010-12-07 08:29:22 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/module.h>
|
2010-12-15 21:19:33 +08:00
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/hash.h>
|
2010-12-13 22:42:30 +08:00
|
|
|
#include <linux/sched.h>
|
2010-12-22 21:57:30 +08:00
|
|
|
#include <linux/seq_file.h>
|
2014-10-14 19:33:46 +08:00
|
|
|
#include <linux/bootmem.h>
|
2014-11-28 18:53:52 +08:00
|
|
|
#include <linux/slab.h>
|
2015-06-02 17:01:38 +08:00
|
|
|
#include <linux/vmalloc.h>
|
2010-12-07 08:29:22 +08:00
|
|
|
|
|
|
|
#include <asm/cache.h>
|
|
|
|
#include <asm/setup.h>
|
2014-11-28 18:53:59 +08:00
|
|
|
#include <asm/uaccess.h>
|
2010-12-07 08:29:22 +08:00
|
|
|
|
|
|
|
#include <asm/xen/page.h>
|
|
|
|
#include <asm/xen/hypercall.h>
|
|
|
|
#include <asm/xen/hypervisor.h>
|
2013-07-24 01:23:54 +08:00
|
|
|
#include <xen/balloon.h>
|
2011-09-29 18:57:56 +08:00
|
|
|
#include <xen/grant_table.h>
|
2010-12-07 08:29:22 +08:00
|
|
|
|
2014-08-12 02:57:57 +08:00
|
|
|
#include "p2m.h"
|
2011-09-29 18:57:56 +08:00
|
|
|
#include "multicalls.h"
|
2010-12-07 08:29:22 +08:00
|
|
|
#include "xen-ops.h"
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
#define PMDS_PER_MID_PAGE (P2M_MID_PER_PAGE / PTRS_PER_PTE)
|
|
|
|
|
2014-11-28 18:53:55 +08:00
|
|
|
unsigned long *xen_p2m_addr __read_mostly;
|
|
|
|
EXPORT_SYMBOL_GPL(xen_p2m_addr);
|
|
|
|
unsigned long xen_p2m_size __read_mostly;
|
|
|
|
EXPORT_SYMBOL_GPL(xen_p2m_size);
|
2010-12-07 08:29:22 +08:00
|
|
|
unsigned long xen_max_p2m_pfn __read_mostly;
|
2014-11-28 18:53:55 +08:00
|
|
|
EXPORT_SYMBOL_GPL(xen_max_p2m_pfn);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
2015-03-20 20:55:38 +08:00
|
|
|
#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG_LIMIT
|
|
|
|
#define P2M_LIMIT CONFIG_XEN_BALLOON_MEMORY_HOTPLUG_LIMIT
|
|
|
|
#else
|
|
|
|
#define P2M_LIMIT 0
|
|
|
|
#endif
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
static DEFINE_SPINLOCK(p2m_update_lock);
|
|
|
|
|
2014-10-14 19:33:46 +08:00
|
|
|
static unsigned long *p2m_mid_missing_mfn;
|
|
|
|
static unsigned long *p2m_top_mfn;
|
|
|
|
static unsigned long **p2m_top_mfn_p;
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
static unsigned long *p2m_missing;
|
|
|
|
static unsigned long *p2m_identity;
|
|
|
|
static pte_t *p2m_missing_pte;
|
|
|
|
static pte_t *p2m_identity_pte;
|
2014-11-28 18:53:52 +08:00
|
|
|
|
2010-12-07 08:29:22 +08:00
|
|
|
static inline unsigned p2m_top_index(unsigned long pfn)
|
|
|
|
{
|
|
|
|
BUG_ON(pfn >= MAX_P2M_PFN);
|
|
|
|
return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned p2m_mid_index(unsigned long pfn)
|
|
|
|
{
|
|
|
|
return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned p2m_index(unsigned long pfn)
|
|
|
|
{
|
|
|
|
return pfn % P2M_PER_PAGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void p2m_top_mfn_init(unsigned long *top)
|
|
|
|
{
|
|
|
|
unsigned i;
|
|
|
|
|
|
|
|
for (i = 0; i < P2M_TOP_PER_PAGE; i++)
|
|
|
|
top[i] = virt_to_mfn(p2m_mid_missing_mfn);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void p2m_top_mfn_p_init(unsigned long **top)
|
|
|
|
{
|
|
|
|
unsigned i;
|
|
|
|
|
|
|
|
for (i = 0; i < P2M_TOP_PER_PAGE; i++)
|
|
|
|
top[i] = p2m_mid_missing_mfn;
|
|
|
|
}
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
static void p2m_mid_mfn_init(unsigned long *mid, unsigned long *leaf)
|
2010-12-07 08:29:22 +08:00
|
|
|
{
|
|
|
|
unsigned i;
|
|
|
|
|
|
|
|
for (i = 0; i < P2M_MID_PER_PAGE; i++)
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
mid[i] = virt_to_mfn(leaf);
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
static void p2m_init(unsigned long *p2m)
|
2010-12-07 08:29:22 +08:00
|
|
|
{
|
|
|
|
unsigned i;
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
for (i = 0; i < P2M_PER_PAGE; i++)
|
|
|
|
p2m[i] = INVALID_P2M_ENTRY;
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
static void p2m_init_identity(unsigned long *p2m, unsigned long pfn)
|
2010-12-07 08:29:22 +08:00
|
|
|
{
|
|
|
|
unsigned i;
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
for (i = 0; i < P2M_PER_PAGE; i++)
|
|
|
|
p2m[i] = IDENTITY_FRAME(pfn + i);
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
|
2014-11-28 18:53:52 +08:00
|
|
|
static void * __ref alloc_p2m_page(void)
|
|
|
|
{
|
|
|
|
if (unlikely(!slab_is_available()))
|
|
|
|
return alloc_bootmem_align(PAGE_SIZE, PAGE_SIZE);
|
|
|
|
|
|
|
|
return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT);
|
|
|
|
}
|
|
|
|
|
2015-01-07 22:08:54 +08:00
|
|
|
static void __ref free_p2m_page(void *p)
|
2014-11-28 18:53:52 +08:00
|
|
|
{
|
2015-01-07 22:08:54 +08:00
|
|
|
if (unlikely(!slab_is_available())) {
|
|
|
|
free_bootmem((unsigned long)p, PAGE_SIZE);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2014-11-28 18:53:52 +08:00
|
|
|
free_page((unsigned long)p);
|
|
|
|
}
|
|
|
|
|
2010-12-07 08:29:22 +08:00
|
|
|
/*
|
|
|
|
* Build the parallel p2m_top_mfn and p2m_mid_mfn structures
|
|
|
|
*
|
|
|
|
* This is called both at boot time, and after resuming from suspend:
|
2014-10-14 19:33:46 +08:00
|
|
|
* - At boot time we're called rather early, and must use alloc_bootmem*()
|
2010-12-07 08:29:22 +08:00
|
|
|
* to allocate memory.
|
|
|
|
*
|
|
|
|
* - After resume we're called from within stop_machine, but the mfn
|
2014-10-14 19:33:46 +08:00
|
|
|
* tree should already be completely allocated.
|
2010-12-07 08:29:22 +08:00
|
|
|
*/
|
2011-02-12 00:37:41 +08:00
|
|
|
void __ref xen_build_mfn_list_list(void)
|
2010-12-07 08:29:22 +08:00
|
|
|
{
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
unsigned long pfn, mfn;
|
|
|
|
pte_t *ptep;
|
|
|
|
unsigned int level, topidx, mididx;
|
|
|
|
unsigned long *mid_mfn_p;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
2013-12-16 01:37:46 +08:00
|
|
|
if (xen_feature(XENFEAT_auto_translated_physmap))
|
|
|
|
return;
|
|
|
|
|
2010-12-07 08:29:22 +08:00
|
|
|
/* Pre-initialize p2m_top_mfn to be completely missing */
|
|
|
|
if (p2m_top_mfn == NULL) {
|
2014-11-28 18:53:52 +08:00
|
|
|
p2m_mid_missing_mfn = alloc_p2m_page();
|
2014-01-07 19:44:32 +08:00
|
|
|
p2m_mid_mfn_init(p2m_mid_missing_mfn, p2m_missing);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
2014-11-28 18:53:52 +08:00
|
|
|
p2m_top_mfn_p = alloc_p2m_page();
|
2010-12-07 08:29:22 +08:00
|
|
|
p2m_top_mfn_p_init(p2m_top_mfn_p);
|
|
|
|
|
2014-11-28 18:53:52 +08:00
|
|
|
p2m_top_mfn = alloc_p2m_page();
|
2010-12-07 08:29:22 +08:00
|
|
|
p2m_top_mfn_init(p2m_top_mfn);
|
|
|
|
} else {
|
|
|
|
/* Reinitialise, mfn's all change after migration */
|
2014-01-07 19:44:32 +08:00
|
|
|
p2m_mid_mfn_init(p2m_mid_missing_mfn, p2m_missing);
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
for (pfn = 0; pfn < xen_max_p2m_pfn && pfn < MAX_P2M_PFN;
|
|
|
|
pfn += P2M_PER_PAGE) {
|
|
|
|
topidx = p2m_top_index(pfn);
|
|
|
|
mididx = p2m_mid_index(pfn);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
|
|
|
mid_mfn_p = p2m_top_mfn_p[topidx];
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
ptep = lookup_address((unsigned long)(xen_p2m_addr + pfn),
|
|
|
|
&level);
|
|
|
|
BUG_ON(!ptep || level != PG_LEVEL_4K);
|
|
|
|
mfn = pte_mfn(*ptep);
|
|
|
|
ptep = (pte_t *)((unsigned long)ptep & ~(PAGE_SIZE - 1));
|
2010-12-07 08:29:22 +08:00
|
|
|
|
|
|
|
/* Don't bother allocating any mfn mid levels if
|
|
|
|
* they're just missing, just update the stored mfn,
|
|
|
|
* since all could have changed over a migrate.
|
|
|
|
*/
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (ptep == p2m_missing_pte || ptep == p2m_identity_pte) {
|
2010-12-07 08:29:22 +08:00
|
|
|
BUG_ON(mididx);
|
|
|
|
BUG_ON(mid_mfn_p != p2m_mid_missing_mfn);
|
|
|
|
p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn);
|
|
|
|
pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mid_mfn_p == p2m_mid_missing_mfn) {
|
2014-11-28 18:53:52 +08:00
|
|
|
mid_mfn_p = alloc_p2m_page();
|
2014-01-07 19:44:32 +08:00
|
|
|
p2m_mid_mfn_init(mid_mfn_p, p2m_missing);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
|
|
|
p2m_top_mfn_p[topidx] = mid_mfn_p;
|
|
|
|
}
|
|
|
|
|
|
|
|
p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p);
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
mid_mfn_p[mididx] = mfn;
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void xen_setup_mfn_list_list(void)
|
|
|
|
{
|
2014-01-01 03:02:44 +08:00
|
|
|
if (xen_feature(XENFEAT_auto_translated_physmap))
|
|
|
|
return;
|
|
|
|
|
2010-12-07 08:29:22 +08:00
|
|
|
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
|
|
|
|
|
|
|
|
HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
|
|
|
|
virt_to_mfn(p2m_top_mfn);
|
|
|
|
HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set up p2m_top to point to the domain-builder provided p2m pages */
|
|
|
|
void __init xen_build_dynamic_phys_to_machine(void)
|
|
|
|
{
|
|
|
|
unsigned long pfn;
|
|
|
|
|
2013-12-16 01:37:46 +08:00
|
|
|
if (xen_feature(XENFEAT_auto_translated_physmap))
|
|
|
|
return;
|
|
|
|
|
2014-11-28 18:53:55 +08:00
|
|
|
xen_p2m_addr = (unsigned long *)xen_start_info->mfn_list;
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
xen_p2m_size = ALIGN(xen_start_info->nr_pages, P2M_PER_PAGE);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
for (pfn = xen_start_info->nr_pages; pfn < xen_p2m_size; pfn++)
|
|
|
|
xen_p2m_addr[pfn] = INVALID_P2M_ENTRY;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
xen_max_p2m_pfn = xen_p2m_size;
|
|
|
|
}
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
#define P2M_TYPE_IDENTITY 0
|
|
|
|
#define P2M_TYPE_MISSING 1
|
|
|
|
#define P2M_TYPE_PFN 2
|
|
|
|
#define P2M_TYPE_UNKNOWN 3
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
static int xen_p2m_elem_type(unsigned long pfn)
|
|
|
|
{
|
|
|
|
unsigned long mfn;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (pfn >= xen_p2m_size)
|
|
|
|
return P2M_TYPE_IDENTITY;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
mfn = xen_p2m_addr[pfn];
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (mfn == INVALID_P2M_ENTRY)
|
|
|
|
return P2M_TYPE_MISSING;
|
2011-01-27 23:03:14 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (mfn & IDENTITY_FRAME_BIT)
|
|
|
|
return P2M_TYPE_IDENTITY;
|
|
|
|
|
|
|
|
return P2M_TYPE_PFN;
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
|
|
|
|
static void __init xen_rebuild_p2m_list(unsigned long *p2m)
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
{
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
unsigned int i, chunk;
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
unsigned long pfn;
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
unsigned long *mfns;
|
|
|
|
pte_t *ptep;
|
|
|
|
pmd_t *pmdp;
|
|
|
|
int type;
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
p2m_missing = alloc_p2m_page();
|
|
|
|
p2m_init(p2m_missing);
|
|
|
|
p2m_identity = alloc_p2m_page();
|
|
|
|
p2m_init(p2m_identity);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
p2m_missing_pte = alloc_p2m_page();
|
|
|
|
paravirt_alloc_pte(&init_mm, __pa(p2m_missing_pte) >> PAGE_SHIFT);
|
|
|
|
p2m_identity_pte = alloc_p2m_page();
|
|
|
|
paravirt_alloc_pte(&init_mm, __pa(p2m_identity_pte) >> PAGE_SHIFT);
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
|
|
set_pte(p2m_missing_pte + i,
|
2014-11-28 18:53:59 +08:00
|
|
|
pfn_pte(PFN_DOWN(__pa(p2m_missing)), PAGE_KERNEL_RO));
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
set_pte(p2m_identity_pte + i,
|
2014-11-28 18:53:59 +08:00
|
|
|
pfn_pte(PFN_DOWN(__pa(p2m_identity)), PAGE_KERNEL_RO));
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
}
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += chunk) {
|
|
|
|
/*
|
|
|
|
* Try to map missing/identity PMDs or p2m-pages if possible.
|
|
|
|
* We have to respect the structure of the mfn_list_list
|
|
|
|
* which will be built just afterwards.
|
|
|
|
* Chunk size to test is one p2m page if we are in the middle
|
|
|
|
* of a mfn_list_list mid page and the complete mid page area
|
|
|
|
* if we are at index 0 of the mid page. Please note that a
|
|
|
|
* mid page might cover more than one PMD, e.g. on 32 bit PAE
|
|
|
|
* kernels.
|
|
|
|
*/
|
|
|
|
chunk = (pfn & (P2M_PER_PAGE * P2M_MID_PER_PAGE - 1)) ?
|
|
|
|
P2M_PER_PAGE : P2M_PER_PAGE * P2M_MID_PER_PAGE;
|
|
|
|
|
|
|
|
type = xen_p2m_elem_type(pfn);
|
|
|
|
i = 0;
|
|
|
|
if (type != P2M_TYPE_PFN)
|
|
|
|
for (i = 1; i < chunk; i++)
|
|
|
|
if (xen_p2m_elem_type(pfn + i) != type)
|
|
|
|
break;
|
|
|
|
if (i < chunk)
|
|
|
|
/* Reset to minimal chunk size. */
|
|
|
|
chunk = P2M_PER_PAGE;
|
|
|
|
|
|
|
|
if (type == P2M_TYPE_PFN || i < chunk) {
|
|
|
|
/* Use initial p2m page contents. */
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
mfns = alloc_p2m_page();
|
|
|
|
copy_page(mfns, xen_p2m_addr + pfn);
|
|
|
|
#else
|
|
|
|
mfns = xen_p2m_addr + pfn;
|
|
|
|
#endif
|
|
|
|
ptep = populate_extra_pte((unsigned long)(p2m + pfn));
|
|
|
|
set_pte(ptep,
|
|
|
|
pfn_pte(PFN_DOWN(__pa(mfns)), PAGE_KERNEL));
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
continue;
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
}
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (chunk == P2M_PER_PAGE) {
|
|
|
|
/* Map complete missing or identity p2m-page. */
|
|
|
|
mfns = (type == P2M_TYPE_MISSING) ?
|
|
|
|
p2m_missing : p2m_identity;
|
|
|
|
ptep = populate_extra_pte((unsigned long)(p2m + pfn));
|
|
|
|
set_pte(ptep,
|
2014-11-28 18:53:59 +08:00
|
|
|
pfn_pte(PFN_DOWN(__pa(mfns)), PAGE_KERNEL_RO));
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
continue;
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
}
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
/* Complete missing or identity PMD(s) can be mapped. */
|
|
|
|
ptep = (type == P2M_TYPE_MISSING) ?
|
|
|
|
p2m_missing_pte : p2m_identity_pte;
|
|
|
|
for (i = 0; i < PMDS_PER_MID_PAGE; i++) {
|
|
|
|
pmdp = populate_extra_pmd(
|
2015-01-12 13:05:07 +08:00
|
|
|
(unsigned long)(p2m + pfn) + i * PMD_SIZE);
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
set_pmd(pmdp, __pmd(__pa(ptep) | _KERNPG_TABLE));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
void __init xen_vmalloc_p2m_tree(void)
|
|
|
|
{
|
|
|
|
static struct vm_struct vm;
|
2015-03-20 20:55:38 +08:00
|
|
|
unsigned long p2m_limit;
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
|
2015-03-20 20:55:38 +08:00
|
|
|
p2m_limit = (phys_addr_t)P2M_LIMIT * 1024 * 1024 * 1024 / PAGE_SIZE;
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
vm.flags = VM_ALLOC;
|
2015-03-20 20:55:38 +08:00
|
|
|
vm.size = ALIGN(sizeof(unsigned long) * max(xen_max_p2m_pfn, p2m_limit),
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
PMD_SIZE * PMDS_PER_MID_PAGE);
|
|
|
|
vm_area_register_early(&vm, PMD_SIZE * PMDS_PER_MID_PAGE);
|
|
|
|
pr_notice("p2m virtual area at %p, size is %lx\n", vm.addr, vm.size);
|
2012-08-17 04:38:55 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
xen_max_p2m_pfn = vm.size / sizeof(unsigned long);
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
xen_rebuild_p2m_list(vm.addr);
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
xen_p2m_addr = vm.addr;
|
2014-11-28 18:53:55 +08:00
|
|
|
xen_p2m_size = xen_max_p2m_pfn;
|
|
|
|
|
|
|
|
xen_inv_extra_mem();
|
xen/p2m: Add logic to revector a P2M tree to use __va leafs.
During bootup Xen supplies us with a P2M array. It sticks
it right after the ramdisk, as can be seen with a 128GB PV guest:
(certain parts removed for clarity):
xc_dom_build_image: called
xc_dom_alloc_segment: kernel : 0xffffffff81000000 -> 0xffffffff81e43000 (pfn 0x1000 + 0xe43 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1000+0xe43 at 0x7f097d8bf000
xc_dom_alloc_segment: ramdisk : 0xffffffff81e43000 -> 0xffffffff925c7000 (pfn 0x1e43 + 0x10784 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x1e43+0x10784 at 0x7f0952dd2000
xc_dom_alloc_segment: phys2mach : 0xffffffff925c7000 -> 0xffffffffa25c7000 (pfn 0x125c7 + 0x10000 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x125c7+0x10000 at 0x7f0942dd2000
xc_dom_alloc_page : start info : 0xffffffffa25c7000 (pfn 0x225c7)
xc_dom_alloc_page : xenstore : 0xffffffffa25c8000 (pfn 0x225c8)
xc_dom_alloc_page : console : 0xffffffffa25c9000 (pfn 0x225c9)
nr_page_tables: 0x0000ffffffffffff/48: 0xffff000000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x0000007fffffffff/39: 0xffffff8000000000 -> 0xffffffffffffffff, 1 table(s)
nr_page_tables: 0x000000003fffffff/30: 0xffffffff80000000 -> 0xffffffffbfffffff, 1 table(s)
nr_page_tables: 0x00000000001fffff/21: 0xffffffff80000000 -> 0xffffffffa27fffff, 276 table(s)
xc_dom_alloc_segment: page tables : 0xffffffffa25ca000 -> 0xffffffffa26e1000 (pfn 0x225ca + 0x117 pages)
xc_dom_pfn_to_ptr: domU mapping: pfn 0x225ca+0x117 at 0x7f097d7a8000
xc_dom_alloc_page : boot stack : 0xffffffffa26e1000 (pfn 0x226e1)
xc_dom_build_image : virt_alloc_end : 0xffffffffa26e2000
xc_dom_build_image : virt_pgtab_end : 0xffffffffa2800000
So the physical memory and virtual (using __START_KERNEL_map addresses)
layout looks as so:
phys __ka
/------------\ /-------------------\
| 0 | empty | 0xffffffff80000000|
| .. | | .. |
| 16MB | <= kernel starts | 0xffffffff81000000|
| .. | | |
| 30MB | <= kernel ends => | 0xffffffff81e43000|
| .. | & ramdisk starts | .. |
| 293MB | <= ramdisk ends=> | 0xffffffff925c7000|
| .. | & P2M starts | .. |
| .. | | .. |
| 549MB | <= P2M ends => | 0xffffffffa25c7000|
| .. | start_info | 0xffffffffa25c7000|
| .. | xenstore | 0xffffffffa25c8000|
| .. | cosole | 0xffffffffa25c9000|
| 549MB | <= page tables => | 0xffffffffa25ca000|
| .. | | |
| 550MB | <= PGT end => | 0xffffffffa26e1000|
| .. | boot stack | |
\------------/ \-------------------/
As can be seen, the ramdisk, P2M and pagetables are taking
a bit of __ka addresses space. Which is a problem since the
MODULES_VADDR starts at 0xffffffffa0000000 - and P2M sits
right in there! This results during bootup with the inability to
load modules, with this error:
------------[ cut here ]------------
WARNING: at /home/konrad/ssd/linux/mm/vmalloc.c:106 vmap_page_range_noflush+0x2d9/0x370()
Call Trace:
[<ffffffff810719fa>] warn_slowpath_common+0x7a/0xb0
[<ffffffff81030279>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81071a45>] warn_slowpath_null+0x15/0x20
[<ffffffff81130b89>] vmap_page_range_noflush+0x2d9/0x370
[<ffffffff81130c4d>] map_vm_area+0x2d/0x50
[<ffffffff811326d0>] __vmalloc_node_range+0x160/0x250
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c6186>] ? load_module+0x66/0x19c0
[<ffffffff8105cadc>] module_alloc+0x5c/0x60
[<ffffffff810c5369>] ? module_alloc_update_bounds+0x19/0x80
[<ffffffff810c5369>] module_alloc_update_bounds+0x19/0x80
[<ffffffff810c70c3>] load_module+0xfa3/0x19c0
[<ffffffff812491f6>] ? security_file_permission+0x86/0x90
[<ffffffff810c7b3a>] sys_init_module+0x5a/0x220
[<ffffffff815ce339>] system_call_fastpath+0x16/0x1b
---[ end trace fd8f7704fdea0291 ]---
vmalloc: allocation failure, allocated 16384 of 20480 bytes
modprobe: page allocation failure: order:0, mode:0xd2
Since the __va and __ka are 1:1 up to MODULES_VADDR and
cleanup_highmap rids __ka of the ramdisk mapping, what
we want to do is similar - get rid of the P2M in the __ka
address space. There are two ways of fixing this:
1) All P2M lookups instead of using the __ka address would
use the __va address. This means we can safely erase from
__ka space the PMD pointers that point to the PFNs for
P2M array and be OK.
2). Allocate a new array, copy the existing P2M into it,
revector the P2M tree to use that, and return the old
P2M to the memory allocate. This has the advantage that
it sets the stage for using XEN_ELF_NOTE_INIT_P2M
feature. That feature allows us to set the exact virtual
address space we want for the P2M - and allows us to
boot as initial domain on large machines.
So we pick option 2).
This patch only lays the groundwork in the P2M code. The patch
that modifies the MMU is called "xen/mmu: Copy and revector the P2M tree."
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-07-20 01:52:29 +08:00
|
|
|
}
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
|
2010-12-07 08:29:22 +08:00
|
|
|
unsigned long get_phys_to_machine(unsigned long pfn)
|
|
|
|
{
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
pte_t *ptep;
|
|
|
|
unsigned int level;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
2014-11-28 18:53:55 +08:00
|
|
|
if (unlikely(pfn >= xen_p2m_size)) {
|
|
|
|
if (pfn < xen_max_p2m_pfn)
|
|
|
|
return xen_chk_extra_mem(pfn);
|
|
|
|
|
2014-01-03 23:46:10 +08:00
|
|
|
return IDENTITY_FRAME(pfn);
|
2014-11-28 18:53:55 +08:00
|
|
|
}
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
ptep = lookup_address((unsigned long)(xen_p2m_addr + pfn), &level);
|
|
|
|
BUG_ON(!ptep || level != PG_LEVEL_4K);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
/*
|
|
|
|
* The INVALID_P2M_ENTRY is filled in both p2m_*identity
|
|
|
|
* and in p2m_*missing, so returning the INVALID_P2M_ENTRY
|
|
|
|
* would be wrong.
|
|
|
|
*/
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (pte_pfn(*ptep) == PFN_DOWN(__pa(p2m_identity)))
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
return IDENTITY_FRAME(pfn);
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
return xen_p2m_addr[pfn];
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(get_phys_to_machine);
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
/*
|
|
|
|
* Allocate new pmd(s). It is checked whether the old pmd is still in place.
|
|
|
|
* If not, nothing is changed. This is okay as the only reason for allocating
|
|
|
|
* a new pmd is to replace p2m_missing_pte or p2m_identity_pte by a individual
|
|
|
|
* pmd. In case of PAE/x86-32 there are multiple pmds to allocate!
|
|
|
|
*/
|
2015-01-12 13:05:08 +08:00
|
|
|
static pte_t *alloc_p2m_pmd(unsigned long addr, pte_t *pte_pg)
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
{
|
|
|
|
pte_t *ptechk;
|
|
|
|
pte_t *pte_newpg[PMDS_PER_MID_PAGE];
|
|
|
|
pmd_t *pmdp;
|
|
|
|
unsigned int level;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long vaddr;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Do all allocations first to bail out in error case. */
|
|
|
|
for (i = 0; i < PMDS_PER_MID_PAGE; i++) {
|
|
|
|
pte_newpg[i] = alloc_p2m_page();
|
|
|
|
if (!pte_newpg[i]) {
|
|
|
|
for (i--; i >= 0; i--)
|
|
|
|
free_p2m_page(pte_newpg[i]);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vaddr = addr & ~(PMD_SIZE * PMDS_PER_MID_PAGE - 1);
|
|
|
|
|
|
|
|
for (i = 0; i < PMDS_PER_MID_PAGE; i++) {
|
|
|
|
copy_page(pte_newpg[i], pte_pg);
|
|
|
|
paravirt_alloc_pte(&init_mm, __pa(pte_newpg[i]) >> PAGE_SHIFT);
|
|
|
|
|
|
|
|
pmdp = lookup_pmd_address(vaddr);
|
|
|
|
BUG_ON(!pmdp);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&p2m_update_lock, flags);
|
|
|
|
|
|
|
|
ptechk = lookup_address(vaddr, &level);
|
|
|
|
if (ptechk == pte_pg) {
|
|
|
|
set_pmd(pmdp,
|
|
|
|
__pmd(__pa(pte_newpg[i]) | _KERNPG_TABLE));
|
|
|
|
pte_newpg[i] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&p2m_update_lock, flags);
|
|
|
|
|
|
|
|
if (pte_newpg[i]) {
|
|
|
|
paravirt_release_pte(__pa(pte_newpg[i]) >> PAGE_SHIFT);
|
|
|
|
free_p2m_page(pte_newpg[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
vaddr += PMD_SIZE;
|
|
|
|
}
|
|
|
|
|
2015-01-12 13:05:08 +08:00
|
|
|
return lookup_address(addr, &level);
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
}
|
|
|
|
|
2012-06-29 10:12:36 +08:00
|
|
|
/*
|
2010-12-07 08:29:22 +08:00
|
|
|
* Fully allocate the p2m structure for a given pfn. We need to check
|
|
|
|
* that both the top and mid levels are allocated, and make sure the
|
|
|
|
* parallel mfn tree is kept in sync. We may race with other cpus, so
|
|
|
|
* the new pages are installed with cmpxchg; if we lose the race then
|
|
|
|
* simply free the page we allocated and use the one that's there.
|
|
|
|
*/
|
|
|
|
static bool alloc_p2m(unsigned long pfn)
|
|
|
|
{
|
|
|
|
unsigned topidx, mididx;
|
|
|
|
unsigned long *top_mfn_p, *mid_mfn;
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
pte_t *ptep, *pte_pg;
|
|
|
|
unsigned int level;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned long addr = (unsigned long)(xen_p2m_addr + pfn);
|
|
|
|
unsigned long p2m_pfn;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
|
|
|
topidx = p2m_top_index(pfn);
|
|
|
|
mididx = p2m_mid_index(pfn);
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
ptep = lookup_address(addr, &level);
|
|
|
|
BUG_ON(!ptep || level != PG_LEVEL_4K);
|
|
|
|
pte_pg = (pte_t *)((unsigned long)ptep & ~(PAGE_SIZE - 1));
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (pte_pg == p2m_missing_pte || pte_pg == p2m_identity_pte) {
|
|
|
|
/* PMD level is missing, allocate a new one */
|
2015-01-12 13:05:08 +08:00
|
|
|
ptep = alloc_p2m_pmd(addr, pte_pg);
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (!ptep)
|
2010-12-07 08:29:22 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (p2m_top_mfn) {
|
|
|
|
top_mfn_p = &p2m_top_mfn[topidx];
|
|
|
|
mid_mfn = ACCESS_ONCE(p2m_top_mfn_p[topidx]);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (mid_mfn == p2m_mid_missing_mfn) {
|
|
|
|
/* Separately check the mid mfn level */
|
|
|
|
unsigned long missing_mfn;
|
|
|
|
unsigned long mid_mfn_mfn;
|
|
|
|
unsigned long old_mfn;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
mid_mfn = alloc_p2m_page();
|
|
|
|
if (!mid_mfn)
|
|
|
|
return false;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
p2m_mid_mfn_init(mid_mfn, p2m_missing);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
missing_mfn = virt_to_mfn(p2m_mid_missing_mfn);
|
|
|
|
mid_mfn_mfn = virt_to_mfn(mid_mfn);
|
|
|
|
old_mfn = cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn);
|
|
|
|
if (old_mfn != missing_mfn) {
|
|
|
|
free_p2m_page(mid_mfn);
|
|
|
|
mid_mfn = mfn_to_virt(old_mfn);
|
|
|
|
} else {
|
|
|
|
p2m_top_mfn_p[topidx] = mid_mfn;
|
|
|
|
}
|
2014-10-14 17:00:18 +08:00
|
|
|
}
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
} else {
|
|
|
|
mid_mfn = NULL;
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
|
2014-12-08 05:01:59 +08:00
|
|
|
p2m_pfn = pte_pfn(READ_ONCE(*ptep));
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (p2m_pfn == PFN_DOWN(__pa(p2m_identity)) ||
|
|
|
|
p2m_pfn == PFN_DOWN(__pa(p2m_missing))) {
|
2010-12-07 08:29:22 +08:00
|
|
|
/* p2m leaf page is missing */
|
|
|
|
unsigned long *p2m;
|
|
|
|
|
|
|
|
p2m = alloc_p2m_page();
|
|
|
|
if (!p2m)
|
|
|
|
return false;
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (p2m_pfn == PFN_DOWN(__pa(p2m_missing)))
|
|
|
|
p2m_init(p2m);
|
|
|
|
else
|
2015-02-27 22:45:29 +08:00
|
|
|
p2m_init_identity(p2m, pfn & ~(P2M_PER_PAGE - 1));
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
|
|
|
|
spin_lock_irqsave(&p2m_update_lock, flags);
|
|
|
|
|
|
|
|
if (pte_pfn(*ptep) == p2m_pfn) {
|
|
|
|
set_pte(ptep,
|
|
|
|
pfn_pte(PFN_DOWN(__pa(p2m)), PAGE_KERNEL));
|
|
|
|
if (mid_mfn)
|
|
|
|
mid_mfn[mididx] = virt_to_mfn(p2m);
|
|
|
|
p2m = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&p2m_update_lock, flags);
|
2010-12-07 08:29:22 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (p2m)
|
2010-12-07 08:29:22 +08:00
|
|
|
free_p2m_page(p2m);
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2011-03-25 04:34:32 +08:00
|
|
|
unsigned long __init set_phys_range_identity(unsigned long pfn_s,
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
unsigned long pfn_e)
|
|
|
|
{
|
|
|
|
unsigned long pfn;
|
|
|
|
|
2014-11-28 18:53:55 +08:00
|
|
|
if (unlikely(pfn_s >= xen_p2m_size))
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (unlikely(xen_feature(XENFEAT_auto_translated_physmap)))
|
|
|
|
return pfn_e - pfn_s;
|
|
|
|
|
|
|
|
if (pfn_s > pfn_e)
|
|
|
|
return 0;
|
|
|
|
|
2014-11-28 18:53:55 +08:00
|
|
|
if (pfn_e > xen_p2m_size)
|
|
|
|
pfn_e = xen_p2m_size;
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
|
2014-11-28 18:53:55 +08:00
|
|
|
for (pfn = pfn_s; pfn < pfn_e; pfn++)
|
|
|
|
xen_p2m_addr[pfn] = IDENTITY_FRAME(pfn);
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
|
|
|
|
return pfn - pfn_s;
|
|
|
|
}
|
|
|
|
|
2010-12-07 08:29:22 +08:00
|
|
|
bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
|
|
|
|
{
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
pte_t *ptep;
|
|
|
|
unsigned int level;
|
2010-12-07 08:29:22 +08:00
|
|
|
|
2013-10-10 04:39:01 +08:00
|
|
|
/* don't track P2M changes in autotranslate guests */
|
|
|
|
if (unlikely(xen_feature(XENFEAT_auto_translated_physmap)))
|
2011-01-19 09:09:41 +08:00
|
|
|
return true;
|
2013-10-10 04:39:01 +08:00
|
|
|
|
2014-11-28 18:53:55 +08:00
|
|
|
if (unlikely(pfn >= xen_p2m_size)) {
|
2010-12-07 08:29:22 +08:00
|
|
|
BUG_ON(mfn != INVALID_P2M_ENTRY);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2014-12-05 20:28:04 +08:00
|
|
|
if (likely(!xen_safe_write_ulong(xen_p2m_addr + pfn, mfn)))
|
2014-11-28 18:53:59 +08:00
|
|
|
return true;
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
ptep = lookup_address((unsigned long)(xen_p2m_addr + pfn), &level);
|
|
|
|
BUG_ON(!ptep || level != PG_LEVEL_4K);
|
xen/mmu: Add the notion of identity (1-1) mapping.
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-01-19 09:15:21 +08:00
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (pte_pfn(*ptep) == PFN_DOWN(__pa(p2m_missing)))
|
2010-12-07 08:29:22 +08:00
|
|
|
return mfn == INVALID_P2M_ENTRY;
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (pte_pfn(*ptep) == PFN_DOWN(__pa(p2m_identity)))
|
|
|
|
return mfn == IDENTITY_FRAME(pfn);
|
|
|
|
|
2014-11-28 18:53:59 +08:00
|
|
|
return false;
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool set_phys_to_machine(unsigned long pfn, unsigned long mfn)
|
|
|
|
{
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
if (unlikely(!__set_phys_to_machine(pfn, mfn))) {
|
2010-12-07 08:29:22 +08:00
|
|
|
if (!alloc_p2m(pfn))
|
|
|
|
return false;
|
|
|
|
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
return __set_phys_to_machine(pfn, mfn);
|
2010-12-07 08:29:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
2010-12-15 21:19:33 +08:00
|
|
|
|
2014-11-28 18:53:51 +08:00
|
|
|
int set_foreign_p2m_mapping(struct gnttab_map_grant_ref *map_ops,
|
|
|
|
struct gnttab_map_grant_ref *kmap_ops,
|
|
|
|
struct page **pages, unsigned int count)
|
2014-02-27 23:55:30 +08:00
|
|
|
{
|
|
|
|
int i, ret = 0;
|
2014-11-28 18:53:51 +08:00
|
|
|
pte_t *pte;
|
2014-02-27 23:55:30 +08:00
|
|
|
|
|
|
|
if (xen_feature(XENFEAT_auto_translated_physmap))
|
|
|
|
return 0;
|
|
|
|
|
2015-01-06 01:06:01 +08:00
|
|
|
if (kmap_ops) {
|
|
|
|
ret = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
|
|
|
|
kmap_ops, count);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
2014-02-27 23:55:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < count; i++) {
|
2014-11-28 18:53:51 +08:00
|
|
|
unsigned long mfn, pfn;
|
2014-02-27 23:55:30 +08:00
|
|
|
|
2014-11-28 18:53:51 +08:00
|
|
|
/* Do not add to override if the map failed. */
|
|
|
|
if (map_ops[i].status)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (map_ops[i].flags & GNTMAP_contains_pte) {
|
|
|
|
pte = (pte_t *)(mfn_to_virt(PFN_DOWN(map_ops[i].host_addr)) +
|
|
|
|
(map_ops[i].host_addr & ~PAGE_MASK));
|
|
|
|
mfn = pte_mfn(*pte);
|
|
|
|
} else {
|
|
|
|
mfn = PFN_DOWN(map_ops[i].dev_bus_addr);
|
2014-02-27 23:55:30 +08:00
|
|
|
}
|
2014-11-28 18:53:51 +08:00
|
|
|
pfn = page_to_pfn(pages[i]);
|
2014-02-27 23:55:30 +08:00
|
|
|
|
2014-12-24 22:03:16 +08:00
|
|
|
WARN(pfn_to_mfn(pfn) != INVALID_P2M_ENTRY, "page must be ballooned");
|
|
|
|
|
2014-11-28 18:53:51 +08:00
|
|
|
if (unlikely(!set_phys_to_machine(pfn, FOREIGN_FRAME(mfn)))) {
|
|
|
|
ret = -ENOMEM;
|
2014-02-27 23:55:30 +08:00
|
|
|
goto out;
|
2014-11-28 18:53:51 +08:00
|
|
|
}
|
2014-02-27 23:55:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
2014-11-28 18:53:51 +08:00
|
|
|
EXPORT_SYMBOL_GPL(set_foreign_p2m_mapping);
|
2014-02-27 23:55:30 +08:00
|
|
|
|
2014-11-28 18:53:51 +08:00
|
|
|
int clear_foreign_p2m_mapping(struct gnttab_unmap_grant_ref *unmap_ops,
|
2015-01-05 22:13:41 +08:00
|
|
|
struct gnttab_unmap_grant_ref *kunmap_ops,
|
2014-11-28 18:53:51 +08:00
|
|
|
struct page **pages, unsigned int count)
|
2010-12-15 21:19:33 +08:00
|
|
|
{
|
2014-11-28 18:53:51 +08:00
|
|
|
int i, ret = 0;
|
2010-12-15 21:19:33 +08:00
|
|
|
|
2014-11-28 18:53:51 +08:00
|
|
|
if (xen_feature(XENFEAT_auto_translated_physmap))
|
|
|
|
return 0;
|
2010-12-15 21:19:33 +08:00
|
|
|
|
2014-11-28 18:53:51 +08:00
|
|
|
for (i = 0; i < count; i++) {
|
2014-11-28 18:53:57 +08:00
|
|
|
unsigned long mfn = __pfn_to_mfn(page_to_pfn(pages[i]));
|
2014-11-28 18:53:51 +08:00
|
|
|
unsigned long pfn = page_to_pfn(pages[i]);
|
|
|
|
|
|
|
|
if (mfn == INVALID_P2M_ENTRY || !(mfn & FOREIGN_FRAME_BIT)) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
2010-12-15 21:19:33 +08:00
|
|
|
}
|
|
|
|
|
2014-12-24 22:03:16 +08:00
|
|
|
set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
|
2014-11-28 18:53:51 +08:00
|
|
|
}
|
2015-01-06 01:06:01 +08:00
|
|
|
if (kunmap_ops)
|
|
|
|
ret = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
|
|
|
|
kunmap_ops, count);
|
2014-11-28 18:53:51 +08:00
|
|
|
out:
|
2010-12-15 21:19:33 +08:00
|
|
|
return ret;
|
|
|
|
}
|
2014-11-28 18:53:51 +08:00
|
|
|
EXPORT_SYMBOL_GPL(clear_foreign_p2m_mapping);
|
2010-12-15 21:19:33 +08:00
|
|
|
|
2010-12-22 21:57:30 +08:00
|
|
|
#ifdef CONFIG_XEN_DEBUG_FS
|
2011-09-24 04:32:47 +08:00
|
|
|
#include <linux/debugfs.h>
|
|
|
|
#include "debugfs.h"
|
|
|
|
static int p2m_dump_show(struct seq_file *m, void *v)
|
2010-12-22 21:57:30 +08:00
|
|
|
{
|
2011-10-04 00:35:26 +08:00
|
|
|
static const char * const type_name[] = {
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
[P2M_TYPE_IDENTITY] = "identity",
|
|
|
|
[P2M_TYPE_MISSING] = "missing",
|
|
|
|
[P2M_TYPE_PFN] = "pfn",
|
|
|
|
[P2M_TYPE_UNKNOWN] = "abnormal"};
|
|
|
|
unsigned long pfn, first_pfn;
|
|
|
|
int type, prev_type;
|
|
|
|
|
|
|
|
prev_type = xen_p2m_elem_type(0);
|
|
|
|
first_pfn = 0;
|
|
|
|
|
|
|
|
for (pfn = 0; pfn < xen_p2m_size; pfn++) {
|
|
|
|
type = xen_p2m_elem_type(pfn);
|
|
|
|
if (type != prev_type) {
|
|
|
|
seq_printf(m, " [0x%lx->0x%lx] %s\n", first_pfn, pfn,
|
|
|
|
type_name[prev_type]);
|
2010-12-22 21:57:30 +08:00
|
|
|
prev_type = type;
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
first_pfn = pfn;
|
2010-12-22 21:57:30 +08:00
|
|
|
}
|
|
|
|
}
|
xen: switch to linear virtual mapped sparse p2m list
At start of the day the Xen hypervisor presents a contiguous mfn list
to a pv-domain. In order to support sparse memory this mfn list is
accessed via a three level p2m tree built early in the boot process.
Whenever the system needs the mfn associated with a pfn this tree is
used to find the mfn.
Instead of using a software walked tree for accessing a specific mfn
list entry this patch is creating a virtual address area for the
entire possible mfn list including memory holes. The holes are
covered by mapping a pre-defined page consisting only of "invalid
mfn" entries. Access to a mfn entry is possible by just using the
virtual base address of the mfn list and the pfn as index into that
list. This speeds up the (hot) path of determining the mfn of a
pfn.
Kernel build on a Dell Latitude E6440 (2 cores, HT) in 64 bit Dom0
showed following improvements:
Elapsed time: 32:50 -> 32:35
System: 18:07 -> 17:47
User: 104:00 -> 103:30
Tested with following configurations:
- 64 bit dom0, 8GB RAM
- 64 bit dom0, 128 GB RAM, PCI-area above 4 GB
- 32 bit domU, 512 MB, 8 GB, 43 GB (more wouldn't work even without
the patch)
- 32 bit domU, ballooning up and down
- 32 bit domU, save and restore
- 32 bit domU with PCI passthrough
- 64 bit domU, 8 GB, 2049 MB, 5000 MB
- 64 bit domU, ballooning up and down
- 64 bit domU, save and restore
- 64 bit domU with PCI passthrough
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-28 18:53:58 +08:00
|
|
|
seq_printf(m, " [0x%lx->0x%lx] %s\n", first_pfn, pfn,
|
|
|
|
type_name[prev_type]);
|
2010-12-22 21:57:30 +08:00
|
|
|
return 0;
|
|
|
|
}
|
2011-09-24 04:32:47 +08:00
|
|
|
|
|
|
|
static int p2m_dump_open(struct inode *inode, struct file *filp)
|
|
|
|
{
|
|
|
|
return single_open(filp, p2m_dump_show, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct file_operations p2m_dump_fops = {
|
|
|
|
.open = p2m_dump_open,
|
|
|
|
.read = seq_read,
|
|
|
|
.llseek = seq_lseek,
|
|
|
|
.release = single_release,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct dentry *d_mmu_debug;
|
|
|
|
|
|
|
|
static int __init xen_p2m_debugfs(void)
|
|
|
|
{
|
|
|
|
struct dentry *d_xen = xen_init_debugfs();
|
|
|
|
|
|
|
|
if (d_xen == NULL)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
d_mmu_debug = debugfs_create_dir("mmu", d_xen);
|
|
|
|
|
|
|
|
debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
fs_initcall(xen_p2m_debugfs);
|
|
|
|
#endif /* CONFIG_XEN_DEBUG_FS */
|