linux/drivers/gpu/drm/i915/i915_gem_shrinker.c

508 lines
15 KiB
C
Raw Normal View History

/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/oom.h>
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/dma-buf.h>
#include <linux/vmalloc.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
if (!mutex_is_locked(mutex))
return false;
#if defined(CONFIG_DEBUG_MUTEXES) || defined(CONFIG_MUTEX_SPIN_ON_OWNER)
return mutex->owner == task;
#else
/* Since UP may be pre-empted, we cannot assume that we own the lock */
return false;
#endif
}
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
if (!mutex_trylock(&dev->struct_mutex)) {
if (!mutex_is_locked_by(&dev->struct_mutex, current))
return false;
*unlock = false;
} else {
*unlock = true;
}
return true;
}
static bool any_vma_pinned(struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
list_for_each_entry(vma, &obj->vma_list, obj_link)
if (i915_vma_is_pinned(vma))
return true;
return false;
}
static bool swap_available(void)
{
return get_nr_swap_pages() > 0;
}
static bool can_release_pages(struct drm_i915_gem_object *obj)
{
if (!obj->mm.pages)
return false;
/* Consider only shrinkable ojects. */
if (!i915_gem_object_is_shrinkable(obj))
return false;
/* Only report true if by unbinding the object and putting its pages
* we can actually make forward progress towards freeing physical
* pages.
*
* If the pages are pinned for any other reason than being bound
* to the GPU, simply unbinding from the GPU is not going to succeed
* in releasing our pin count on the pages themselves.
*/
if (atomic_read(&obj->mm.pages_pin_count) > obj->bind_count)
return false;
if (any_vma_pinned(obj))
return false;
/* We can only return physical pages to the system if we can either
* discard the contents (because the user has marked them as being
* purgeable) or if we can move their contents out to swap.
*/
return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
}
static bool unsafe_drop_pages(struct drm_i915_gem_object *obj)
{
if (i915_gem_object_unbind(obj) == 0)
__i915_gem_object_put_pages(obj, I915_MM_SHRINKER);
return !READ_ONCE(obj->mm.pages);
}
/**
* i915_gem_shrink - Shrink buffer object caches
* @dev_priv: i915 device
* @target: amount of memory to make available, in pages
* @flags: control flags for selecting cache types
*
* This function is the main interface to the shrinker. It will try to release
* up to @target pages of main memory backing storage from buffer objects.
* Selection of the specific caches can be done with @flags. This is e.g. useful
* when purgeable objects should be removed from caches preferentially.
*
* Note that it's not guaranteed that released amount is actually available as
* free system memory - the pages might still be in-used to due to other reasons
* (like cpu mmaps) or the mm core has reused them before we could grab them.
* Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
* avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
*
* Also note that any kind of pinning (both per-vma address space pins and
* backing storage pins at the buffer object level) result in the shrinker code
* having to skip the object.
*
* Returns:
* The number of pages of backing storage actually released.
*/
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
unsigned long target, unsigned flags)
{
const struct {
struct list_head *list;
unsigned int bit;
} phases[] = {
{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
{ NULL, 0 },
}, *phase;
unsigned long count = 0;
bool unlock;
if (!i915_gem_shrinker_lock(&dev_priv->drm, &unlock))
return 0;
trace_i915_gem_shrink(dev_priv, target, flags);
i915_gem_retire_requests(dev_priv);
/*
* Unbinding of objects will require HW access; Let us not wake the
* device just to recover a little memory. If absolutely necessary,
* we will force the wake during oom-notifier.
*/
if ((flags & I915_SHRINK_BOUND) &&
!intel_runtime_pm_get_if_in_use(dev_priv))
flags &= ~I915_SHRINK_BOUND;
/*
* As we may completely rewrite the (un)bound list whilst unbinding
* (due to retiring requests) we have to strictly process only
* one element of the list at the time, and recheck the list
* on every iteration.
*
* In particular, we must hold a reference whilst removing the
* object as we may end up waiting for and/or retiring the objects.
* This might release the final reference (held by the active list)
* and result in the object being freed from under us. This is
* similar to the precautions the eviction code must take whilst
* removing objects.
*
* Also note that although these lists do not hold a reference to
* the object we can safely grab one here: The final object
* unreferencing and the bound_list are both protected by the
* dev->struct_mutex and so we won't ever be able to observe an
* object on the bound_list with a reference count equals 0.
*/
for (phase = phases; phase->list; phase++) {
struct list_head still_in_list;
struct drm_i915_gem_object *obj;
if ((flags & phase->bit) == 0)
continue;
INIT_LIST_HEAD(&still_in_list);
while (count < target &&
(obj = list_first_entry_or_null(phase->list,
typeof(*obj),
global_link))) {
list_move_tail(&obj->global_link, &still_in_list);
if (!obj->mm.pages) {
list_del_init(&obj->global_link);
continue;
}
if (flags & I915_SHRINK_PURGEABLE &&
obj->mm.madv != I915_MADV_DONTNEED)
continue;
if (flags & I915_SHRINK_VMAPS &&
!is_vmalloc_addr(obj->mm.mapping))
continue;
if (!(flags & I915_SHRINK_ACTIVE) &&
(i915_gem_object_is_active(obj) ||
obj->framebuffer_references))
continue;
if (!can_release_pages(obj))
continue;
if (unsafe_drop_pages(obj)) {
drm/i915: Mark up obj->mm.lock for shrinker As we may allocate from within the obj->mm.lock we may enter the shrinker for direct reclaim. Operating on the current object is prevented by checking for obj->mm.pages (which is only set as the last operation in the allocation path). However, we need to identify the single recursion of accessing another object's obj->mm.lock as the two locks have identical class and so appear to be the same to lockdep, convincing it that a deadlock is possible. Use mutex_lock_nested() to remove the false positive. [ 2165.945734] ================================= [ 2165.945749] [ INFO: inconsistent lock state ] [ 2165.945765] 4.9.0-rc2+ #2 Tainted: G W [ 2165.945781] --------------------------------- [ 2165.945796] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. [ 2165.945816] kswapd0/62 [HC0[0]:SC0[0]:HE1:SE1] takes: (&obj->mm.lock){+.+.?.}, at: [<ffffffffc0289a1f>] i915_gem_shrink+0x29f/0x500 [i915] [ 2165.945904] {RECLAIM_FS-ON-W} state was registered at: [ 2165.945931] [<ffffffffb10bd50f>] mark_held_locks+0x6f/0xa0 [ 2165.945956] [<ffffffffb10bf889>] lockdep_trace_alloc+0x69/0xc0 [ 2165.945982] [<ffffffffb11eea53>] kmem_cache_alloc_trace+0x33/0x2a0 [ 2165.946019] [<ffffffffc028a28a>] i915_gem_object_get_pages_stolen+0x6a/0xd0 [i915] [ 2165.946060] [<ffffffffc027e1d0>] ____i915_gem_object_get_pages+0x20/0x60 [i915] [ 2165.946098] [<ffffffffc027e268>] __i915_gem_object_get_pages+0x58/0x70 [i915] [ 2165.946138] [<ffffffffc028a3dc>] _i915_gem_object_create_stolen+0xec/0x120 [i915] [ 2165.946177] [<ffffffffc028af73>] i915_gem_object_create_stolen_for_preallocated+0xf3/0x3f0 [i915] [ 2165.946222] [<ffffffffc02bae43>] intel_alloc_initial_plane_obj.isra.125+0xd3/0x200 [i915] [ 2165.946266] [<ffffffffc02cb1c1>] intel_modeset_init+0x931/0x1530 [i915] [ 2165.946301] [<ffffffffc023d584>] i915_driver_load+0xa14/0x14a0 [i915] [ 2165.946335] [<ffffffffc0248aff>] i915_pci_probe+0x4f/0x70 [i915] [ 2165.946362] [<ffffffffb13cc452>] local_pci_probe+0x42/0xa0 [ 2165.946386] [<ffffffffb13cd903>] pci_device_probe+0x103/0x150 [ 2165.946411] [<ffffffffb14adeb3>] driver_probe_device+0x223/0x430 [ 2165.946436] [<ffffffffb14ae1a3>] __driver_attach+0xe3/0xf0 [ 2165.946461] [<ffffffffb14ab943>] bus_for_each_dev+0x73/0xc0 [ 2165.946485] [<ffffffffb14ad5ee>] driver_attach+0x1e/0x20 [ 2165.946508] [<ffffffffb14ad003>] bus_add_driver+0x173/0x270 [ 2165.946533] [<ffffffffb14aee70>] driver_register+0x60/0xe0 [ 2165.946557] [<ffffffffb13cbd6d>] __pci_register_driver+0x5d/0x60 [ 2165.946606] [<ffffffffc0378057>] soundcore_open+0x17/0x230 [soundcore] [ 2165.946636] [<ffffffffb1000450>] do_one_initcall+0x50/0x180 [ 2165.946661] [<ffffffffb117fd2d>] do_init_module+0x5f/0x1f1 [ 2165.946685] [<ffffffffb1108964>] load_module+0x2174/0x2a80 [ 2165.946709] [<ffffffffb11094df>] SYSC_finit_module+0xdf/0x110 [ 2165.946734] [<ffffffffb110952e>] SyS_finit_module+0xe/0x10 [ 2165.946758] [<ffffffffb1742aea>] entry_SYSCALL_64_fastpath+0x18/0xad [ 2165.946776] irq event stamp: 90871 [ 2165.946788] hardirqs last enabled at (90871): [ 2165.946805] [<ffffffffb173e9da>] __mutex_unlock_slowpath+0x11a/0x1c0 [ 2165.946823] hardirqs last disabled at (90870): [ 2165.946839] [<ffffffffb173e91b>] __mutex_unlock_slowpath+0x5b/0x1c0 [ 2165.946856] softirqs last enabled at (90858): [ 2165.946872] [<ffffffffb174581a>] __do_softirq+0x39a/0x4c6 [ 2165.946887] softirqs last disabled at (90671): [ 2165.946902] [<ffffffffb1066cea>] irq_exit+0xea/0xf0 [ 2165.946916] other info that might help us debug this: [ 2165.946936] Possible unsafe locking scenario: [ 2165.946955] CPU0 [ 2165.946965] ---- [ 2165.946975] lock(&obj->mm.lock); [ 2165.947000] <Interrupt> [ 2165.947010] lock(&obj->mm.lock); [ 2165.947035] *** DEADLOCK *** [ 2165.947054] 2 locks held by kswapd0/62: [ 2165.947067] #0: (shrinker_rwsem){++++..}, at: [<ffffffffb119a20e>] shrink_slab.part.40+0x5e/0x5d0 [ 2165.947120] #1: (&dev->struct_mutex){+.+.+.}, at: [<ffffffffc028954b>] i915_gem_shrinker_lock+0x1b/0x60 [i915] [ 2165.948909] stack backtrace: [ 2165.950650] CPU: 2 PID: 62 Comm: kswapd0 Tainted: G W 4.9.0-rc2+ #2 [ 2165.951587] Hardware name: LENOVO 80MX/Lenovo E31-80, BIOS DCCN34WW(V2.03) 12/01/2015 [ 2165.952484] ffffc90000b5f8c8 ffffffffb137f645 ffff88016c5a2700 ffffffffb25f20a0 [ 2165.953395] ffffc90000b5f918 ffffffffb10bcecd 0000000000000000 ffff880100000001 [ 2165.954305] 0000000000000001 000000000000000a ffff88016c5a2fd0 ffff88016c5a2700 [ 2165.955240] Call Trace: [ 2165.956170] [<ffffffffb137f645>] dump_stack+0x68/0x93 [ 2165.957071] [<ffffffffb10bcecd>] print_usage_bug+0x1dd/0x1f0 [ 2165.957979] [<ffffffffb10bd439>] mark_lock+0x559/0x5c0 [ 2165.958875] [<ffffffffb10bc3f0>] ? print_shortest_lock_dependencies+0x1b0/0x1b0 [ 2165.959829] [<ffffffffb10be04d>] __lock_acquire+0x66d/0x12a0 [ 2165.960729] [<ffffffffb11ef541>] ? __slab_free+0xa1/0x340 [ 2165.961625] [<ffffffffb10dba5d>] ? debug_lockdep_rcu_enabled+0x1d/0x20 [ 2165.962530] [<ffffffffb10bd50f>] ? mark_held_locks+0x6f/0xa0 [ 2165.963457] [<ffffffffb10bf0b0>] lock_acquire+0xf0/0x1f0 [ 2165.964368] [<ffffffffc0289a1f>] ? i915_gem_shrink+0x29f/0x500 [i915] [ 2165.965269] [<ffffffffc0289a1f>] ? i915_gem_shrink+0x29f/0x500 [i915] [ 2165.966150] [<ffffffffb173d837>] mutex_lock_nested+0x77/0x420 [ 2165.967030] [<ffffffffc0289a1f>] ? i915_gem_shrink+0x29f/0x500 [i915] [ 2165.967952] [<ffffffffc027c7a1>] ? __i915_gem_object_put_pages.part.58+0x161/0x1b0 [i915] [ 2165.968835] [<ffffffffc0289a1f>] i915_gem_shrink+0x29f/0x500 [i915] [ 2165.969712] [<ffffffffc0289e40>] i915_gem_shrinker_scan+0x70/0xb0 [i915] [ 2165.970591] [<ffffffffb119a3ae>] shrink_slab.part.40+0x1fe/0x5d0 [ 2165.971504] [<ffffffffb119f19c>] shrink_node+0x22c/0x320 [ 2165.972371] [<ffffffffb11a05fb>] kswapd+0x38b/0x9b0 [ 2165.973238] [<ffffffffb11a0270>] ? mem_cgroup_shrink_node+0x330/0x330 [ 2165.974068] [<ffffffffb108630f>] kthread+0xff/0x120 [ 2165.974929] [<ffffffffb1086210>] ? kthread_park+0x60/0x60 [ 2165.975847] [<ffffffffb1742d57>] ret_from_fork+0x27/0x40 Reported-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Fixes: 1233e2db199d ("drm/i915: Move object backing storage manipulation...") Testcase: igt/gem_ctx_create/maximum-swap Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161031124048.30355-1-chris@chris-wilson.co.uk
2016-10-31 20:40:48 +08:00
/* May arrive from get_pages on another bo */
mutex_lock_nested(&obj->mm.lock,
I915_MM_SHRINKER);
if (!obj->mm.pages) {
__i915_gem_object_invalidate(obj);
list_del_init(&obj->global_link);
count += obj->base.size >> PAGE_SHIFT;
}
mutex_unlock(&obj->mm.lock);
}
}
list_splice_tail(&still_in_list, phase->list);
}
if (flags & I915_SHRINK_BOUND)
intel_runtime_pm_put(dev_priv);
i915_gem_retire_requests(dev_priv);
if (unlock)
mutex_unlock(&dev_priv->drm.struct_mutex);
drm/i915: Enable lockless lookup of request tracking via RCU If we enable RCU for the requests (providing a grace period where we can inspect a "dead" request before it is freed), we can allow callers to carefully perform lockless lookup of an active request. However, by enabling deferred freeing of requests, we can potentially hog a lot of memory when dealing with tens of thousands of requests per second - with a quick insertion of a synchronize_rcu() inside our shrinker callback, that issue disappears. v2: Currently, it is our responsibility to handle reclaim i.e. to avoid hogging memory with the delayed slab frees. At the moment, we wait for a grace period in the shrinker, and block for all RCU callbacks on oom. Suggested alternatives focus on flushing our RCU callback when we have a certain number of outstanding request frees, and blocking on that flush after a second high watermark. (So rather than wait for the system to run out of memory, we stop issuing requests - both are nondeterministic.) Paul E. McKenney wrote: Another approach is synchronize_rcu() after some largish number of requests. The advantage of this approach is that it throttles the production of callbacks at the source. The corresponding disadvantage is that it slows things up. Another approach is to use call_rcu(), but if the previous call_rcu() is still in flight, block waiting for it. Yet another approach is the get_state_synchronize_rcu() / cond_synchronize_rcu() pair. The idea is to do something like this: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); You would of course do an initial get_state_synchronize_rcu() to get things going. This would not block unless there was less than one grace period's worth of time between invocations. But this assumes a busy system, where there is almost always a grace period in flight. But you can make that happen as follows: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); call_rcu(&my_rcu_head, noop_function); Note that you need additional code to make sure that the old callback has completed before doing a new one. Setting and clearing a flag with appropriate memory ordering control suffices (e.g,. smp_load_acquire() and smp_store_release()). v3: More comments on compiler and processor order of operations within the RCU lookup and discover we can use rcu_access_pointer() here instead. v4: Wrap i915_gem_active_get_rcu() to take the rcu_read_lock itself. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470324762-2545-25-git-send-email-chris@chris-wilson.co.uk
2016-08-04 23:32:41 +08:00
/* expedite the RCU grace period to free some request slabs */
synchronize_rcu_expedited();
return count;
}
/**
* i915_gem_shrink_all - Shrink buffer object caches completely
* @dev_priv: i915 device
*
* This is a simple wraper around i915_gem_shrink() to aggressively shrink all
* caches completely. It also first waits for and retires all outstanding
* requests to also be able to release backing storage for active objects.
*
* This should only be used in code to intentionally quiescent the gpu or as a
* last-ditch effort when memory seems to have run out.
*
* Returns:
* The number of pages of backing storage actually released.
*/
unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
drm/i915: Enable lockless lookup of request tracking via RCU If we enable RCU for the requests (providing a grace period where we can inspect a "dead" request before it is freed), we can allow callers to carefully perform lockless lookup of an active request. However, by enabling deferred freeing of requests, we can potentially hog a lot of memory when dealing with tens of thousands of requests per second - with a quick insertion of a synchronize_rcu() inside our shrinker callback, that issue disappears. v2: Currently, it is our responsibility to handle reclaim i.e. to avoid hogging memory with the delayed slab frees. At the moment, we wait for a grace period in the shrinker, and block for all RCU callbacks on oom. Suggested alternatives focus on flushing our RCU callback when we have a certain number of outstanding request frees, and blocking on that flush after a second high watermark. (So rather than wait for the system to run out of memory, we stop issuing requests - both are nondeterministic.) Paul E. McKenney wrote: Another approach is synchronize_rcu() after some largish number of requests. The advantage of this approach is that it throttles the production of callbacks at the source. The corresponding disadvantage is that it slows things up. Another approach is to use call_rcu(), but if the previous call_rcu() is still in flight, block waiting for it. Yet another approach is the get_state_synchronize_rcu() / cond_synchronize_rcu() pair. The idea is to do something like this: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); You would of course do an initial get_state_synchronize_rcu() to get things going. This would not block unless there was less than one grace period's worth of time between invocations. But this assumes a busy system, where there is almost always a grace period in flight. But you can make that happen as follows: cond_synchronize_rcu(cookie); cookie = get_state_synchronize_rcu(); call_rcu(&my_rcu_head, noop_function); Note that you need additional code to make sure that the old callback has completed before doing a new one. Setting and clearing a flag with appropriate memory ordering control suffices (e.g,. smp_load_acquire() and smp_store_release()). v3: More comments on compiler and processor order of operations within the RCU lookup and discover we can use rcu_access_pointer() here instead. v4: Wrap i915_gem_active_get_rcu() to take the rcu_read_lock itself. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1470324762-2545-25-git-send-email-chris@chris-wilson.co.uk
2016-08-04 23:32:41 +08:00
unsigned long freed;
freed = i915_gem_shrink(dev_priv, -1UL,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND |
I915_SHRINK_ACTIVE);
rcu_barrier(); /* wait until our RCU delayed slab frees are completed */
return freed;
}
static unsigned long
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
{
struct drm_i915_private *dev_priv =
container_of(shrinker, struct drm_i915_private, mm.shrinker);
struct drm_device *dev = &dev_priv->drm;
struct drm_i915_gem_object *obj;
unsigned long count;
bool unlock;
if (!i915_gem_shrinker_lock(dev, &unlock))
return 0;
i915_gem_retire_requests(dev_priv);
count = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link)
if (can_release_pages(obj))
count += obj->base.size >> PAGE_SHIFT;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
if (!i915_gem_object_is_active(obj) && can_release_pages(obj))
count += obj->base.size >> PAGE_SHIFT;
}
if (unlock)
mutex_unlock(&dev->struct_mutex);
return count;
}
static unsigned long
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
{
struct drm_i915_private *dev_priv =
container_of(shrinker, struct drm_i915_private, mm.shrinker);
struct drm_device *dev = &dev_priv->drm;
unsigned long freed;
bool unlock;
if (!i915_gem_shrinker_lock(dev, &unlock))
return SHRINK_STOP;
freed = i915_gem_shrink(dev_priv,
sc->nr_to_scan,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND |
I915_SHRINK_PURGEABLE);
if (freed < sc->nr_to_scan)
freed += i915_gem_shrink(dev_priv,
sc->nr_to_scan - freed,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND);
if (unlock)
mutex_unlock(&dev->struct_mutex);
return freed;
}
struct shrinker_lock_uninterruptible {
bool was_interruptible;
bool unlock;
};
static bool
i915_gem_shrinker_lock_uninterruptible(struct drm_i915_private *dev_priv,
struct shrinker_lock_uninterruptible *slu,
int timeout_ms)
{
unsigned long timeout = jiffies + msecs_to_jiffies_timeout(timeout_ms);
do {
if (i915_gem_wait_for_idle(dev_priv, 0) == 0 &&
i915_gem_shrinker_lock(&dev_priv->drm, &slu->unlock))
break;
schedule_timeout_killable(1);
if (fatal_signal_pending(current))
return false;
if (time_after(jiffies, timeout)) {
pr_err("Unable to lock GPU to purge memory.\n");
return false;
}
} while (1);
slu->was_interruptible = dev_priv->mm.interruptible;
dev_priv->mm.interruptible = false;
return true;
}
static void
i915_gem_shrinker_unlock_uninterruptible(struct drm_i915_private *dev_priv,
struct shrinker_lock_uninterruptible *slu)
{
dev_priv->mm.interruptible = slu->was_interruptible;
if (slu->unlock)
mutex_unlock(&dev_priv->drm.struct_mutex);
}
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
struct drm_i915_private *dev_priv =
container_of(nb, struct drm_i915_private, mm.oom_notifier);
struct shrinker_lock_uninterruptible slu;
struct drm_i915_gem_object *obj;
unsigned long unevictable, bound, unbound, freed_pages;
if (!i915_gem_shrinker_lock_uninterruptible(dev_priv, &slu, 5000))
return NOTIFY_DONE;
intel_runtime_pm_get(dev_priv);
freed_pages = i915_gem_shrink_all(dev_priv);
intel_runtime_pm_put(dev_priv);
/* Because we may be allocating inside our own driver, we cannot
* assert that there are no objects with pinned pages that are not
* being pointed to by hardware.
*/
unbound = bound = unevictable = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
if (!obj->mm.pages)
continue;
if (!can_release_pages(obj))
unevictable += obj->base.size >> PAGE_SHIFT;
else
unbound += obj->base.size >> PAGE_SHIFT;
}
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
if (!obj->mm.pages)
continue;
if (!can_release_pages(obj))
unevictable += obj->base.size >> PAGE_SHIFT;
else
bound += obj->base.size >> PAGE_SHIFT;
}
i915_gem_shrinker_unlock_uninterruptible(dev_priv, &slu);
if (freed_pages || unbound || bound)
pr_info("Purging GPU memory, %lu pages freed, "
"%lu pages still pinned.\n",
freed_pages, unevictable);
if (unbound || bound)
pr_err("%lu and %lu pages still available in the "
"bound and unbound GPU page lists.\n",
bound, unbound);
*(unsigned long *)ptr += freed_pages;
return NOTIFY_DONE;
}
static int
i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
{
struct drm_i915_private *dev_priv =
container_of(nb, struct drm_i915_private, mm.vmap_notifier);
struct shrinker_lock_uninterruptible slu;
struct i915_vma *vma, *next;
unsigned long freed_pages = 0;
int ret;
if (!i915_gem_shrinker_lock_uninterruptible(dev_priv, &slu, 5000))
return NOTIFY_DONE;
/* Force everything onto the inactive lists */
ret = i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
if (ret)
goto out;
intel_runtime_pm_get(dev_priv);
freed_pages += i915_gem_shrink(dev_priv, -1UL,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND |
I915_SHRINK_ACTIVE |
I915_SHRINK_VMAPS);
intel_runtime_pm_put(dev_priv);
/* We also want to clear any cached iomaps as they wrap vmap */
list_for_each_entry_safe(vma, next,
&dev_priv->ggtt.base.inactive_list, vm_link) {
unsigned long count = vma->node.size >> PAGE_SHIFT;
if (vma->iomap && i915_vma_unbind(vma) == 0)
freed_pages += count;
}
out:
i915_gem_shrinker_unlock_uninterruptible(dev_priv, &slu);
*(unsigned long *)ptr += freed_pages;
return NOTIFY_DONE;
}
/**
* i915_gem_shrinker_init - Initialize i915 shrinker
* @dev_priv: i915 device
*
* This function registers and sets up the i915 shrinker and OOM handler.
*/
void i915_gem_shrinker_init(struct drm_i915_private *dev_priv)
{
dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
WARN_ON(register_shrinker(&dev_priv->mm.shrinker));
dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
WARN_ON(register_oom_notifier(&dev_priv->mm.oom_notifier));
dev_priv->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
WARN_ON(register_vmap_purge_notifier(&dev_priv->mm.vmap_notifier));
}
/**
* i915_gem_shrinker_cleanup - Clean up i915 shrinker
* @dev_priv: i915 device
*
* This function unregisters the i915 shrinker and OOM handler.
*/
void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv)
{
WARN_ON(unregister_vmap_purge_notifier(&dev_priv->mm.vmap_notifier));
WARN_ON(unregister_oom_notifier(&dev_priv->mm.oom_notifier));
unregister_shrinker(&dev_priv->mm.shrinker);
}