linux/arch/alpha/kernel/osf_sys.c

1242 lines
30 KiB
C
Raw Normal View History

/*
* linux/arch/alpha/kernel/osf_sys.c
*
* Copyright (C) 1995 Linus Torvalds
*/
/*
* This file handles some of the stranger OSF/1 system call interfaces.
* Some of the system calls expect a non-C calling standard, others have
* special parameter blocks..
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/syscalls.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/utsname.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/major.h>
#include <linux/stat.h>
#include <linux/mman.h>
#include <linux/shm.h>
#include <linux/poll.h>
#include <linux/file.h>
#include <linux/types.h>
#include <linux/ipc.h>
#include <linux/namei.h>
#include <linux/uio.h>
#include <linux/vfs.h>
#include <linux/rcupdate.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/fpu.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/sysinfo.h>
#include <asm/thread_info.h>
#include <asm/hwrpb.h>
#include <asm/processor.h>
/*
* Brk needs to return an error. Still support Linux's brk(0) query idiom,
* which OSF programs just shouldn't be doing. We're still not quite
* identical to OSF as we don't return 0 on success, but doing otherwise
* would require changes to libc. Hopefully this is good enough.
*/
SYSCALL_DEFINE1(osf_brk, unsigned long, brk)
{
unsigned long retval = sys_brk(brk);
if (brk && brk != retval)
retval = -ENOMEM;
return retval;
}
/*
* This is pure guess-work..
*/
SYSCALL_DEFINE4(osf_set_program_attributes, unsigned long, text_start,
unsigned long, text_len, unsigned long, bss_start,
unsigned long, bss_len)
{
struct mm_struct *mm;
mm = current->mm;
mm->end_code = bss_start + bss_len;
mm->start_brk = bss_start + bss_len;
mm->brk = bss_start + bss_len;
#if 0
printk("set_program_attributes(%lx %lx %lx %lx)\n",
text_start, text_len, bss_start, bss_len);
#endif
return 0;
}
/*
* OSF/1 directory handling functions...
*
* The "getdents()" interface is much more sane: the "basep" stuff is
* braindamage (it can't really handle filesystems where the directory
* offset differences aren't the same as "d_reclen").
*/
#define NAME_OFFSET offsetof (struct osf_dirent, d_name)
struct osf_dirent {
unsigned int d_ino;
unsigned short d_reclen;
unsigned short d_namlen;
char d_name[1];
};
struct osf_dirent_callback {
struct osf_dirent __user *dirent;
long __user *basep;
unsigned int count;
int error;
};
static int
osf_filldir(void *__buf, const char *name, int namlen, loff_t offset,
[PATCH] VFS: Make filldir_t and struct kstat deal in 64-bit inode numbers These patches make the kernel pass 64-bit inode numbers internally when communicating to userspace, even on a 32-bit system. They are required because some filesystems have intrinsic 64-bit inode numbers: NFS3+ and XFS for example. The 64-bit inode numbers are then propagated to userspace automatically where the arch supports it. Problems have been seen with userspace (eg: ld.so) using the 64-bit inode number returned by stat64() or getdents64() to differentiate files, and failing because the 64-bit inode number space was compressed to 32-bits, and so overlaps occur. This patch: Make filldir_t take a 64-bit inode number and struct kstat carry a 64-bit inode number so that 64-bit inode numbers can be passed back to userspace. The stat functions then returns the full 64-bit inode number where available and where possible. If it is not possible to represent the inode number supplied by the filesystem in the field provided by userspace, then error EOVERFLOW will be issued. Similarly, the getdents/readdir functions now pass the full 64-bit inode number to userspace where possible, returning EOVERFLOW instead when a directory entry is encountered that can't be properly represented. Note that this means that some inodes will not be stat'able on a 32-bit system with old libraries where they were before - but it does mean that there will be no ambiguity over what a 32-bit inode number refers to. Note similarly that directory scans may be cut short with an error on a 32-bit system with old libraries where the scan would work before for the same reasons. It is judged unlikely that this situation will occur because modern glibc uses 64-bit capable versions of stat and getdents class functions exclusively, and that older systems are unlikely to encounter unrepresentable inode numbers anyway. [akpm: alpha build fix] Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03 16:13:46 +08:00
u64 ino, unsigned int d_type)
{
struct osf_dirent __user *dirent;
struct osf_dirent_callback *buf = (struct osf_dirent_callback *) __buf;
unsigned int reclen = ALIGN(NAME_OFFSET + namlen + 1, sizeof(u32));
[PATCH] VFS: Make filldir_t and struct kstat deal in 64-bit inode numbers These patches make the kernel pass 64-bit inode numbers internally when communicating to userspace, even on a 32-bit system. They are required because some filesystems have intrinsic 64-bit inode numbers: NFS3+ and XFS for example. The 64-bit inode numbers are then propagated to userspace automatically where the arch supports it. Problems have been seen with userspace (eg: ld.so) using the 64-bit inode number returned by stat64() or getdents64() to differentiate files, and failing because the 64-bit inode number space was compressed to 32-bits, and so overlaps occur. This patch: Make filldir_t take a 64-bit inode number and struct kstat carry a 64-bit inode number so that 64-bit inode numbers can be passed back to userspace. The stat functions then returns the full 64-bit inode number where available and where possible. If it is not possible to represent the inode number supplied by the filesystem in the field provided by userspace, then error EOVERFLOW will be issued. Similarly, the getdents/readdir functions now pass the full 64-bit inode number to userspace where possible, returning EOVERFLOW instead when a directory entry is encountered that can't be properly represented. Note that this means that some inodes will not be stat'able on a 32-bit system with old libraries where they were before - but it does mean that there will be no ambiguity over what a 32-bit inode number refers to. Note similarly that directory scans may be cut short with an error on a 32-bit system with old libraries where the scan would work before for the same reasons. It is judged unlikely that this situation will occur because modern glibc uses 64-bit capable versions of stat and getdents class functions exclusively, and that older systems are unlikely to encounter unrepresentable inode numbers anyway. [akpm: alpha build fix] Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03 16:13:46 +08:00
unsigned int d_ino;
buf->error = -EINVAL; /* only used if we fail */
if (reclen > buf->count)
return -EINVAL;
[PATCH] VFS: Make filldir_t and struct kstat deal in 64-bit inode numbers These patches make the kernel pass 64-bit inode numbers internally when communicating to userspace, even on a 32-bit system. They are required because some filesystems have intrinsic 64-bit inode numbers: NFS3+ and XFS for example. The 64-bit inode numbers are then propagated to userspace automatically where the arch supports it. Problems have been seen with userspace (eg: ld.so) using the 64-bit inode number returned by stat64() or getdents64() to differentiate files, and failing because the 64-bit inode number space was compressed to 32-bits, and so overlaps occur. This patch: Make filldir_t take a 64-bit inode number and struct kstat carry a 64-bit inode number so that 64-bit inode numbers can be passed back to userspace. The stat functions then returns the full 64-bit inode number where available and where possible. If it is not possible to represent the inode number supplied by the filesystem in the field provided by userspace, then error EOVERFLOW will be issued. Similarly, the getdents/readdir functions now pass the full 64-bit inode number to userspace where possible, returning EOVERFLOW instead when a directory entry is encountered that can't be properly represented. Note that this means that some inodes will not be stat'able on a 32-bit system with old libraries where they were before - but it does mean that there will be no ambiguity over what a 32-bit inode number refers to. Note similarly that directory scans may be cut short with an error on a 32-bit system with old libraries where the scan would work before for the same reasons. It is judged unlikely that this situation will occur because modern glibc uses 64-bit capable versions of stat and getdents class functions exclusively, and that older systems are unlikely to encounter unrepresentable inode numbers anyway. [akpm: alpha build fix] Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03 16:13:46 +08:00
d_ino = ino;
if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) {
buf->error = -EOVERFLOW;
[PATCH] VFS: Make filldir_t and struct kstat deal in 64-bit inode numbers These patches make the kernel pass 64-bit inode numbers internally when communicating to userspace, even on a 32-bit system. They are required because some filesystems have intrinsic 64-bit inode numbers: NFS3+ and XFS for example. The 64-bit inode numbers are then propagated to userspace automatically where the arch supports it. Problems have been seen with userspace (eg: ld.so) using the 64-bit inode number returned by stat64() or getdents64() to differentiate files, and failing because the 64-bit inode number space was compressed to 32-bits, and so overlaps occur. This patch: Make filldir_t take a 64-bit inode number and struct kstat carry a 64-bit inode number so that 64-bit inode numbers can be passed back to userspace. The stat functions then returns the full 64-bit inode number where available and where possible. If it is not possible to represent the inode number supplied by the filesystem in the field provided by userspace, then error EOVERFLOW will be issued. Similarly, the getdents/readdir functions now pass the full 64-bit inode number to userspace where possible, returning EOVERFLOW instead when a directory entry is encountered that can't be properly represented. Note that this means that some inodes will not be stat'able on a 32-bit system with old libraries where they were before - but it does mean that there will be no ambiguity over what a 32-bit inode number refers to. Note similarly that directory scans may be cut short with an error on a 32-bit system with old libraries where the scan would work before for the same reasons. It is judged unlikely that this situation will occur because modern glibc uses 64-bit capable versions of stat and getdents class functions exclusively, and that older systems are unlikely to encounter unrepresentable inode numbers anyway. [akpm: alpha build fix] Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03 16:13:46 +08:00
return -EOVERFLOW;
}
if (buf->basep) {
if (put_user(offset, buf->basep))
goto Efault;
buf->basep = NULL;
}
dirent = buf->dirent;
if (put_user(d_ino, &dirent->d_ino) ||
put_user(namlen, &dirent->d_namlen) ||
put_user(reclen, &dirent->d_reclen) ||
copy_to_user(dirent->d_name, name, namlen) ||
put_user(0, dirent->d_name + namlen))
goto Efault;
dirent = (void __user *)dirent + reclen;
buf->dirent = dirent;
buf->count -= reclen;
return 0;
Efault:
buf->error = -EFAULT;
return -EFAULT;
}
SYSCALL_DEFINE4(osf_getdirentries, unsigned int, fd,
struct osf_dirent __user *, dirent, unsigned int, count,
long __user *, basep)
{
int error;
struct file *file;
struct osf_dirent_callback buf;
error = -EBADF;
file = fget(fd);
if (!file)
goto out;
buf.dirent = dirent;
buf.basep = basep;
buf.count = count;
buf.error = 0;
error = vfs_readdir(file, osf_filldir, &buf);
if (error >= 0)
error = buf.error;
if (count != buf.count)
error = count - buf.count;
fput(file);
out:
return error;
}
#undef NAME_OFFSET
SYSCALL_DEFINE6(osf_mmap, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags, unsigned long, fd,
unsigned long, off)
{
unsigned long ret = -EINVAL;
#if 0
if (flags & (_MAP_HASSEMAPHORE | _MAP_INHERIT | _MAP_UNALIGNED))
printk("%s: unimplemented OSF mmap flags %04lx\n",
current->comm, flags);
#endif
if ((off + PAGE_ALIGN(len)) < off)
goto out;
if (off & ~PAGE_MASK)
goto out;
ret = sys_mmap_pgoff(addr, len, prot, flags, fd, off >> PAGE_SHIFT);
out:
return ret;
}
/*
* The OSF/1 statfs structure is much larger, but this should
* match the beginning, at least.
*/
struct osf_statfs {
short f_type;
short f_flags;
int f_fsize;
int f_bsize;
int f_blocks;
int f_bfree;
int f_bavail;
int f_files;
int f_ffree;
__kernel_fsid_t f_fsid;
};
static int
linux_to_osf_statfs(struct kstatfs *linux_stat, struct osf_statfs __user *osf_stat,
unsigned long bufsiz)
{
struct osf_statfs tmp_stat;
tmp_stat.f_type = linux_stat->f_type;
tmp_stat.f_flags = 0; /* mount flags */
tmp_stat.f_fsize = linux_stat->f_frsize;
tmp_stat.f_bsize = linux_stat->f_bsize;
tmp_stat.f_blocks = linux_stat->f_blocks;
tmp_stat.f_bfree = linux_stat->f_bfree;
tmp_stat.f_bavail = linux_stat->f_bavail;
tmp_stat.f_files = linux_stat->f_files;
tmp_stat.f_ffree = linux_stat->f_ffree;
tmp_stat.f_fsid = linux_stat->f_fsid;
if (bufsiz > sizeof(tmp_stat))
bufsiz = sizeof(tmp_stat);
return copy_to_user(osf_stat, &tmp_stat, bufsiz) ? -EFAULT : 0;
}
SYSCALL_DEFINE3(osf_statfs, const char __user *, pathname,
struct osf_statfs __user *, buffer, unsigned long, bufsiz)
{
struct kstatfs linux_stat;
int error = user_statfs(pathname, &linux_stat);
if (!error)
error = linux_to_osf_statfs(&linux_stat, buffer, bufsiz);
return error;
}
SYSCALL_DEFINE3(osf_fstatfs, unsigned long, fd,
struct osf_statfs __user *, buffer, unsigned long, bufsiz)
{
struct kstatfs linux_stat;
int error = fd_statfs(fd, &linux_stat);
if (!error)
error = linux_to_osf_statfs(&linux_stat, buffer, bufsiz);
return error;
}
/*
* Uhh.. OSF/1 mount parameters aren't exactly obvious..
*
* Although to be frank, neither are the native Linux/i386 ones..
*/
struct ufs_args {
char __user *devname;
int flags;
uid_t exroot;
};
struct cdfs_args {
char __user *devname;
int flags;
uid_t exroot;
/* This has lots more here, which Linux handles with the option block
but I'm too lazy to do the translation into ASCII. */
};
struct procfs_args {
char __user *devname;
int flags;
uid_t exroot;
};
/*
* We can't actually handle ufs yet, so we translate UFS mounts to
* ext2fs mounts. I wouldn't mind a UFS filesystem, but the UFS
* layout is so braindead it's a major headache doing it.
*
* Just how long ago was it written? OTOH our UFS driver may be still
* unhappy with OSF UFS. [CHECKME]
*/
static int
osf_ufs_mount(char *dirname, struct ufs_args __user *args, int flags)
{
int retval;
struct cdfs_args tmp;
char *devname;
retval = -EFAULT;
if (copy_from_user(&tmp, args, sizeof(tmp)))
goto out;
devname = getname(tmp.devname);
retval = PTR_ERR(devname);
if (IS_ERR(devname))
goto out;
retval = do_mount(devname, dirname, "ext2", flags, NULL);
putname(devname);
out:
return retval;
}
static int
osf_cdfs_mount(char *dirname, struct cdfs_args __user *args, int flags)
{
int retval;
struct cdfs_args tmp;
char *devname;
retval = -EFAULT;
if (copy_from_user(&tmp, args, sizeof(tmp)))
goto out;
devname = getname(tmp.devname);
retval = PTR_ERR(devname);
if (IS_ERR(devname))
goto out;
retval = do_mount(devname, dirname, "iso9660", flags, NULL);
putname(devname);
out:
return retval;
}
static int
osf_procfs_mount(char *dirname, struct procfs_args __user *args, int flags)
{
struct procfs_args tmp;
if (copy_from_user(&tmp, args, sizeof(tmp)))
return -EFAULT;
return do_mount("", dirname, "proc", flags, NULL);
}
SYSCALL_DEFINE4(osf_mount, unsigned long, typenr, const char __user *, path,
int, flag, void __user *, data)
{
int retval;
char *name;
name = getname(path);
retval = PTR_ERR(name);
if (IS_ERR(name))
goto out;
switch (typenr) {
case 1:
retval = osf_ufs_mount(name, data, flag);
break;
case 6:
retval = osf_cdfs_mount(name, data, flag);
break;
case 9:
retval = osf_procfs_mount(name, data, flag);
break;
default:
retval = -EINVAL;
printk("osf_mount(%ld, %x)\n", typenr, flag);
}
putname(name);
out:
return retval;
}
SYSCALL_DEFINE1(osf_utsname, char __user *, name)
{
int error;
down_read(&uts_sem);
error = -EFAULT;
if (copy_to_user(name + 0, utsname()->sysname, 32))
goto out;
if (copy_to_user(name + 32, utsname()->nodename, 32))
goto out;
if (copy_to_user(name + 64, utsname()->release, 32))
goto out;
if (copy_to_user(name + 96, utsname()->version, 32))
goto out;
if (copy_to_user(name + 128, utsname()->machine, 32))
goto out;
error = 0;
out:
up_read(&uts_sem);
return error;
}
SYSCALL_DEFINE0(getpagesize)
{
return PAGE_SIZE;
}
SYSCALL_DEFINE0(getdtablesize)
{
return sysctl_nr_open;
}
/*
* For compatibility with OSF/1 only. Use utsname(2) instead.
*/
SYSCALL_DEFINE2(osf_getdomainname, char __user *, name, int, namelen)
{
unsigned len;
int i;
if (!access_ok(VERIFY_WRITE, name, namelen))
return -EFAULT;
len = namelen;
if (len > 32)
len = 32;
down_read(&uts_sem);
for (i = 0; i < len; ++i) {
__put_user(utsname()->domainname[i], name + i);
if (utsname()->domainname[i] == '\0')
break;
}
up_read(&uts_sem);
return 0;
}
/*
* The following stuff should move into a header file should it ever
* be labeled "officially supported." Right now, there is just enough
* support to avoid applications (such as tar) printing error
* messages. The attributes are not really implemented.
*/
/*
* Values for Property list entry flag
*/
#define PLE_PROPAGATE_ON_COPY 0x1 /* cp(1) will copy entry
by default */
#define PLE_FLAG_MASK 0x1 /* Valid flag values */
#define PLE_FLAG_ALL -1 /* All flag value */
struct proplistname_args {
unsigned int pl_mask;
unsigned int pl_numnames;
char **pl_names;
};
union pl_args {
struct setargs {
char __user *path;
long follow;
long nbytes;
char __user *buf;
} set;
struct fsetargs {
long fd;
long nbytes;
char __user *buf;
} fset;
struct getargs {
char __user *path;
long follow;
struct proplistname_args __user *name_args;
long nbytes;
char __user *buf;
int __user *min_buf_size;
} get;
struct fgetargs {
long fd;
struct proplistname_args __user *name_args;
long nbytes;
char __user *buf;
int __user *min_buf_size;
} fget;
struct delargs {
char __user *path;
long follow;
struct proplistname_args __user *name_args;
} del;
struct fdelargs {
long fd;
struct proplistname_args __user *name_args;
} fdel;
};
enum pl_code {
PL_SET = 1, PL_FSET = 2,
PL_GET = 3, PL_FGET = 4,
PL_DEL = 5, PL_FDEL = 6
};
SYSCALL_DEFINE2(osf_proplist_syscall, enum pl_code, code,
union pl_args __user *, args)
{
long error;
int __user *min_buf_size_ptr;
switch (code) {
case PL_SET:
if (get_user(error, &args->set.nbytes))
error = -EFAULT;
break;
case PL_FSET:
if (get_user(error, &args->fset.nbytes))
error = -EFAULT;
break;
case PL_GET:
error = get_user(min_buf_size_ptr, &args->get.min_buf_size);
if (error)
break;
error = put_user(0, min_buf_size_ptr);
break;
case PL_FGET:
error = get_user(min_buf_size_ptr, &args->fget.min_buf_size);
if (error)
break;
error = put_user(0, min_buf_size_ptr);
break;
case PL_DEL:
case PL_FDEL:
error = 0;
break;
default:
error = -EOPNOTSUPP;
break;
};
return error;
}
SYSCALL_DEFINE2(osf_sigstack, struct sigstack __user *, uss,
struct sigstack __user *, uoss)
{
unsigned long usp = rdusp();
unsigned long oss_sp = current->sas_ss_sp + current->sas_ss_size;
unsigned long oss_os = on_sig_stack(usp);
int error;
if (uss) {
void __user *ss_sp;
error = -EFAULT;
if (get_user(ss_sp, &uss->ss_sp))
goto out;
/* If the current stack was set with sigaltstack, don't
swap stacks while we are on it. */
error = -EPERM;
if (current->sas_ss_sp && on_sig_stack(usp))
goto out;
/* Since we don't know the extent of the stack, and we don't
track onstack-ness, but rather calculate it, we must
presume a size. Ho hum this interface is lossy. */
current->sas_ss_sp = (unsigned long)ss_sp - SIGSTKSZ;
current->sas_ss_size = SIGSTKSZ;
}
if (uoss) {
error = -EFAULT;
if (! access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))
|| __put_user(oss_sp, &uoss->ss_sp)
|| __put_user(oss_os, &uoss->ss_onstack))
goto out;
}
error = 0;
out:
return error;
}
SYSCALL_DEFINE3(osf_sysinfo, int, command, char __user *, buf, long, count)
{
const char *sysinfo_table[] = {
utsname()->sysname,
utsname()->nodename,
utsname()->release,
utsname()->version,
utsname()->machine,
"alpha", /* instruction set architecture */
"dummy", /* hardware serial number */
"dummy", /* hardware manufacturer */
"dummy", /* secure RPC domain */
};
unsigned long offset;
const char *res;
long len, err = -EINVAL;
offset = command-1;
if (offset >= ARRAY_SIZE(sysinfo_table)) {
/* Digital UNIX has a few unpublished interfaces here */
printk("sysinfo(%d)", command);
goto out;
}
down_read(&uts_sem);
res = sysinfo_table[offset];
len = strlen(res)+1;
if ((unsigned long)len > (unsigned long)count)
len = count;
if (copy_to_user(buf, res, len))
err = -EFAULT;
else
err = 0;
up_read(&uts_sem);
out:
return err;
}
SYSCALL_DEFINE5(osf_getsysinfo, unsigned long, op, void __user *, buffer,
unsigned long, nbytes, int __user *, start, void __user *, arg)
{
unsigned long w;
struct percpu_struct *cpu;
switch (op) {
case GSI_IEEE_FP_CONTROL:
/* Return current software fp control & status bits. */
/* Note that DU doesn't verify available space here. */
w = current_thread_info()->ieee_state & IEEE_SW_MASK;
w = swcr_update_status(w, rdfpcr());
if (put_user(w, (unsigned long __user *) buffer))
return -EFAULT;
return 0;
case GSI_IEEE_STATE_AT_SIGNAL:
/*
* Not sure anybody will ever use this weird stuff. These
* ops can be used (under OSF/1) to set the fpcr that should
* be used when a signal handler starts executing.
*/
break;
case GSI_UACPROC:
if (nbytes < sizeof(unsigned int))
return -EINVAL;
w = (current_thread_info()->flags >> ALPHA_UAC_SHIFT) &
UAC_BITMASK;
if (put_user(w, (unsigned int __user *)buffer))
return -EFAULT;
return 1;
case GSI_PROC_TYPE:
if (nbytes < sizeof(unsigned long))
return -EINVAL;
cpu = (struct percpu_struct*)
((char*)hwrpb + hwrpb->processor_offset);
w = cpu->type;
if (put_user(w, (unsigned long __user*)buffer))
return -EFAULT;
return 1;
case GSI_GET_HWRPB:
if (nbytes > sizeof(*hwrpb))
return -EINVAL;
if (copy_to_user(buffer, hwrpb, nbytes) != 0)
return -EFAULT;
return 1;
default:
break;
}
return -EOPNOTSUPP;
}
SYSCALL_DEFINE5(osf_setsysinfo, unsigned long, op, void __user *, buffer,
unsigned long, nbytes, int __user *, start, void __user *, arg)
{
switch (op) {
case SSI_IEEE_FP_CONTROL: {
unsigned long swcr, fpcr;
unsigned int *state;
/*
* Alpha Architecture Handbook 4.7.7.3:
* To be fully IEEE compiant, we must track the current IEEE
* exception state in software, because spurious bits can be
* set in the trap shadow of a software-complete insn.
*/
if (get_user(swcr, (unsigned long __user *)buffer))
return -EFAULT;
state = &current_thread_info()->ieee_state;
/* Update softare trap enable bits. */
*state = (*state & ~IEEE_SW_MASK) | (swcr & IEEE_SW_MASK);
/* Update the real fpcr. */
fpcr = rdfpcr() & FPCR_DYN_MASK;
fpcr |= ieee_swcr_to_fpcr(swcr);
wrfpcr(fpcr);
return 0;
}
case SSI_IEEE_RAISE_EXCEPTION: {
unsigned long exc, swcr, fpcr, fex;
unsigned int *state;
if (get_user(exc, (unsigned long __user *)buffer))
return -EFAULT;
state = &current_thread_info()->ieee_state;
exc &= IEEE_STATUS_MASK;
/* Update softare trap enable bits. */
swcr = (*state & IEEE_SW_MASK) | exc;
*state |= exc;
/* Update the real fpcr. */
fpcr = rdfpcr();
fpcr |= ieee_swcr_to_fpcr(swcr);
wrfpcr(fpcr);
/* If any exceptions set by this call, and are unmasked,
send a signal. Old exceptions are not signaled. */
fex = (exc >> IEEE_STATUS_TO_EXCSUM_SHIFT) & swcr;
if (fex) {
siginfo_t info;
int si_code = 0;
if (fex & IEEE_TRAP_ENABLE_DNO) si_code = FPE_FLTUND;
if (fex & IEEE_TRAP_ENABLE_INE) si_code = FPE_FLTRES;
if (fex & IEEE_TRAP_ENABLE_UNF) si_code = FPE_FLTUND;
if (fex & IEEE_TRAP_ENABLE_OVF) si_code = FPE_FLTOVF;
if (fex & IEEE_TRAP_ENABLE_DZE) si_code = FPE_FLTDIV;
if (fex & IEEE_TRAP_ENABLE_INV) si_code = FPE_FLTINV;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = si_code;
info.si_addr = NULL; /* FIXME */
send_sig_info(SIGFPE, &info, current);
}
return 0;
}
case SSI_IEEE_STATE_AT_SIGNAL:
case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
/*
* Not sure anybody will ever use this weird stuff. These
* ops can be used (under OSF/1) to set the fpcr that should
* be used when a signal handler starts executing.
*/
break;
case SSI_NVPAIRS: {
unsigned long v, w, i;
unsigned int old, new;
for (i = 0; i < nbytes; ++i) {
if (get_user(v, 2*i + (unsigned int __user *)buffer))
return -EFAULT;
if (get_user(w, 2*i + 1 + (unsigned int __user *)buffer))
return -EFAULT;
switch (v) {
case SSIN_UACPROC:
again:
old = current_thread_info()->flags;
new = old & ~(UAC_BITMASK << ALPHA_UAC_SHIFT);
new = new | (w & UAC_BITMASK) << ALPHA_UAC_SHIFT;
if (cmpxchg(&current_thread_info()->flags,
old, new) != old)
goto again;
break;
default:
return -EOPNOTSUPP;
}
}
return 0;
}
default:
break;
}
return -EOPNOTSUPP;
}
/* Translations due to the fact that OSF's time_t is an int. Which
affects all sorts of things, like timeval and itimerval. */
extern struct timezone sys_tz;
struct timeval32
{
int tv_sec, tv_usec;
};
struct itimerval32
{
struct timeval32 it_interval;
struct timeval32 it_value;
};
static inline long
get_tv32(struct timeval *o, struct timeval32 __user *i)
{
return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
(__get_user(o->tv_sec, &i->tv_sec) |
__get_user(o->tv_usec, &i->tv_usec)));
}
static inline long
put_tv32(struct timeval32 __user *o, struct timeval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->tv_sec, &o->tv_sec) |
__put_user(i->tv_usec, &o->tv_usec)));
}
static inline long
get_it32(struct itimerval *o, struct itimerval32 __user *i)
{
return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
(__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) |
__get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) |
__get_user(o->it_value.tv_sec, &i->it_value.tv_sec) |
__get_user(o->it_value.tv_usec, &i->it_value.tv_usec)));
}
static inline long
put_it32(struct itimerval32 __user *o, struct itimerval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) |
__put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) |
__put_user(i->it_value.tv_sec, &o->it_value.tv_sec) |
__put_user(i->it_value.tv_usec, &o->it_value.tv_usec)));
}
static inline void
jiffies_to_timeval32(unsigned long jiffies, struct timeval32 *value)
{
value->tv_usec = (jiffies % HZ) * (1000000L / HZ);
value->tv_sec = jiffies / HZ;
}
SYSCALL_DEFINE2(osf_gettimeofday, struct timeval32 __user *, tv,
struct timezone __user *, tz)
{
if (tv) {
struct timeval ktv;
do_gettimeofday(&ktv);
if (put_tv32(tv, &ktv))
return -EFAULT;
}
if (tz) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
SYSCALL_DEFINE2(osf_settimeofday, struct timeval32 __user *, tv,
struct timezone __user *, tz)
{
struct timespec kts;
struct timezone ktz;
if (tv) {
if (get_tv32((struct timeval *)&kts, tv))
return -EFAULT;
}
if (tz) {
if (copy_from_user(&ktz, tz, sizeof(*tz)))
return -EFAULT;
}
kts.tv_nsec *= 1000;
return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
}
SYSCALL_DEFINE2(osf_getitimer, int, which, struct itimerval32 __user *, it)
{
struct itimerval kit;
int error;
error = do_getitimer(which, &kit);
if (!error && put_it32(it, &kit))
error = -EFAULT;
return error;
}
SYSCALL_DEFINE3(osf_setitimer, int, which, struct itimerval32 __user *, in,
struct itimerval32 __user *, out)
{
struct itimerval kin, kout;
int error;
if (in) {
if (get_it32(&kin, in))
return -EFAULT;
} else
memset(&kin, 0, sizeof(kin));
error = do_setitimer(which, &kin, out ? &kout : NULL);
if (error || !out)
return error;
if (put_it32(out, &kout))
return -EFAULT;
return 0;
}
SYSCALL_DEFINE2(osf_utimes, const char __user *, filename,
struct timeval32 __user *, tvs)
{
utimensat implementation Implement utimensat(2) which is an extension to futimesat(2) in that it a) supports nano-second resolution for the timestamps b) allows to selectively ignore the atime/mtime value c) allows to selectively use the current time for either atime or mtime d) supports changing the atime/mtime of a symlink itself along the lines of the BSD lutimes(3) functions For this change the internally used do_utimes() functions was changed to accept a timespec time value and an additional flags parameter. Additionally the sys_utime function was changed to match compat_sys_utime which already use do_utimes instead of duplicating the work. Also, the completely missing futimensat() functionality is added. We have such a function in glibc but we have to resort to using /proc/self/fd/* which not everybody likes (chroot etc). Test application (the syscall number will need per-arch editing): #include <errno.h> #include <fcntl.h> #include <time.h> #include <sys/time.h> #include <stddef.h> #include <syscall.h> #define __NR_utimensat 280 #define UTIME_NOW ((1l << 30) - 1l) #define UTIME_OMIT ((1l << 30) - 2l) int main(void) { int status = 0; int fd = open("ttt", O_RDWR|O_CREAT|O_EXCL, 0666); if (fd == -1) error (1, errno, "failed to create test file \"ttt\""); struct stat64 st1; if (fstat64 (fd, &st1) != 0) error (1, errno, "fstat failed"); struct timespec t[2]; t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); struct stat64 st2; if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0] = st1.st_atim; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_OMIT; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("atim not set"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim changed from zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 0; t[0].tv_nsec = UTIME_OMIT; t[1] = st1.st_mtim; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("mtim changed from original time"); status = 1; } if (st2.st_mtim.tv_sec != st1.st_mtim.tv_sec || st2.st_mtim.tv_nsec != st1.st_mtim.tv_nsec) { puts ("mtim not set"); status = 1; } if (status != 0) goto out; sleep (2); t[0].tv_sec = 0; t[0].tv_nsec = UTIME_NOW; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_NOW; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); struct timeval tv; gettimeofday(&tv,NULL); if (st2.st_atim.tv_sec <= st1.st_atim.tv_sec || st2.st_atim.tv_sec > tv.tv_sec) { puts ("atim not set to NOW"); status = 1; } if (st2.st_mtim.tv_sec <= st1.st_mtim.tv_sec || st2.st_mtim.tv_sec > tv.tv_sec) { puts ("mtim not set to NOW"); status = 1; } if (symlink ("ttt", "tttsym") != 0) error (1, errno, "cannot create symlink"); t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "tttsym", t, AT_SYMLINK_NOFOLLOW) != 0) error (1, errno, "utimensat failed"); if (lstat64 ("tttsym", &st2) != 0) error (1, errno, "lstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("symlink atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("symlink mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 1; t[0].tv_nsec = 0; t[1].tv_sec = 1; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, fd, NULL, t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 1 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to one"); status = 1; } if (st2.st_mtim.tv_sec != 1 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to one"); status = 1; } if (status == 0) puts ("all OK"); out: close (fd); unlink ("ttt"); unlink ("tttsym"); return status; } [akpm@linux-foundation.org: add missing i386 syscall table entry] Signed-off-by: Ulrich Drepper <drepper@redhat.com> Cc: Alexey Dobriyan <adobriyan@openvz.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 15:33:25 +08:00
struct timespec tv[2];
if (tvs) {
utimensat implementation Implement utimensat(2) which is an extension to futimesat(2) in that it a) supports nano-second resolution for the timestamps b) allows to selectively ignore the atime/mtime value c) allows to selectively use the current time for either atime or mtime d) supports changing the atime/mtime of a symlink itself along the lines of the BSD lutimes(3) functions For this change the internally used do_utimes() functions was changed to accept a timespec time value and an additional flags parameter. Additionally the sys_utime function was changed to match compat_sys_utime which already use do_utimes instead of duplicating the work. Also, the completely missing futimensat() functionality is added. We have such a function in glibc but we have to resort to using /proc/self/fd/* which not everybody likes (chroot etc). Test application (the syscall number will need per-arch editing): #include <errno.h> #include <fcntl.h> #include <time.h> #include <sys/time.h> #include <stddef.h> #include <syscall.h> #define __NR_utimensat 280 #define UTIME_NOW ((1l << 30) - 1l) #define UTIME_OMIT ((1l << 30) - 2l) int main(void) { int status = 0; int fd = open("ttt", O_RDWR|O_CREAT|O_EXCL, 0666); if (fd == -1) error (1, errno, "failed to create test file \"ttt\""); struct stat64 st1; if (fstat64 (fd, &st1) != 0) error (1, errno, "fstat failed"); struct timespec t[2]; t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); struct stat64 st2; if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0] = st1.st_atim; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_OMIT; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("atim not set"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim changed from zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 0; t[0].tv_nsec = UTIME_OMIT; t[1] = st1.st_mtim; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("mtim changed from original time"); status = 1; } if (st2.st_mtim.tv_sec != st1.st_mtim.tv_sec || st2.st_mtim.tv_nsec != st1.st_mtim.tv_nsec) { puts ("mtim not set"); status = 1; } if (status != 0) goto out; sleep (2); t[0].tv_sec = 0; t[0].tv_nsec = UTIME_NOW; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_NOW; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); struct timeval tv; gettimeofday(&tv,NULL); if (st2.st_atim.tv_sec <= st1.st_atim.tv_sec || st2.st_atim.tv_sec > tv.tv_sec) { puts ("atim not set to NOW"); status = 1; } if (st2.st_mtim.tv_sec <= st1.st_mtim.tv_sec || st2.st_mtim.tv_sec > tv.tv_sec) { puts ("mtim not set to NOW"); status = 1; } if (symlink ("ttt", "tttsym") != 0) error (1, errno, "cannot create symlink"); t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "tttsym", t, AT_SYMLINK_NOFOLLOW) != 0) error (1, errno, "utimensat failed"); if (lstat64 ("tttsym", &st2) != 0) error (1, errno, "lstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("symlink atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("symlink mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 1; t[0].tv_nsec = 0; t[1].tv_sec = 1; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, fd, NULL, t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 1 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to one"); status = 1; } if (st2.st_mtim.tv_sec != 1 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to one"); status = 1; } if (status == 0) puts ("all OK"); out: close (fd); unlink ("ttt"); unlink ("tttsym"); return status; } [akpm@linux-foundation.org: add missing i386 syscall table entry] Signed-off-by: Ulrich Drepper <drepper@redhat.com> Cc: Alexey Dobriyan <adobriyan@openvz.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 15:33:25 +08:00
struct timeval ktvs[2];
if (get_tv32(&ktvs[0], &tvs[0]) ||
get_tv32(&ktvs[1], &tvs[1]))
return -EFAULT;
utimensat implementation Implement utimensat(2) which is an extension to futimesat(2) in that it a) supports nano-second resolution for the timestamps b) allows to selectively ignore the atime/mtime value c) allows to selectively use the current time for either atime or mtime d) supports changing the atime/mtime of a symlink itself along the lines of the BSD lutimes(3) functions For this change the internally used do_utimes() functions was changed to accept a timespec time value and an additional flags parameter. Additionally the sys_utime function was changed to match compat_sys_utime which already use do_utimes instead of duplicating the work. Also, the completely missing futimensat() functionality is added. We have such a function in glibc but we have to resort to using /proc/self/fd/* which not everybody likes (chroot etc). Test application (the syscall number will need per-arch editing): #include <errno.h> #include <fcntl.h> #include <time.h> #include <sys/time.h> #include <stddef.h> #include <syscall.h> #define __NR_utimensat 280 #define UTIME_NOW ((1l << 30) - 1l) #define UTIME_OMIT ((1l << 30) - 2l) int main(void) { int status = 0; int fd = open("ttt", O_RDWR|O_CREAT|O_EXCL, 0666); if (fd == -1) error (1, errno, "failed to create test file \"ttt\""); struct stat64 st1; if (fstat64 (fd, &st1) != 0) error (1, errno, "fstat failed"); struct timespec t[2]; t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); struct stat64 st2; if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0] = st1.st_atim; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_OMIT; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("atim not set"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim changed from zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 0; t[0].tv_nsec = UTIME_OMIT; t[1] = st1.st_mtim; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("mtim changed from original time"); status = 1; } if (st2.st_mtim.tv_sec != st1.st_mtim.tv_sec || st2.st_mtim.tv_nsec != st1.st_mtim.tv_nsec) { puts ("mtim not set"); status = 1; } if (status != 0) goto out; sleep (2); t[0].tv_sec = 0; t[0].tv_nsec = UTIME_NOW; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_NOW; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); struct timeval tv; gettimeofday(&tv,NULL); if (st2.st_atim.tv_sec <= st1.st_atim.tv_sec || st2.st_atim.tv_sec > tv.tv_sec) { puts ("atim not set to NOW"); status = 1; } if (st2.st_mtim.tv_sec <= st1.st_mtim.tv_sec || st2.st_mtim.tv_sec > tv.tv_sec) { puts ("mtim not set to NOW"); status = 1; } if (symlink ("ttt", "tttsym") != 0) error (1, errno, "cannot create symlink"); t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "tttsym", t, AT_SYMLINK_NOFOLLOW) != 0) error (1, errno, "utimensat failed"); if (lstat64 ("tttsym", &st2) != 0) error (1, errno, "lstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("symlink atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("symlink mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 1; t[0].tv_nsec = 0; t[1].tv_sec = 1; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, fd, NULL, t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 1 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to one"); status = 1; } if (st2.st_mtim.tv_sec != 1 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to one"); status = 1; } if (status == 0) puts ("all OK"); out: close (fd); unlink ("ttt"); unlink ("tttsym"); return status; } [akpm@linux-foundation.org: add missing i386 syscall table entry] Signed-off-by: Ulrich Drepper <drepper@redhat.com> Cc: Alexey Dobriyan <adobriyan@openvz.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 15:33:25 +08:00
if (ktvs[0].tv_usec < 0 || ktvs[0].tv_usec >= 1000000 ||
ktvs[1].tv_usec < 0 || ktvs[1].tv_usec >= 1000000)
return -EINVAL;
tv[0].tv_sec = ktvs[0].tv_sec;
tv[0].tv_nsec = 1000 * ktvs[0].tv_usec;
tv[1].tv_sec = ktvs[1].tv_sec;
tv[1].tv_nsec = 1000 * ktvs[1].tv_usec;
}
utimensat implementation Implement utimensat(2) which is an extension to futimesat(2) in that it a) supports nano-second resolution for the timestamps b) allows to selectively ignore the atime/mtime value c) allows to selectively use the current time for either atime or mtime d) supports changing the atime/mtime of a symlink itself along the lines of the BSD lutimes(3) functions For this change the internally used do_utimes() functions was changed to accept a timespec time value and an additional flags parameter. Additionally the sys_utime function was changed to match compat_sys_utime which already use do_utimes instead of duplicating the work. Also, the completely missing futimensat() functionality is added. We have such a function in glibc but we have to resort to using /proc/self/fd/* which not everybody likes (chroot etc). Test application (the syscall number will need per-arch editing): #include <errno.h> #include <fcntl.h> #include <time.h> #include <sys/time.h> #include <stddef.h> #include <syscall.h> #define __NR_utimensat 280 #define UTIME_NOW ((1l << 30) - 1l) #define UTIME_OMIT ((1l << 30) - 2l) int main(void) { int status = 0; int fd = open("ttt", O_RDWR|O_CREAT|O_EXCL, 0666); if (fd == -1) error (1, errno, "failed to create test file \"ttt\""); struct stat64 st1; if (fstat64 (fd, &st1) != 0) error (1, errno, "fstat failed"); struct timespec t[2]; t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); struct stat64 st2; if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0] = st1.st_atim; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_OMIT; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("atim not set"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim changed from zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 0; t[0].tv_nsec = UTIME_OMIT; t[1] = st1.st_mtim; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("mtim changed from original time"); status = 1; } if (st2.st_mtim.tv_sec != st1.st_mtim.tv_sec || st2.st_mtim.tv_nsec != st1.st_mtim.tv_nsec) { puts ("mtim not set"); status = 1; } if (status != 0) goto out; sleep (2); t[0].tv_sec = 0; t[0].tv_nsec = UTIME_NOW; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_NOW; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); struct timeval tv; gettimeofday(&tv,NULL); if (st2.st_atim.tv_sec <= st1.st_atim.tv_sec || st2.st_atim.tv_sec > tv.tv_sec) { puts ("atim not set to NOW"); status = 1; } if (st2.st_mtim.tv_sec <= st1.st_mtim.tv_sec || st2.st_mtim.tv_sec > tv.tv_sec) { puts ("mtim not set to NOW"); status = 1; } if (symlink ("ttt", "tttsym") != 0) error (1, errno, "cannot create symlink"); t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "tttsym", t, AT_SYMLINK_NOFOLLOW) != 0) error (1, errno, "utimensat failed"); if (lstat64 ("tttsym", &st2) != 0) error (1, errno, "lstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("symlink atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("symlink mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 1; t[0].tv_nsec = 0; t[1].tv_sec = 1; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, fd, NULL, t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 1 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to one"); status = 1; } if (st2.st_mtim.tv_sec != 1 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to one"); status = 1; } if (status == 0) puts ("all OK"); out: close (fd); unlink ("ttt"); unlink ("tttsym"); return status; } [akpm@linux-foundation.org: add missing i386 syscall table entry] Signed-off-by: Ulrich Drepper <drepper@redhat.com> Cc: Alexey Dobriyan <adobriyan@openvz.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 15:33:25 +08:00
return do_utimes(AT_FDCWD, filename, tvs ? tv : NULL, 0);
}
SYSCALL_DEFINE5(osf_select, int, n, fd_set __user *, inp, fd_set __user *, outp,
fd_set __user *, exp, struct timeval32 __user *, tvp)
{
struct timespec end_time, *to = NULL;
if (tvp) {
time_t sec, usec;
to = &end_time;
if (!access_ok(VERIFY_READ, tvp, sizeof(*tvp))
|| __get_user(sec, &tvp->tv_sec)
|| __get_user(usec, &tvp->tv_usec)) {
return -EFAULT;
}
if (sec < 0 || usec < 0)
return -EINVAL;
if (poll_select_set_timeout(to, sec, usec * NSEC_PER_USEC))
return -EINVAL;
}
/* OSF does not copy back the remaining time. */
return core_sys_select(n, inp, outp, exp, to);
}
struct rusage32 {
struct timeval32 ru_utime; /* user time used */
struct timeval32 ru_stime; /* system time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims */
long ru_majflt; /* page faults */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary " */
};
SYSCALL_DEFINE2(osf_getrusage, int, who, struct rusage32 __user *, ru)
{
struct rusage32 r;
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
return -EINVAL;
memset(&r, 0, sizeof(r));
switch (who) {
case RUSAGE_SELF:
jiffies_to_timeval32(current->utime, &r.ru_utime);
jiffies_to_timeval32(current->stime, &r.ru_stime);
r.ru_minflt = current->min_flt;
r.ru_majflt = current->maj_flt;
break;
case RUSAGE_CHILDREN:
jiffies_to_timeval32(current->signal->cutime, &r.ru_utime);
jiffies_to_timeval32(current->signal->cstime, &r.ru_stime);
r.ru_minflt = current->signal->cmin_flt;
r.ru_majflt = current->signal->cmaj_flt;
break;
}
return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
}
SYSCALL_DEFINE4(osf_wait4, pid_t, pid, int __user *, ustatus, int, options,
struct rusage32 __user *, ur)
{
struct rusage r;
long ret, err;
unsigned int status = 0;
mm_segment_t old_fs;
if (!ur)
return sys_wait4(pid, ustatus, options, NULL);
old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_wait4(pid, (unsigned int __user *) &status, options,
(struct rusage __user *) &r);
set_fs (old_fs);
if (!access_ok(VERIFY_WRITE, ur, sizeof(*ur)))
return -EFAULT;
err = 0;
err |= put_user(status, ustatus);
err |= __put_user(r.ru_utime.tv_sec, &ur->ru_utime.tv_sec);
err |= __put_user(r.ru_utime.tv_usec, &ur->ru_utime.tv_usec);
err |= __put_user(r.ru_stime.tv_sec, &ur->ru_stime.tv_sec);
err |= __put_user(r.ru_stime.tv_usec, &ur->ru_stime.tv_usec);
err |= __put_user(r.ru_maxrss, &ur->ru_maxrss);
err |= __put_user(r.ru_ixrss, &ur->ru_ixrss);
err |= __put_user(r.ru_idrss, &ur->ru_idrss);
err |= __put_user(r.ru_isrss, &ur->ru_isrss);
err |= __put_user(r.ru_minflt, &ur->ru_minflt);
err |= __put_user(r.ru_majflt, &ur->ru_majflt);
err |= __put_user(r.ru_nswap, &ur->ru_nswap);
err |= __put_user(r.ru_inblock, &ur->ru_inblock);
err |= __put_user(r.ru_oublock, &ur->ru_oublock);
err |= __put_user(r.ru_msgsnd, &ur->ru_msgsnd);
err |= __put_user(r.ru_msgrcv, &ur->ru_msgrcv);
err |= __put_user(r.ru_nsignals, &ur->ru_nsignals);
err |= __put_user(r.ru_nvcsw, &ur->ru_nvcsw);
err |= __put_user(r.ru_nivcsw, &ur->ru_nivcsw);
return err ? err : ret;
}
/*
* I don't know what the parameters are: the first one
* seems to be a timeval pointer, and I suspect the second
* one is the time remaining.. Ho humm.. No documentation.
*/
SYSCALL_DEFINE2(osf_usleep_thread, struct timeval32 __user *, sleep,
struct timeval32 __user *, remain)
{
struct timeval tmp;
unsigned long ticks;
if (get_tv32(&tmp, sleep))
goto fault;
ticks = timeval_to_jiffies(&tmp);
ticks = schedule_timeout_interruptible(ticks);
if (remain) {
jiffies_to_timeval(ticks, &tmp);
if (put_tv32(remain, &tmp))
goto fault;
}
return 0;
fault:
return -EFAULT;
}
struct timex32 {
unsigned int modes; /* mode selector */
long offset; /* time offset (usec) */
long freq; /* frequency offset (scaled ppm) */
long maxerror; /* maximum error (usec) */
long esterror; /* estimated error (usec) */
int status; /* clock command/status */
long constant; /* pll time constant */
long precision; /* clock precision (usec) (read only) */
long tolerance; /* clock frequency tolerance (ppm)
* (read only)
*/
struct timeval32 time; /* (read only) */
long tick; /* (modified) usecs between clock ticks */
long ppsfreq; /* pps frequency (scaled ppm) (ro) */
long jitter; /* pps jitter (us) (ro) */
int shift; /* interval duration (s) (shift) (ro) */
long stabil; /* pps stability (scaled ppm) (ro) */
long jitcnt; /* jitter limit exceeded (ro) */
long calcnt; /* calibration intervals (ro) */
long errcnt; /* calibration errors (ro) */
long stbcnt; /* stability limit exceeded (ro) */
int :32; int :32; int :32; int :32;
int :32; int :32; int :32; int :32;
int :32; int :32; int :32; int :32;
};
SYSCALL_DEFINE1(old_adjtimex, struct timex32 __user *, txc_p)
{
struct timex txc;
int ret;
/* copy relevant bits of struct timex. */
if (copy_from_user(&txc, txc_p, offsetof(struct timex32, time)) ||
copy_from_user(&txc.tick, &txc_p->tick, sizeof(struct timex32) -
offsetof(struct timex32, time)))
return -EFAULT;
ret = do_adjtimex(&txc);
if (ret < 0)
return ret;
/* copy back to timex32 */
if (copy_to_user(txc_p, &txc, offsetof(struct timex32, time)) ||
(copy_to_user(&txc_p->tick, &txc.tick, sizeof(struct timex32) -
offsetof(struct timex32, tick))) ||
(put_tv32(&txc_p->time, &txc.time)))
return -EFAULT;
return ret;
}
/* Get an address range which is currently unmapped. Similar to the
generic version except that we know how to honor ADDR_LIMIT_32BIT. */
static unsigned long
arch_get_unmapped_area_1(unsigned long addr, unsigned long len,
unsigned long limit)
{
struct vm_area_struct *vma = find_vma(current->mm, addr);
while (1) {
/* At this point: (!vma || addr < vma->vm_end). */
if (limit - len < addr)
return -ENOMEM;
if (!vma || addr + len <= vma->vm_start)
return addr;
addr = vma->vm_end;
vma = vma->vm_next;
}
}
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
unsigned long limit;
/* "32 bit" actually means 31 bit, since pointers sign extend. */
if (current->personality & ADDR_LIMIT_32BIT)
limit = 0x80000000;
else
limit = TASK_SIZE;
if (len > limit)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
/* First, see if the given suggestion fits.
The OSF/1 loader (/sbin/loader) relies on us returning an
address larger than the requested if one exists, which is
a terribly broken way to program.
That said, I can see the use in being able to suggest not
merely specific addresses, but regions of memory -- perhaps
this feature should be incorporated into all ports? */
if (addr) {
addr = arch_get_unmapped_area_1 (PAGE_ALIGN(addr), len, limit);
if (addr != (unsigned long) -ENOMEM)
return addr;
}
/* Next, try allocating at TASK_UNMAPPED_BASE. */
addr = arch_get_unmapped_area_1 (PAGE_ALIGN(TASK_UNMAPPED_BASE),
len, limit);
if (addr != (unsigned long) -ENOMEM)
return addr;
/* Finally, try allocating in low memory. */
addr = arch_get_unmapped_area_1 (PAGE_SIZE, len, limit);
return addr;
}
#ifdef CONFIG_OSF4_COMPAT
/* Clear top 32 bits of iov_len in the user's buffer for
compatibility with old versions of OSF/1 where iov_len
was defined as int. */
static int
osf_fix_iov_len(const struct iovec __user *iov, unsigned long count)
{
unsigned long i;
for (i = 0 ; i < count ; i++) {
int __user *iov_len_high = (int __user *)&iov[i].iov_len + 1;
if (put_user(0, iov_len_high))
return -EFAULT;
}
return 0;
}
SYSCALL_DEFINE3(osf_readv, unsigned long, fd,
const struct iovec __user *, vector, unsigned long, count)
{
if (unlikely(personality(current->personality) == PER_OSF4))
if (osf_fix_iov_len(vector, count))
return -EFAULT;
return sys_readv(fd, vector, count);
}
SYSCALL_DEFINE3(osf_writev, unsigned long, fd,
const struct iovec __user *, vector, unsigned long, count)
{
if (unlikely(personality(current->personality) == PER_OSF4))
if (osf_fix_iov_len(vector, count))
return -EFAULT;
return sys_writev(fd, vector, count);
}
#endif