License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2010-03-05 02:46:13 +08:00
|
|
|
#ifndef __USBAUDIO_ENDPOINT_H
|
|
|
|
#define __USBAUDIO_ENDPOINT_H
|
|
|
|
|
2012-04-12 19:51:11 +08:00
|
|
|
#define SND_USB_ENDPOINT_TYPE_DATA 0
|
|
|
|
#define SND_USB_ENDPOINT_TYPE_SYNC 1
|
|
|
|
|
2020-11-23 16:53:11 +08:00
|
|
|
struct snd_usb_endpoint *snd_usb_get_endpoint(struct snd_usb_audio *chip,
|
2020-11-23 16:53:20 +08:00
|
|
|
int ep_num);
|
2020-11-23 16:53:11 +08:00
|
|
|
|
2020-11-23 16:53:20 +08:00
|
|
|
int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type);
|
2012-04-12 19:51:11 +08:00
|
|
|
|
ALSA: usb-audio: Refactor endpoint management
This is an intensive surgery for the endpoint and stream management
for achieving more robust and clean code.
The goals of this patch are:
- More clear endpoint resource changes
- The interface altsetting control in a single place
Below are brief description of the whole changes.
First off, most of the endpoint operations are moved into endpoint.c,
so that the snd_usb_endpoint object is only referred in other places.
The endpoint object is acquired and released via the new functions
snd_usb_endpoint_open() and snd_usb_endpoint_close() that are called
at PCM hw_params and hw_free callbacks, respectively. Those are
ref-counted and EPs can manage the multiple opens.
The open callback receives the audioformat and hw_params arguments,
and those are used for initializing the EP parameters; especially the
endpoint, interface and altset numbers are read from there, as well as
the PCM parameters like the format, rate and channels. Those are
stored in snd_usb_endpoint object. If it's the secondary open, the
function checks whether the given parameters are compatible with the
already opened EP setup, too.
The coupling with a sync EP (including an implicit feedback sync) is
done by the sole snd_usb_endpoint_set_sync() call.
The configuration of each endpoint is done in a single shot via
snd_usb_endpoint_configure() call. This is the place where most of
PCM configurations are done. A few flags and special handling in the
snd_usb_substream are dropped along with this change.
A significant difference wrt the configuration from the previous code
is the order of USB host interface setups. Now the interface is
always disabled at beginning and (re-)enabled at the last step of
snd_usb_endpoint_configure(), in order to be compliant with the
standard UAC2/3. For UAC1, the interface is set before the parameter
setups since there seem devices that require it (e.g. Yamaha THR10),
just like how it was done in the previous driver code.
The start/stop are almost same as before, also single-shots. The URB
callbacks need to be set via snd_usb_endpoint_set_callback() like the
previous code at the trigger phase, too.
Finally, the flag for the re-setup is set at the device suspend
through the full EP list, instead of PCM trigger. This catches the
overlooked cases where the PCM hasn't been running yet but the device
needs the full setup after resume.
Tested-by: Keith Milner <kamilner@superlative.org>
Tested-by: Dylan Robinson <dylan_robinson@motu.com>
Link: https://lore.kernel.org/r/20201123085347.19667-26-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-11-23 16:53:31 +08:00
|
|
|
struct snd_usb_endpoint *
|
|
|
|
snd_usb_endpoint_open(struct snd_usb_audio *chip,
|
2020-11-23 16:53:33 +08:00
|
|
|
const struct audioformat *fp,
|
ALSA: usb-audio: Refactor endpoint management
This is an intensive surgery for the endpoint and stream management
for achieving more robust and clean code.
The goals of this patch are:
- More clear endpoint resource changes
- The interface altsetting control in a single place
Below are brief description of the whole changes.
First off, most of the endpoint operations are moved into endpoint.c,
so that the snd_usb_endpoint object is only referred in other places.
The endpoint object is acquired and released via the new functions
snd_usb_endpoint_open() and snd_usb_endpoint_close() that are called
at PCM hw_params and hw_free callbacks, respectively. Those are
ref-counted and EPs can manage the multiple opens.
The open callback receives the audioformat and hw_params arguments,
and those are used for initializing the EP parameters; especially the
endpoint, interface and altset numbers are read from there, as well as
the PCM parameters like the format, rate and channels. Those are
stored in snd_usb_endpoint object. If it's the secondary open, the
function checks whether the given parameters are compatible with the
already opened EP setup, too.
The coupling with a sync EP (including an implicit feedback sync) is
done by the sole snd_usb_endpoint_set_sync() call.
The configuration of each endpoint is done in a single shot via
snd_usb_endpoint_configure() call. This is the place where most of
PCM configurations are done. A few flags and special handling in the
snd_usb_substream are dropped along with this change.
A significant difference wrt the configuration from the previous code
is the order of USB host interface setups. Now the interface is
always disabled at beginning and (re-)enabled at the last step of
snd_usb_endpoint_configure(), in order to be compliant with the
standard UAC2/3. For UAC1, the interface is set before the parameter
setups since there seem devices that require it (e.g. Yamaha THR10),
just like how it was done in the previous driver code.
The start/stop are almost same as before, also single-shots. The URB
callbacks need to be set via snd_usb_endpoint_set_callback() like the
previous code at the trigger phase, too.
Finally, the flag for the re-setup is set at the device suspend
through the full EP list, instead of PCM trigger. This catches the
overlooked cases where the PCM hasn't been running yet but the device
needs the full setup after resume.
Tested-by: Keith Milner <kamilner@superlative.org>
Tested-by: Dylan Robinson <dylan_robinson@motu.com>
Link: https://lore.kernel.org/r/20201123085347.19667-26-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-11-23 16:53:31 +08:00
|
|
|
const struct snd_pcm_hw_params *params,
|
|
|
|
bool is_sync_ep);
|
|
|
|
void snd_usb_endpoint_close(struct snd_usb_audio *chip,
|
|
|
|
struct snd_usb_endpoint *ep);
|
|
|
|
int snd_usb_endpoint_configure(struct snd_usb_audio *chip,
|
|
|
|
struct snd_usb_endpoint *ep);
|
2021-09-29 16:08:36 +08:00
|
|
|
int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock);
|
ALSA: usb-audio: Refactor endpoint management
This is an intensive surgery for the endpoint and stream management
for achieving more robust and clean code.
The goals of this patch are:
- More clear endpoint resource changes
- The interface altsetting control in a single place
Below are brief description of the whole changes.
First off, most of the endpoint operations are moved into endpoint.c,
so that the snd_usb_endpoint object is only referred in other places.
The endpoint object is acquired and released via the new functions
snd_usb_endpoint_open() and snd_usb_endpoint_close() that are called
at PCM hw_params and hw_free callbacks, respectively. Those are
ref-counted and EPs can manage the multiple opens.
The open callback receives the audioformat and hw_params arguments,
and those are used for initializing the EP parameters; especially the
endpoint, interface and altset numbers are read from there, as well as
the PCM parameters like the format, rate and channels. Those are
stored in snd_usb_endpoint object. If it's the secondary open, the
function checks whether the given parameters are compatible with the
already opened EP setup, too.
The coupling with a sync EP (including an implicit feedback sync) is
done by the sole snd_usb_endpoint_set_sync() call.
The configuration of each endpoint is done in a single shot via
snd_usb_endpoint_configure() call. This is the place where most of
PCM configurations are done. A few flags and special handling in the
snd_usb_substream are dropped along with this change.
A significant difference wrt the configuration from the previous code
is the order of USB host interface setups. Now the interface is
always disabled at beginning and (re-)enabled at the last step of
snd_usb_endpoint_configure(), in order to be compliant with the
standard UAC2/3. For UAC1, the interface is set before the parameter
setups since there seem devices that require it (e.g. Yamaha THR10),
just like how it was done in the previous driver code.
The start/stop are almost same as before, also single-shots. The URB
callbacks need to be set via snd_usb_endpoint_set_callback() like the
previous code at the trigger phase, too.
Finally, the flag for the re-setup is set at the device suspend
through the full EP list, instead of PCM trigger. This catches the
overlooked cases where the PCM hasn't been running yet but the device
needs the full setup after resume.
Tested-by: Keith Milner <kamilner@superlative.org>
Tested-by: Dylan Robinson <dylan_robinson@motu.com>
Link: https://lore.kernel.org/r/20201123085347.19667-26-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-11-23 16:53:31 +08:00
|
|
|
|
|
|
|
bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip,
|
|
|
|
struct snd_usb_endpoint *ep,
|
|
|
|
const struct audioformat *fp,
|
|
|
|
const struct snd_pcm_hw_params *params);
|
|
|
|
|
|
|
|
void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip,
|
|
|
|
struct snd_usb_endpoint *data_ep,
|
|
|
|
struct snd_usb_endpoint *sync_ep);
|
ALSA: usb-audio: Set callbacks via snd_usb_endpoint_set_callback()
The prepare_data_urb and retire_data_urb fields of the endpoint object
are set dynamically at PCM trigger start/stop. Those are evaluated in
the endpoint handler, but there can be a race, especially if two
different PCM substreams are handling the same endpoint for the
implicit feedback case. Also, the data_subs field of the endpoint is
set and accessed dynamically, too, which has the same risk.
As a slight improvement for the concurrency, this patch introduces the
function to set the callbacks and the data in a shot with the memory
barrier. In the reader side, it's also fetched with the memory
barrier.
There is still a room of race if prepare and retire callbacks are set
during executing the URB completion. But such an inconsistency may
happen only for the implicit fb source, i.e. it's only about the
capture stream. And luckily, the capture stream never sets the
prepare callback, hence the problem doesn't happen practically.
Tested-by: Keith Milner <kamilner@superlative.org>
Tested-by: Dylan Robinson <dylan_robinson@motu.com>
Link: https://lore.kernel.org/r/20201123085347.19667-23-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-11-23 16:53:28 +08:00
|
|
|
void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep,
|
ALSA: usb-audio: Improved lowlatency playback support
This is another attempt to improve further the handling of playback
stream in the low latency mode. The latest workaround in commit
4267c5a8f313 ("ALSA: usb-audio: Work around for XRUN with low latency
playback") revealed that submitting URBs forcibly in advance may
trigger XRUN easily. In the classical mode, this problem was avoided
by practically delaying the submission of the actual data with the
pre-submissions of silent data before triggering the stream start.
But that is exactly what we want to avoid.
Now, in this patch, instead of the previous workaround, we take a
similar approach as used in the implicit feedback mode. The URBs are
queued at the PCM trigger start like before, but we check whether the
buffer has been already filled enough before each submission, and
stop queuing if the data overcomes the threshold. The remaining URBs
are kept in the ready list, and they will be retrieved in the URB
complete callback of other (already queued) URBs. In the complete
callback, we try to fill the data and submit as much as possible
again. When there is no more available in-flight URBs that may handle
the pending data, we'll check in PCM ack callback and submit and
process URBs there in addition. In this way, the amount of in-flight
URBs may vary dynamically and flexibly depending on the available data
without hitting XRUN.
The following things are changed to achieve the behavior above:
* The endpoint prepare callback is changed to return an error code;
when there is no enough data available, it may return -EAGAIN.
Currently only prepare_playback_urb() returns the error.
The evaluation of the available data is a bit messy here; we can't
check with snd_pcm_avail() at the point of prepare callback (as
runtime->status->hwptr hasn't been updated yet), hence we manually
estimate the appl_ptr and compare with the internal hwptr_done to
calculate the available frames.
* snd_usb_endpoint_start() doesn't submit full URBs if the prepare
callback returns -EAGAIN, and puts the remaining URBs to the ready
list for the later submission.
* snd_complete_urb() treats the URBs in the low-latency mode similarly
like the implicit feedback mode, and submissions are done in
(now exported) snd_usb_queue_pending_output_urbs().
* snd_usb_queue_pending_output_urbs() again checks the error value
from the prepare callback. If it's -EAGAIN for the normal stream
(i.e. not implicit feedback mode), we push it back to the ready list
again.
* PCM ack callback is introduced for the playback stream, and it calls
snd_usb_queue_pending_output_urbs() if there is no in-flight URB
while the stream is running. This corresponds to the case where the
system needs the appl_ptr update for re-submitting a new URB.
* snd_usb_queue_pending_output_urbs() and the prepare EP callback
receive in_stream_lock argument, which is a bool flag indicating the
call path from PCM ack. It's needed for avoiding the deadlock of
snd_pcm_period_elapsed() calls.
* Set the new SNDRV_PCM_INFO_EXPLICIT_SYNC flag when the new
low-latency mode is deployed. This assures catching each applptr
update even in the mmap mode.
Fixes: 4267c5a8f313 ("ALSA: usb-audio: Work around for XRUN with low latency playback")
Link: https://lore.kernel.org/r/20210929080844.11583-9-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2021-09-29 16:08:43 +08:00
|
|
|
int (*prepare)(struct snd_usb_substream *subs,
|
|
|
|
struct urb *urb,
|
|
|
|
bool in_stream_lock),
|
ALSA: usb-audio: Set callbacks via snd_usb_endpoint_set_callback()
The prepare_data_urb and retire_data_urb fields of the endpoint object
are set dynamically at PCM trigger start/stop. Those are evaluated in
the endpoint handler, but there can be a race, especially if two
different PCM substreams are handling the same endpoint for the
implicit feedback case. Also, the data_subs field of the endpoint is
set and accessed dynamically, too, which has the same risk.
As a slight improvement for the concurrency, this patch introduces the
function to set the callbacks and the data in a shot with the memory
barrier. In the reader side, it's also fetched with the memory
barrier.
There is still a room of race if prepare and retire callbacks are set
during executing the URB completion. But such an inconsistency may
happen only for the implicit fb source, i.e. it's only about the
capture stream. And luckily, the capture stream never sets the
prepare callback, hence the problem doesn't happen practically.
Tested-by: Keith Milner <kamilner@superlative.org>
Tested-by: Dylan Robinson <dylan_robinson@motu.com>
Link: https://lore.kernel.org/r/20201123085347.19667-23-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-11-23 16:53:28 +08:00
|
|
|
void (*retire)(struct snd_usb_substream *subs,
|
|
|
|
struct urb *urb),
|
|
|
|
struct snd_usb_substream *data_subs);
|
|
|
|
|
ALSA: usb-audio: Refactor endpoint management
This is an intensive surgery for the endpoint and stream management
for achieving more robust and clean code.
The goals of this patch are:
- More clear endpoint resource changes
- The interface altsetting control in a single place
Below are brief description of the whole changes.
First off, most of the endpoint operations are moved into endpoint.c,
so that the snd_usb_endpoint object is only referred in other places.
The endpoint object is acquired and released via the new functions
snd_usb_endpoint_open() and snd_usb_endpoint_close() that are called
at PCM hw_params and hw_free callbacks, respectively. Those are
ref-counted and EPs can manage the multiple opens.
The open callback receives the audioformat and hw_params arguments,
and those are used for initializing the EP parameters; especially the
endpoint, interface and altset numbers are read from there, as well as
the PCM parameters like the format, rate and channels. Those are
stored in snd_usb_endpoint object. If it's the secondary open, the
function checks whether the given parameters are compatible with the
already opened EP setup, too.
The coupling with a sync EP (including an implicit feedback sync) is
done by the sole snd_usb_endpoint_set_sync() call.
The configuration of each endpoint is done in a single shot via
snd_usb_endpoint_configure() call. This is the place where most of
PCM configurations are done. A few flags and special handling in the
snd_usb_substream are dropped along with this change.
A significant difference wrt the configuration from the previous code
is the order of USB host interface setups. Now the interface is
always disabled at beginning and (re-)enabled at the last step of
snd_usb_endpoint_configure(), in order to be compliant with the
standard UAC2/3. For UAC1, the interface is set before the parameter
setups since there seem devices that require it (e.g. Yamaha THR10),
just like how it was done in the previous driver code.
The start/stop are almost same as before, also single-shots. The URB
callbacks need to be set via snd_usb_endpoint_set_callback() like the
previous code at the trigger phase, too.
Finally, the flag for the re-setup is set at the device suspend
through the full EP list, instead of PCM trigger. This catches the
overlooked cases where the PCM hasn't been running yet but the device
needs the full setup after resume.
Tested-by: Keith Milner <kamilner@superlative.org>
Tested-by: Dylan Robinson <dylan_robinson@motu.com>
Link: https://lore.kernel.org/r/20201123085347.19667-26-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-11-23 16:53:31 +08:00
|
|
|
int snd_usb_endpoint_start(struct snd_usb_endpoint *ep);
|
2021-09-29 16:08:44 +08:00
|
|
|
void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending);
|
2012-11-08 15:52:45 +08:00
|
|
|
void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep);
|
ALSA: usb-audio: Refactor endpoint management
This is an intensive surgery for the endpoint and stream management
for achieving more robust and clean code.
The goals of this patch are:
- More clear endpoint resource changes
- The interface altsetting control in a single place
Below are brief description of the whole changes.
First off, most of the endpoint operations are moved into endpoint.c,
so that the snd_usb_endpoint object is only referred in other places.
The endpoint object is acquired and released via the new functions
snd_usb_endpoint_open() and snd_usb_endpoint_close() that are called
at PCM hw_params and hw_free callbacks, respectively. Those are
ref-counted and EPs can manage the multiple opens.
The open callback receives the audioformat and hw_params arguments,
and those are used for initializing the EP parameters; especially the
endpoint, interface and altset numbers are read from there, as well as
the PCM parameters like the format, rate and channels. Those are
stored in snd_usb_endpoint object. If it's the secondary open, the
function checks whether the given parameters are compatible with the
already opened EP setup, too.
The coupling with a sync EP (including an implicit feedback sync) is
done by the sole snd_usb_endpoint_set_sync() call.
The configuration of each endpoint is done in a single shot via
snd_usb_endpoint_configure() call. This is the place where most of
PCM configurations are done. A few flags and special handling in the
snd_usb_substream are dropped along with this change.
A significant difference wrt the configuration from the previous code
is the order of USB host interface setups. Now the interface is
always disabled at beginning and (re-)enabled at the last step of
snd_usb_endpoint_configure(), in order to be compliant with the
standard UAC2/3. For UAC1, the interface is set before the parameter
setups since there seem devices that require it (e.g. Yamaha THR10),
just like how it was done in the previous driver code.
The start/stop are almost same as before, also single-shots. The URB
callbacks need to be set via snd_usb_endpoint_set_callback() like the
previous code at the trigger phase, too.
Finally, the flag for the re-setup is set at the device suspend
through the full EP list, instead of PCM trigger. This catches the
overlooked cases where the PCM hasn't been running yet but the device
needs the full setup after resume.
Tested-by: Keith Milner <kamilner@superlative.org>
Tested-by: Dylan Robinson <dylan_robinson@motu.com>
Link: https://lore.kernel.org/r/20201123085347.19667-26-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2020-11-23 16:53:31 +08:00
|
|
|
void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep);
|
2012-04-12 19:51:11 +08:00
|
|
|
int snd_usb_endpoint_activate(struct snd_usb_endpoint *ep);
|
2014-06-25 20:24:47 +08:00
|
|
|
void snd_usb_endpoint_release(struct snd_usb_endpoint *ep);
|
2021-01-08 15:52:17 +08:00
|
|
|
void snd_usb_endpoint_free_all(struct snd_usb_audio *chip);
|
2012-04-12 19:51:11 +08:00
|
|
|
|
2013-04-04 05:18:52 +08:00
|
|
|
int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep);
|
2020-11-23 16:53:37 +08:00
|
|
|
int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep,
|
2021-09-29 16:08:41 +08:00
|
|
|
struct snd_urb_ctx *ctx, int idx,
|
|
|
|
unsigned int avail);
|
ALSA: usb-audio: Improved lowlatency playback support
This is another attempt to improve further the handling of playback
stream in the low latency mode. The latest workaround in commit
4267c5a8f313 ("ALSA: usb-audio: Work around for XRUN with low latency
playback") revealed that submitting URBs forcibly in advance may
trigger XRUN easily. In the classical mode, this problem was avoided
by practically delaying the submission of the actual data with the
pre-submissions of silent data before triggering the stream start.
But that is exactly what we want to avoid.
Now, in this patch, instead of the previous workaround, we take a
similar approach as used in the implicit feedback mode. The URBs are
queued at the PCM trigger start like before, but we check whether the
buffer has been already filled enough before each submission, and
stop queuing if the data overcomes the threshold. The remaining URBs
are kept in the ready list, and they will be retrieved in the URB
complete callback of other (already queued) URBs. In the complete
callback, we try to fill the data and submit as much as possible
again. When there is no more available in-flight URBs that may handle
the pending data, we'll check in PCM ack callback and submit and
process URBs there in addition. In this way, the amount of in-flight
URBs may vary dynamically and flexibly depending on the available data
without hitting XRUN.
The following things are changed to achieve the behavior above:
* The endpoint prepare callback is changed to return an error code;
when there is no enough data available, it may return -EAGAIN.
Currently only prepare_playback_urb() returns the error.
The evaluation of the available data is a bit messy here; we can't
check with snd_pcm_avail() at the point of prepare callback (as
runtime->status->hwptr hasn't been updated yet), hence we manually
estimate the appl_ptr and compare with the internal hwptr_done to
calculate the available frames.
* snd_usb_endpoint_start() doesn't submit full URBs if the prepare
callback returns -EAGAIN, and puts the remaining URBs to the ready
list for the later submission.
* snd_complete_urb() treats the URBs in the low-latency mode similarly
like the implicit feedback mode, and submissions are done in
(now exported) snd_usb_queue_pending_output_urbs().
* snd_usb_queue_pending_output_urbs() again checks the error value
from the prepare callback. If it's -EAGAIN for the normal stream
(i.e. not implicit feedback mode), we push it back to the ready list
again.
* PCM ack callback is introduced for the playback stream, and it calls
snd_usb_queue_pending_output_urbs() if there is no in-flight URB
while the stream is running. This corresponds to the case where the
system needs the appl_ptr update for re-submitting a new URB.
* snd_usb_queue_pending_output_urbs() and the prepare EP callback
receive in_stream_lock argument, which is a bool flag indicating the
call path from PCM ack. It's needed for avoiding the deadlock of
snd_pcm_period_elapsed() calls.
* Set the new SNDRV_PCM_INFO_EXPLICIT_SYNC flag when the new
low-latency mode is deployed. This assures catching each applptr
update even in the mmap mode.
Fixes: 4267c5a8f313 ("ALSA: usb-audio: Work around for XRUN with low latency playback")
Link: https://lore.kernel.org/r/20210929080844.11583-9-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2021-09-29 16:08:43 +08:00
|
|
|
void snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep,
|
|
|
|
bool in_stream_lock);
|
2012-04-12 19:51:11 +08:00
|
|
|
|
2010-03-05 02:46:13 +08:00
|
|
|
#endif /* __USBAUDIO_ENDPOINT_H */
|