linux/init/init_task.c

232 lines
6.5 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
2012-05-03 17:02:48 +08:00
#include <linux/init_task.h>
#include <linux/export.h>
#include <linux/mqueue.h>
#include <linux/sched.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/rt.h>
#include <linux/sched/task.h>
sched_ext: Implement BPF extensible scheduler class Implement a new scheduler class sched_ext (SCX), which allows scheduling policies to be implemented as BPF programs to achieve the following: 1. Ease of experimentation and exploration: Enabling rapid iteration of new scheduling policies. 2. Customization: Building application-specific schedulers which implement policies that are not applicable to general-purpose schedulers. 3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling policies in production environments. sched_ext leverages BPF’s struct_ops feature to define a structure which exports function callbacks and flags to BPF programs that wish to implement scheduling policies. The struct_ops structure exported by sched_ext is struct sched_ext_ops, and is conceptually similar to struct sched_class. The role of sched_ext is to map the complex sched_class callbacks to the more simple and ergonomic struct sched_ext_ops callbacks. For more detailed discussion on the motivations and overview, please refer to the cover letter. Later patches will also add several example schedulers and documentation. This patch implements the minimum core framework to enable implementation of BPF schedulers. Subsequent patches will gradually add functionalities including safety guarantee mechanisms, nohz and cgroup support. include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on top, each operation should be self-explanatory. The followings are worth noting: - Both "sched_ext" and its shorthand "scx" are used. If the identifier already has "sched" in it, "ext" is used; otherwise, "scx". - In sched_ext_ops, only .name is mandatory. Every operation is optional and if omitted a simple but functional default behavior is provided. - A new policy constant SCHED_EXT is added and a task can select sched_ext by invoking sched_setscheduler(2) with the new policy constant. However, if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL and the task is scheduled by CFS. When the BPF scheduler is loaded, all tasks which have the SCHED_EXT policy are switched to sched_ext. - To bridge the workflow imbalance between the scheduler core and sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for convenience and need not be used by a scheduler that doesn't require it. SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting the next task on the CPU. The BPF scheduler can manage an arbitrary number of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq(). - sched_ext guarantees system integrity no matter what the BPF scheduler does. To enable this, each task's ownership is tracked through p->scx.ops_state and all tasks are put on scx_tasks list. The disable path can always recover and revert all tasks back to CFS. See p->scx.ops_state and scx_tasks. - A task is not tied to its rq while enqueued. This decouples CPU selection from queueing and allows sharing a scheduling queue across an arbitrary subset of CPUs. This adds some complexities as a task may need to be bounced between rq's right before it starts executing. See dispatch_to_local_dsq() and move_task_to_local_dsq(). - One complication that arises from the above weak association between task and rq is that synchronizing with dequeue() gets complicated as dequeue() may happen anytime while the task is enqueued and the dispatch path might need to release the rq lock to transfer the task. Solving this requires a bit of complexity. See the logic around p->scx.sticky_cpu and p->scx.ops_qseq. - Both enable and disable paths are a bit complicated. The enable path switches all tasks without blocking to avoid issues which can arise from partially switched states (e.g. the switching task itself being starved). The disable path can't trust the BPF scheduler at all, so it also has to guarantee forward progress without blocking. See scx_ops_enable() and scx_ops_disable_workfn(). - When sched_ext is disabled, static_branches are used to shut down the entry points from hot paths. v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab scx_ops_enable_mutex which can lead to deadlocks in the disable path. Fixed. - Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead to use-after-free. - Consolidated per-cpu variable usages and other cleanups. v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple groups can be expressed. Later CPU hotplug operations are put into their own group. - SCX_OPS_DISABLING state is replaced with the new bypass mechanism which allows temporarily putting the system into simple FIFO scheduling mode bypassing the BPF scheduler. In addition to the shut down path, this will also be used to isolate the BPF scheduler across PM events. Enabling and disabling the bypass mode requires iterating all runnable tasks. rq->scx.runnable_list addition is moved from the later watchdog patch. - ops.prep_enable() is replaced with ops.init_task() and ops.enable/disable() are now called whenever the task enters and leaves sched_ext instead of when the task becomes schedulable on sched_ext and stops being so. A new operation - ops.exit_task() - is called when the task stops being schedulable on sched_ext. - scx_bpf_dispatch() can now be called from ops.select_cpu() too. This removes the need for communicating local dispatch decision made by ops.select_cpu() to ops.enqueue() via per-task storage. SCX_KF_SELECT_CPU is added to support the change. - SCX_TASK_ENQ_LOCAL which told the BPF scheudler that scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly if it finds a suitable idle CPU. If such behavior is not desired, users can use scx_bpf_select_cpu_dfl() which returns the verdict in a bool out param. - scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up queueing many tasks on a local DSQ which makes tasks to execute in order while other CPUs stay idle which made some hackbench numbers really bad. Fixed. - The current state of sched_ext can now be monitored through files under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is to enable monitoring on kernels which don't enable debugfs. - sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may be NULL and a BPF scheduler which derefs the pointer without checking could crash the kernel. Tell BPF. This is currently a bit ugly. A better way to annotate this is expected in the future. - scx_exit_info updated to carry pointers to message buffers instead of embedding them directly. This decouples buffer sizes from API so that they can be changed without breaking compatibility. - exit_code added to scx_exit_info. This is used to indicate different exit conditions on non-error exits and will be used to handle e.g. CPU hotplugs. - The patch "sched_ext: Allow BPF schedulers to switch all eligible tasks into sched_ext" is folded in and the interface is changed so that partial switching is indicated with a new ops flag %SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry and in turn SCX_KF_INIT. ops.init() is now called with SCX_KF_SLEEPABLE. - Code reorganized so that only the parts necessary to integrate with the rest of the kernel are in the header files. - Changes to reflect the BPF and other kernel changes including the addition of bpf_sched_ext_ops.cfi_stubs. v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t instead of atomic64_t and scx_dsp_buf_ent.qseq which uses load_acquire/store_release is now unsigned long instead of u64. - Fix the bug where bpf_scx_btf_struct_access() was allowing write access to arbitrary fields. - Distinguish kfuncs which can be called from any sched_ext ops and from anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from sched_ext ops. - Rename "type" to "kind" in scx_exit_info to make it easier to use on languages in which "type" is a reserved keyword. - Since cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup"), PF_IDLE is not set on idle tasks which haven't been online yet which made scx_task_iter_next_filtered() include those idle tasks in iterations leading to oopses. Update scx_task_iter_next_filtered() to directly test p->sched_class against idle_sched_class instead of using is_idle_task() which tests PF_IDLE. - Other updates to match upstream changes such as adding const to set_cpumask() param and renaming check_preempt_curr() to wakeup_preempt(). v4: - SCHED_CHANGE_BLOCK replaced with the previous sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is because upstream is adaopting a different generic cleanup mechanism. Once that lands, the code will be adapted accordingly. - task_on_scx() used to test whether a task should be switched into SCX, which is confusing. Renamed to task_should_scx(). task_on_scx() now tests whether a task is currently on SCX. - scx_has_idle_cpus is barely used anymore and replaced with direct check on the idle cpumask. - SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer fully idle cores. - ops.enable() now sees up-to-date p->scx.weight value. - ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF schedulers expecting ->select_cpu() call. - Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest of the scheduler. v3: - ops.set_weight() added to allow BPF schedulers to track weight changes without polling p->scx.weight. - move_task_to_local_dsq() was losing SCX-specific enq_flags when enqueueing the task on the target dsq because it goes through activate_task() which loses the upper 32bit of the flags. Carry the flags through rq->scx.extra_enq_flags. - scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running() and scx_bpf_task_cpu() now use the new KF_RCU instead of KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them. - The kfunc helper access control mechanism implemented through sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always used when invoking scx_ops operations. v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is called from put_prev_taks_scx() and pick_next_task_scx() as necessary. To determine whether balance_scx() should be called from put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the comment in put_prev_task_scx() for details. - sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced with SCHED_CHANGE_BLOCK(). - Unused all_dsqs list removed. This was a left-over from previous iterations. - p->scx.kf_mask is added to track and enforce which kfunc helpers are allowed. Also, init/exit sequences are updated to make some kfuncs always safe to call regardless of the current BPF scheduler state. Combined, this should make all the kfuncs safe. - BPF now supports sleepable struct_ops operations. Hacky workaround removed and operations and kfunc helpers are tagged appropriately. - BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask() and friends are added so that BPF schedulers can use the idle masks with the generic helpers. This replaces the hacky kfunc helpers added by a separate patch in V1. - CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is enabled. This restriction will be removed by a later patch which adds core-sched support. - Add MAINTAINERS entries and other misc changes. Signed-off-by: Tejun Heo <tj@kernel.org> Co-authored-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-19 04:09:17 +08:00
#include <linux/sched/ext.h>
2012-05-03 17:02:48 +08:00
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/audit.h>
mm: replace all open encodings for NUMA_NO_NODE Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 07:42:58 +08:00
#include <linux/numa.h>
#include <linux/scs.h>
#include <linux/plist.h>
2012-05-03 17:02:48 +08:00
#include <linux/uaccess.h>
2012-05-03 17:02:48 +08:00
static struct signal_struct init_signals = {
.nr_threads = 1,
.thread_head = LIST_HEAD_INIT(init_task.thread_node),
.wait_chldexit = __WAIT_QUEUE_HEAD_INITIALIZER(init_signals.wait_chldexit),
.shared_pending = {
.list = LIST_HEAD_INIT(init_signals.shared_pending.list),
.signal = {{0}}
},
signal: Don't restart fork when signals come in. Wen Yang <wen.yang99@zte.com.cn> and majiang <ma.jiang@zte.com.cn> report that a periodic signal received during fork can cause fork to continually restart preventing an application from making progress. The code was being overly pessimistic. Fork needs to guarantee that a signal sent to multiple processes is logically delivered before the fork and just to the forking process or logically delivered after the fork to both the forking process and it's newly spawned child. For signals like periodic timers that are always delivered to a single process fork can safely complete and let them appear to logically delivered after the fork(). While examining this issue I also discovered that fork today will miss signals delivered to multiple processes during the fork and handled by another thread. Similarly the current code will also miss blocked signals that are delivered to multiple process, as those signals will not appear pending during fork. Add a list of each thread that is currently forking, and keep on that list a signal set that records all of the signals sent to multiple processes. When fork completes initialize the new processes shared_pending signal set with it. The calculate_sigpending function will see those signals and set TIF_SIGPENDING causing the new task to take the slow path to userspace to handle those signals. Making it appear as if those signals were received immediately after the fork. It is not possible to send real time signals to multiple processes and exceptions don't go to multiple processes, which means that that are no signals sent to multiple processes that require siginfo. This means it is safe to not bother collecting siginfo on signals sent during fork. The sigaction of a child of fork is initially the same as the sigaction of the parent process. So a signal the parent ignores the child will also initially ignore. Therefore it is safe to ignore signals sent to multiple processes and ignored by the forking process. Signals sent to only a single process or only a single thread and delivered during fork are treated as if they are received after the fork, and generally not dealt with. They won't cause any problems. V2: Added removal from the multiprocess list on failure. V3: Use -ERESTARTNOINTR directly V4: - Don't queue both SIGCONT and SIGSTOP - Initialize signal_struct.multiprocess in init_task - Move setting of shared_pending to before the new task is visible to signals. This prevents signals from comming in before shared_pending.signal is set to delayed.signal and being lost. V5: - rework list add and delete to account for idle threads v6: - Use sigdelsetmask when removing stop signals Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200447 Reported-by: Wen Yang <wen.yang99@zte.com.cn> and Reported-by: majiang <ma.jiang@zte.com.cn> Fixes: 4a2c7a7837da ("[PATCH] make fork() atomic wrt pgrp/session signals") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-07-24 04:20:37 +08:00
.multiprocess = HLIST_HEAD_INIT,
.rlim = INIT_RLIMITS,
.cred_guard_mutex = __MUTEX_INITIALIZER(init_signals.cred_guard_mutex),
exec: Transform exec_update_mutex into a rw_semaphore Recently syzbot reported[0] that there is a deadlock amongst the users of exec_update_mutex. The problematic lock ordering found by lockdep was: perf_event_open (exec_update_mutex -> ovl_i_mutex) chown (ovl_i_mutex -> sb_writes) sendfile (sb_writes -> p->lock) by reading from a proc file and writing to overlayfs proc_pid_syscall (p->lock -> exec_update_mutex) While looking at possible solutions it occured to me that all of the users and possible users involved only wanted to state of the given process to remain the same. They are all readers. The only writer is exec. There is no reason for readers to block on each other. So fix this deadlock by transforming exec_update_mutex into a rw_semaphore named exec_update_lock that only exec takes for writing. Cc: Jann Horn <jannh@google.com> Cc: Vasiliy Kulikov <segoon@openwall.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Bernd Edlinger <bernd.edlinger@hotmail.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Christopher Yeoh <cyeoh@au1.ibm.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Sargun Dhillon <sargun@sargun.me> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Fixes: eea9673250db ("exec: Add exec_update_mutex to replace cred_guard_mutex") [0] https://lkml.kernel.org/r/00000000000063640c05ade8e3de@google.com Reported-by: syzbot+db9cdf3dd1f64252c6ef@syzkaller.appspotmail.com Link: https://lkml.kernel.org/r/87ft4mbqen.fsf@x220.int.ebiederm.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-12-04 04:12:00 +08:00
.exec_update_lock = __RWSEM_INITIALIZER(init_signals.exec_update_lock),
#ifdef CONFIG_POSIX_TIMERS
.posix_timers = HLIST_HEAD_INIT,
.cputimer = {
.cputime_atomic = INIT_CPUTIME_ATOMIC,
},
#endif
INIT_CPU_TIMERS(init_signals)
.pids = {
[PIDTYPE_PID] = &init_struct_pid,
[PIDTYPE_TGID] = &init_struct_pid,
[PIDTYPE_PGID] = &init_struct_pid,
[PIDTYPE_SID] = &init_struct_pid,
},
INIT_PREV_CPUTIME(init_signals)
};
static struct sighand_struct init_sighand = {
sched/core: Convert signal_struct.sigcnt to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable signal_struct.sigcnt is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the signal_struct.sigcnt it might make a difference in following places: - put_signal_struct(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-3-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-18 20:27:27 +08:00
.count = REFCOUNT_INIT(1),
.action = { { { .sa_handler = SIG_DFL, } }, },
.siglock = __SPIN_LOCK_UNLOCKED(init_sighand.siglock),
.signalfd_wqh = __WAIT_QUEUE_HEAD_INITIALIZER(init_sighand.signalfd_wqh),
};
2012-05-03 17:02:48 +08:00
#ifdef CONFIG_SHADOW_CALL_STACK
unsigned long init_shadow_call_stack[SCS_SIZE / sizeof(long)] = {
[(SCS_SIZE / sizeof(long)) - 1] = SCS_END_MAGIC
};
#endif
/*
* Set up the first task table, touch at your own risk!. Base=0,
* limit=0x1fffff (=2MB)
*/
struct task_struct init_task __aligned(L1_CACHE_BYTES) = {
#ifdef CONFIG_THREAD_INFO_IN_TASK
.thread_info = INIT_THREAD_INFO(init_task),
sched/core: Convert task_struct.stack_refcount to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable task_struct.stack_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the task_struct.stack_refcount it might make a difference in following places: - try_get_task_stack(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart - put_task_stack(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-6-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-18 20:27:30 +08:00
.stack_refcount = REFCOUNT_INIT(1),
#endif
.__state = 0,
.stack = init_stack,
sched/core: Convert task_struct.usage to refcount_t atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable task_struct.usage is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the task_struct.usage it might make a difference in following places: - put_task_struct(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-5-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-18 20:27:29 +08:00
.usage = REFCOUNT_INIT(2),
.flags = PF_KTHREAD,
.prio = MAX_PRIO - 20,
.static_prio = MAX_PRIO - 20,
.normal_prio = MAX_PRIO - 20,
.policy = SCHED_NORMAL,
.cpus_ptr = &init_task.cpus_mask,
.user_cpus_ptr = NULL,
.cpus_mask = CPU_MASK_ALL,
sched/fair: Check if a task has a fitting CPU when updating misfit If a misfit task is affined to a subset of the possible CPUs, we need to verify that one of these CPUs can fit it. Otherwise the load balancer code will continuously trigger needlessly leading the balance_interval to increase in return and eventually end up with a situation where real imbalances take a long time to address because of this impossible imbalance situation. This can happen in Android world where it's common for background tasks to be restricted to little cores. Similarly if we can't fit the biggest core, triggering misfit is pointless as it is the best we can ever get on this system. To be able to detect that; we use asym_cap_list to iterate through capacities in the system to see if the task is able to run at a higher capacity level based on its p->cpus_ptr. We do that when the affinity change, a fair task is forked, or when a task switched to fair policy. We store the max_allowed_capacity in task_struct to allow for cheap comparison in the fast path. Improve check_misfit_status() function by removing redundant checks. misfit_task_load will be 0 if the task can't move to a bigger CPU. And nohz_balancer_kick() already checks for cpu_check_capacity() before calling check_misfit_status(). Test: ===== Add trace_printk("balance_interval = %lu\n", interval) in get_sd_balance_interval(). run if [ "$MASK" != "0" ]; then adb shell "taskset -a $MASK cat /dev/zero > /dev/null" fi sleep 10 // parse ftrace buffer counting the occurrence of each valaue Where MASK is either: * 0: no busy task running * 1: busy task is pinned to 1 cpu; handled today to not cause misfit * f: busy task pinned to little cores, simulates busy background task, demonstrates the problem to be fixed Results: ======== Note how occurrence of balance_interval = 128 overshoots for MASK = f. BEFORE ------ MASK=0 1 balance_interval = 175 120 balance_interval = 128 846 balance_interval = 64 55 balance_interval = 63 215 balance_interval = 32 2 balance_interval = 31 2 balance_interval = 16 4 balance_interval = 8 1870 balance_interval = 4 65 balance_interval = 2 MASK=1 27 balance_interval = 175 37 balance_interval = 127 840 balance_interval = 64 167 balance_interval = 63 449 balance_interval = 32 84 balance_interval = 31 304 balance_interval = 16 1156 balance_interval = 8 2781 balance_interval = 4 428 balance_interval = 2 MASK=f 1 balance_interval = 175 1328 balance_interval = 128 44 balance_interval = 64 101 balance_interval = 63 25 balance_interval = 32 5 balance_interval = 31 23 balance_interval = 16 23 balance_interval = 8 4306 balance_interval = 4 177 balance_interval = 2 AFTER ----- Note how the high values almost disappear for all MASK values. The system has background tasks that could trigger the problem without simulate it even with MASK=0. MASK=0 103 balance_interval = 63 19 balance_interval = 31 194 balance_interval = 8 4827 balance_interval = 4 179 balance_interval = 2 MASK=1 131 balance_interval = 63 1 balance_interval = 31 87 balance_interval = 8 3600 balance_interval = 4 7 balance_interval = 2 MASK=f 8 balance_interval = 127 182 balance_interval = 63 3 balance_interval = 31 9 balance_interval = 16 415 balance_interval = 8 3415 balance_interval = 4 21 balance_interval = 2 Signed-off-by: Qais Yousef <qyousef@layalina.io> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240324004552.999936-3-qyousef@layalina.io
2024-03-24 08:45:50 +08:00
.max_allowed_capacity = SCHED_CAPACITY_SCALE,
.nr_cpus_allowed= NR_CPUS,
.mm = NULL,
.active_mm = &init_mm,
sched: Add task_struct->faults_disabled_mapping There has been a long standing page cache coherence bug with direct IO. This provides part of a mechanism to fix it, currently just used by bcachefs but potentially worth promoting to the VFS. Direct IO evicts the range of the pagecache being read or written to. For reads, we need dirty pages to be written to disk, so that the read doesn't return stale data. For writes, we need to evict that range of the pagecache so that it's not stale after the write completes. However, without a locking mechanism to prevent those pages from being re-added to the pagecache - by a buffered read or page fault - page cache inconsistency is still possible. This isn't necessarily just an issue for userspace when they're playing games; filesystems may hang arbitrary state off the pagecache, and so page cache inconsistency may cause real filesystem bugs, depending on the filesystem. This is less of an issue for iomap based filesystems, but e.g. buffer heads caches disk block mappings (!) and attaches them to the pagecache, and bcachefs attaches disk reservations to pagecache pages. This issue has been hard to fix, because - we need to add a lock (henceforth called pagecache_add_lock), which would be held for the duration of the direct IO - page faults add pages to the page cache, thus need to take the same lock - dio -> gup -> page fault thus can deadlock And we cannot enforce a lock ordering with this lock, since userspace will be controlling the lock ordering (via the fd and buffer arguments to direct IOs), so we need a different method of deadlock avoidance. We need to tell the page fault handler that we're already holding a pagecache_add_lock, and since plumbing it through the entire gup() path would be highly impractical this adds a field to task_struct. Then the full method is: - in the dio path, when we first take the pagecache_add_lock, note the mapping in the current task_struct - in the page fault handler, if faults_disabled_mapping is set, we check if it's the same mapping as the one we're taking a page fault for, and if so return an error. Then we check lock ordering: if there's a lock ordering violation and trylock fails, we'll have to cycle the locks and return an error that tells the DIO path to retry: faults_disabled_mapping is also used for signalling "locks were dropped, please retry". Also relevant to this patch: mapping->invalidate_lock. mapping->invalidate_lock provides most of the required semantics - it's used by truncate/fallocate to block pages being added to the pagecache. However, since it's a rwsem, direct IOs would need to take the write side in order to block page cache adds, and would then be exclusive with each other - we'll need a new type of lock to pair with this approach. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> Cc: Jan Kara <jack@suse.cz> Cc: Darrick J. Wong <djwong@kernel.org> Cc: linux-fsdevel@vger.kernel.org Cc: Andreas Grünbacher <andreas.gruenbacher@gmail.com>
2019-10-17 03:03:50 +08:00
.faults_disabled_mapping = NULL,
.restart_block = {
.fn = do_no_restart_syscall,
},
.se = {
.group_node = LIST_HEAD_INIT(init_task.se.group_node),
},
.rt = {
.run_list = LIST_HEAD_INIT(init_task.rt.run_list),
.time_slice = RR_TIMESLICE,
},
.tasks = LIST_HEAD_INIT(init_task.tasks),
#ifdef CONFIG_SMP
.pushable_tasks = PLIST_NODE_INIT(init_task.pushable_tasks, MAX_PRIO),
#endif
#ifdef CONFIG_CGROUP_SCHED
.sched_task_group = &root_task_group,
sched_ext: Implement BPF extensible scheduler class Implement a new scheduler class sched_ext (SCX), which allows scheduling policies to be implemented as BPF programs to achieve the following: 1. Ease of experimentation and exploration: Enabling rapid iteration of new scheduling policies. 2. Customization: Building application-specific schedulers which implement policies that are not applicable to general-purpose schedulers. 3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling policies in production environments. sched_ext leverages BPF’s struct_ops feature to define a structure which exports function callbacks and flags to BPF programs that wish to implement scheduling policies. The struct_ops structure exported by sched_ext is struct sched_ext_ops, and is conceptually similar to struct sched_class. The role of sched_ext is to map the complex sched_class callbacks to the more simple and ergonomic struct sched_ext_ops callbacks. For more detailed discussion on the motivations and overview, please refer to the cover letter. Later patches will also add several example schedulers and documentation. This patch implements the minimum core framework to enable implementation of BPF schedulers. Subsequent patches will gradually add functionalities including safety guarantee mechanisms, nohz and cgroup support. include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on top, each operation should be self-explanatory. The followings are worth noting: - Both "sched_ext" and its shorthand "scx" are used. If the identifier already has "sched" in it, "ext" is used; otherwise, "scx". - In sched_ext_ops, only .name is mandatory. Every operation is optional and if omitted a simple but functional default behavior is provided. - A new policy constant SCHED_EXT is added and a task can select sched_ext by invoking sched_setscheduler(2) with the new policy constant. However, if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL and the task is scheduled by CFS. When the BPF scheduler is loaded, all tasks which have the SCHED_EXT policy are switched to sched_ext. - To bridge the workflow imbalance between the scheduler core and sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for convenience and need not be used by a scheduler that doesn't require it. SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting the next task on the CPU. The BPF scheduler can manage an arbitrary number of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq(). - sched_ext guarantees system integrity no matter what the BPF scheduler does. To enable this, each task's ownership is tracked through p->scx.ops_state and all tasks are put on scx_tasks list. The disable path can always recover and revert all tasks back to CFS. See p->scx.ops_state and scx_tasks. - A task is not tied to its rq while enqueued. This decouples CPU selection from queueing and allows sharing a scheduling queue across an arbitrary subset of CPUs. This adds some complexities as a task may need to be bounced between rq's right before it starts executing. See dispatch_to_local_dsq() and move_task_to_local_dsq(). - One complication that arises from the above weak association between task and rq is that synchronizing with dequeue() gets complicated as dequeue() may happen anytime while the task is enqueued and the dispatch path might need to release the rq lock to transfer the task. Solving this requires a bit of complexity. See the logic around p->scx.sticky_cpu and p->scx.ops_qseq. - Both enable and disable paths are a bit complicated. The enable path switches all tasks without blocking to avoid issues which can arise from partially switched states (e.g. the switching task itself being starved). The disable path can't trust the BPF scheduler at all, so it also has to guarantee forward progress without blocking. See scx_ops_enable() and scx_ops_disable_workfn(). - When sched_ext is disabled, static_branches are used to shut down the entry points from hot paths. v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab scx_ops_enable_mutex which can lead to deadlocks in the disable path. Fixed. - Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead to use-after-free. - Consolidated per-cpu variable usages and other cleanups. v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple groups can be expressed. Later CPU hotplug operations are put into their own group. - SCX_OPS_DISABLING state is replaced with the new bypass mechanism which allows temporarily putting the system into simple FIFO scheduling mode bypassing the BPF scheduler. In addition to the shut down path, this will also be used to isolate the BPF scheduler across PM events. Enabling and disabling the bypass mode requires iterating all runnable tasks. rq->scx.runnable_list addition is moved from the later watchdog patch. - ops.prep_enable() is replaced with ops.init_task() and ops.enable/disable() are now called whenever the task enters and leaves sched_ext instead of when the task becomes schedulable on sched_ext and stops being so. A new operation - ops.exit_task() - is called when the task stops being schedulable on sched_ext. - scx_bpf_dispatch() can now be called from ops.select_cpu() too. This removes the need for communicating local dispatch decision made by ops.select_cpu() to ops.enqueue() via per-task storage. SCX_KF_SELECT_CPU is added to support the change. - SCX_TASK_ENQ_LOCAL which told the BPF scheudler that scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly if it finds a suitable idle CPU. If such behavior is not desired, users can use scx_bpf_select_cpu_dfl() which returns the verdict in a bool out param. - scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up queueing many tasks on a local DSQ which makes tasks to execute in order while other CPUs stay idle which made some hackbench numbers really bad. Fixed. - The current state of sched_ext can now be monitored through files under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is to enable monitoring on kernels which don't enable debugfs. - sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may be NULL and a BPF scheduler which derefs the pointer without checking could crash the kernel. Tell BPF. This is currently a bit ugly. A better way to annotate this is expected in the future. - scx_exit_info updated to carry pointers to message buffers instead of embedding them directly. This decouples buffer sizes from API so that they can be changed without breaking compatibility. - exit_code added to scx_exit_info. This is used to indicate different exit conditions on non-error exits and will be used to handle e.g. CPU hotplugs. - The patch "sched_ext: Allow BPF schedulers to switch all eligible tasks into sched_ext" is folded in and the interface is changed so that partial switching is indicated with a new ops flag %SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry and in turn SCX_KF_INIT. ops.init() is now called with SCX_KF_SLEEPABLE. - Code reorganized so that only the parts necessary to integrate with the rest of the kernel are in the header files. - Changes to reflect the BPF and other kernel changes including the addition of bpf_sched_ext_ops.cfi_stubs. v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t instead of atomic64_t and scx_dsp_buf_ent.qseq which uses load_acquire/store_release is now unsigned long instead of u64. - Fix the bug where bpf_scx_btf_struct_access() was allowing write access to arbitrary fields. - Distinguish kfuncs which can be called from any sched_ext ops and from anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from sched_ext ops. - Rename "type" to "kind" in scx_exit_info to make it easier to use on languages in which "type" is a reserved keyword. - Since cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup"), PF_IDLE is not set on idle tasks which haven't been online yet which made scx_task_iter_next_filtered() include those idle tasks in iterations leading to oopses. Update scx_task_iter_next_filtered() to directly test p->sched_class against idle_sched_class instead of using is_idle_task() which tests PF_IDLE. - Other updates to match upstream changes such as adding const to set_cpumask() param and renaming check_preempt_curr() to wakeup_preempt(). v4: - SCHED_CHANGE_BLOCK replaced with the previous sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is because upstream is adaopting a different generic cleanup mechanism. Once that lands, the code will be adapted accordingly. - task_on_scx() used to test whether a task should be switched into SCX, which is confusing. Renamed to task_should_scx(). task_on_scx() now tests whether a task is currently on SCX. - scx_has_idle_cpus is barely used anymore and replaced with direct check on the idle cpumask. - SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer fully idle cores. - ops.enable() now sees up-to-date p->scx.weight value. - ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF schedulers expecting ->select_cpu() call. - Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest of the scheduler. v3: - ops.set_weight() added to allow BPF schedulers to track weight changes without polling p->scx.weight. - move_task_to_local_dsq() was losing SCX-specific enq_flags when enqueueing the task on the target dsq because it goes through activate_task() which loses the upper 32bit of the flags. Carry the flags through rq->scx.extra_enq_flags. - scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running() and scx_bpf_task_cpu() now use the new KF_RCU instead of KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them. - The kfunc helper access control mechanism implemented through sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always used when invoking scx_ops operations. v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is called from put_prev_taks_scx() and pick_next_task_scx() as necessary. To determine whether balance_scx() should be called from put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the comment in put_prev_task_scx() for details. - sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced with SCHED_CHANGE_BLOCK(). - Unused all_dsqs list removed. This was a left-over from previous iterations. - p->scx.kf_mask is added to track and enforce which kfunc helpers are allowed. Also, init/exit sequences are updated to make some kfuncs always safe to call regardless of the current BPF scheduler state. Combined, this should make all the kfuncs safe. - BPF now supports sleepable struct_ops operations. Hacky workaround removed and operations and kfunc helpers are tagged appropriately. - BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask() and friends are added so that BPF schedulers can use the idle masks with the generic helpers. This replaces the hacky kfunc helpers added by a separate patch in V1. - CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is enabled. This restriction will be removed by a later patch which adds core-sched support. - Add MAINTAINERS entries and other misc changes. Signed-off-by: Tejun Heo <tj@kernel.org> Co-authored-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-19 04:09:17 +08:00
#endif
#ifdef CONFIG_SCHED_CLASS_EXT
.scx = {
.dsq_list.node = LIST_HEAD_INIT(init_task.scx.dsq_list.node),
sched_ext: Implement BPF extensible scheduler class Implement a new scheduler class sched_ext (SCX), which allows scheduling policies to be implemented as BPF programs to achieve the following: 1. Ease of experimentation and exploration: Enabling rapid iteration of new scheduling policies. 2. Customization: Building application-specific schedulers which implement policies that are not applicable to general-purpose schedulers. 3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling policies in production environments. sched_ext leverages BPF’s struct_ops feature to define a structure which exports function callbacks and flags to BPF programs that wish to implement scheduling policies. The struct_ops structure exported by sched_ext is struct sched_ext_ops, and is conceptually similar to struct sched_class. The role of sched_ext is to map the complex sched_class callbacks to the more simple and ergonomic struct sched_ext_ops callbacks. For more detailed discussion on the motivations and overview, please refer to the cover letter. Later patches will also add several example schedulers and documentation. This patch implements the minimum core framework to enable implementation of BPF schedulers. Subsequent patches will gradually add functionalities including safety guarantee mechanisms, nohz and cgroup support. include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on top, each operation should be self-explanatory. The followings are worth noting: - Both "sched_ext" and its shorthand "scx" are used. If the identifier already has "sched" in it, "ext" is used; otherwise, "scx". - In sched_ext_ops, only .name is mandatory. Every operation is optional and if omitted a simple but functional default behavior is provided. - A new policy constant SCHED_EXT is added and a task can select sched_ext by invoking sched_setscheduler(2) with the new policy constant. However, if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL and the task is scheduled by CFS. When the BPF scheduler is loaded, all tasks which have the SCHED_EXT policy are switched to sched_ext. - To bridge the workflow imbalance between the scheduler core and sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for convenience and need not be used by a scheduler that doesn't require it. SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting the next task on the CPU. The BPF scheduler can manage an arbitrary number of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq(). - sched_ext guarantees system integrity no matter what the BPF scheduler does. To enable this, each task's ownership is tracked through p->scx.ops_state and all tasks are put on scx_tasks list. The disable path can always recover and revert all tasks back to CFS. See p->scx.ops_state and scx_tasks. - A task is not tied to its rq while enqueued. This decouples CPU selection from queueing and allows sharing a scheduling queue across an arbitrary subset of CPUs. This adds some complexities as a task may need to be bounced between rq's right before it starts executing. See dispatch_to_local_dsq() and move_task_to_local_dsq(). - One complication that arises from the above weak association between task and rq is that synchronizing with dequeue() gets complicated as dequeue() may happen anytime while the task is enqueued and the dispatch path might need to release the rq lock to transfer the task. Solving this requires a bit of complexity. See the logic around p->scx.sticky_cpu and p->scx.ops_qseq. - Both enable and disable paths are a bit complicated. The enable path switches all tasks without blocking to avoid issues which can arise from partially switched states (e.g. the switching task itself being starved). The disable path can't trust the BPF scheduler at all, so it also has to guarantee forward progress without blocking. See scx_ops_enable() and scx_ops_disable_workfn(). - When sched_ext is disabled, static_branches are used to shut down the entry points from hot paths. v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab scx_ops_enable_mutex which can lead to deadlocks in the disable path. Fixed. - Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead to use-after-free. - Consolidated per-cpu variable usages and other cleanups. v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple groups can be expressed. Later CPU hotplug operations are put into their own group. - SCX_OPS_DISABLING state is replaced with the new bypass mechanism which allows temporarily putting the system into simple FIFO scheduling mode bypassing the BPF scheduler. In addition to the shut down path, this will also be used to isolate the BPF scheduler across PM events. Enabling and disabling the bypass mode requires iterating all runnable tasks. rq->scx.runnable_list addition is moved from the later watchdog patch. - ops.prep_enable() is replaced with ops.init_task() and ops.enable/disable() are now called whenever the task enters and leaves sched_ext instead of when the task becomes schedulable on sched_ext and stops being so. A new operation - ops.exit_task() - is called when the task stops being schedulable on sched_ext. - scx_bpf_dispatch() can now be called from ops.select_cpu() too. This removes the need for communicating local dispatch decision made by ops.select_cpu() to ops.enqueue() via per-task storage. SCX_KF_SELECT_CPU is added to support the change. - SCX_TASK_ENQ_LOCAL which told the BPF scheudler that scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly if it finds a suitable idle CPU. If such behavior is not desired, users can use scx_bpf_select_cpu_dfl() which returns the verdict in a bool out param. - scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up queueing many tasks on a local DSQ which makes tasks to execute in order while other CPUs stay idle which made some hackbench numbers really bad. Fixed. - The current state of sched_ext can now be monitored through files under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is to enable monitoring on kernels which don't enable debugfs. - sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may be NULL and a BPF scheduler which derefs the pointer without checking could crash the kernel. Tell BPF. This is currently a bit ugly. A better way to annotate this is expected in the future. - scx_exit_info updated to carry pointers to message buffers instead of embedding them directly. This decouples buffer sizes from API so that they can be changed without breaking compatibility. - exit_code added to scx_exit_info. This is used to indicate different exit conditions on non-error exits and will be used to handle e.g. CPU hotplugs. - The patch "sched_ext: Allow BPF schedulers to switch all eligible tasks into sched_ext" is folded in and the interface is changed so that partial switching is indicated with a new ops flag %SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry and in turn SCX_KF_INIT. ops.init() is now called with SCX_KF_SLEEPABLE. - Code reorganized so that only the parts necessary to integrate with the rest of the kernel are in the header files. - Changes to reflect the BPF and other kernel changes including the addition of bpf_sched_ext_ops.cfi_stubs. v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t instead of atomic64_t and scx_dsp_buf_ent.qseq which uses load_acquire/store_release is now unsigned long instead of u64. - Fix the bug where bpf_scx_btf_struct_access() was allowing write access to arbitrary fields. - Distinguish kfuncs which can be called from any sched_ext ops and from anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from sched_ext ops. - Rename "type" to "kind" in scx_exit_info to make it easier to use on languages in which "type" is a reserved keyword. - Since cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup"), PF_IDLE is not set on idle tasks which haven't been online yet which made scx_task_iter_next_filtered() include those idle tasks in iterations leading to oopses. Update scx_task_iter_next_filtered() to directly test p->sched_class against idle_sched_class instead of using is_idle_task() which tests PF_IDLE. - Other updates to match upstream changes such as adding const to set_cpumask() param and renaming check_preempt_curr() to wakeup_preempt(). v4: - SCHED_CHANGE_BLOCK replaced with the previous sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is because upstream is adaopting a different generic cleanup mechanism. Once that lands, the code will be adapted accordingly. - task_on_scx() used to test whether a task should be switched into SCX, which is confusing. Renamed to task_should_scx(). task_on_scx() now tests whether a task is currently on SCX. - scx_has_idle_cpus is barely used anymore and replaced with direct check on the idle cpumask. - SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer fully idle cores. - ops.enable() now sees up-to-date p->scx.weight value. - ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF schedulers expecting ->select_cpu() call. - Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest of the scheduler. v3: - ops.set_weight() added to allow BPF schedulers to track weight changes without polling p->scx.weight. - move_task_to_local_dsq() was losing SCX-specific enq_flags when enqueueing the task on the target dsq because it goes through activate_task() which loses the upper 32bit of the flags. Carry the flags through rq->scx.extra_enq_flags. - scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running() and scx_bpf_task_cpu() now use the new KF_RCU instead of KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them. - The kfunc helper access control mechanism implemented through sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always used when invoking scx_ops operations. v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is called from put_prev_taks_scx() and pick_next_task_scx() as necessary. To determine whether balance_scx() should be called from put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the comment in put_prev_task_scx() for details. - sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced with SCHED_CHANGE_BLOCK(). - Unused all_dsqs list removed. This was a left-over from previous iterations. - p->scx.kf_mask is added to track and enforce which kfunc helpers are allowed. Also, init/exit sequences are updated to make some kfuncs always safe to call regardless of the current BPF scheduler state. Combined, this should make all the kfuncs safe. - BPF now supports sleepable struct_ops operations. Hacky workaround removed and operations and kfunc helpers are tagged appropriately. - BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask() and friends are added so that BPF schedulers can use the idle masks with the generic helpers. This replaces the hacky kfunc helpers added by a separate patch in V1. - CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is enabled. This restriction will be removed by a later patch which adds core-sched support. - Add MAINTAINERS entries and other misc changes. Signed-off-by: Tejun Heo <tj@kernel.org> Co-authored-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-19 04:09:17 +08:00
.sticky_cpu = -1,
.holding_cpu = -1,
.runnable_node = LIST_HEAD_INIT(init_task.scx.runnable_node),
sched_ext: Implement runnable task stall watchdog The most common and critical way that a BPF scheduler can misbehave is by failing to run runnable tasks for too long. This patch implements a watchdog. * All tasks record when they become runnable. * A watchdog work periodically scans all runnable tasks. If any task has stayed runnable for too long, the BPF scheduler is aborted. * scheduler_tick() monitors whether the watchdog itself is stuck. If so, the BPF scheduler is aborted. Because the watchdog only scans the tasks which are currently runnable and usually very infrequently, the overhead should be negligible. scx_qmap is updated so that it can be told to stall user and/or kernel tasks. A detected task stall looks like the following: sched_ext: BPF scheduler "qmap" errored, disabling sched_ext: runnable task stall (dbus-daemon[953] failed to run for 6.478s) scx_check_timeout_workfn+0x10e/0x1b0 process_one_work+0x287/0x560 worker_thread+0x234/0x420 kthread+0xe9/0x100 ret_from_fork+0x1f/0x30 A detected watchdog stall: sched_ext: BPF scheduler "qmap" errored, disabling sched_ext: runnable task stall (watchdog failed to check in for 5.001s) scheduler_tick+0x2eb/0x340 update_process_times+0x7a/0x90 tick_sched_timer+0xd8/0x130 __hrtimer_run_queues+0x178/0x3b0 hrtimer_interrupt+0xfc/0x390 __sysvec_apic_timer_interrupt+0xb7/0x2b0 sysvec_apic_timer_interrupt+0x90/0xb0 asm_sysvec_apic_timer_interrupt+0x1b/0x20 default_idle+0x14/0x20 arch_cpu_idle+0xf/0x20 default_idle_call+0x50/0x90 do_idle+0xe8/0x240 cpu_startup_entry+0x1d/0x20 kernel_init+0x0/0x190 start_kernel+0x0/0x392 start_kernel+0x324/0x392 x86_64_start_reservations+0x2a/0x2c x86_64_start_kernel+0x104/0x109 secondary_startup_64_no_verify+0xce/0xdb Note that this patch exposes scx_ops_error[_type]() in kernel/sched/ext.h to inline scx_notify_sched_tick(). v4: - While disabling, cancel_delayed_work_sync(&scx_watchdog_work) was being called before forward progress was guaranteed and thus could lead to system lockup. Relocated. - While enabling, it was comparing msecs against jiffies without conversion leading to spurious load failures on lower HZ kernels. Fixed. - runnable list management is now used by core bypass logic and moved to the patch implementing sched_ext core. v3: - bpf_scx_init_member() was incorrectly comparing ops->timeout_ms against SCX_WATCHDOG_MAX_TIMEOUT which is in jiffies without conversion leading to spurious load failures in lower HZ kernels. Fixed. v2: - Julia Lawall noticed that the watchdog code was mixing msecs and jiffies. Fix by using jiffies for everything. Signed-off-by: David Vernet <dvernet@meta.com> Reviewed-by: Tejun Heo <tj@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Julia Lawall <julia.lawall@inria.fr>
2024-06-19 04:09:18 +08:00
.runnable_at = INITIAL_JIFFIES,
sched_ext: Implement BPF extensible scheduler class Implement a new scheduler class sched_ext (SCX), which allows scheduling policies to be implemented as BPF programs to achieve the following: 1. Ease of experimentation and exploration: Enabling rapid iteration of new scheduling policies. 2. Customization: Building application-specific schedulers which implement policies that are not applicable to general-purpose schedulers. 3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling policies in production environments. sched_ext leverages BPF’s struct_ops feature to define a structure which exports function callbacks and flags to BPF programs that wish to implement scheduling policies. The struct_ops structure exported by sched_ext is struct sched_ext_ops, and is conceptually similar to struct sched_class. The role of sched_ext is to map the complex sched_class callbacks to the more simple and ergonomic struct sched_ext_ops callbacks. For more detailed discussion on the motivations and overview, please refer to the cover letter. Later patches will also add several example schedulers and documentation. This patch implements the minimum core framework to enable implementation of BPF schedulers. Subsequent patches will gradually add functionalities including safety guarantee mechanisms, nohz and cgroup support. include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on top, each operation should be self-explanatory. The followings are worth noting: - Both "sched_ext" and its shorthand "scx" are used. If the identifier already has "sched" in it, "ext" is used; otherwise, "scx". - In sched_ext_ops, only .name is mandatory. Every operation is optional and if omitted a simple but functional default behavior is provided. - A new policy constant SCHED_EXT is added and a task can select sched_ext by invoking sched_setscheduler(2) with the new policy constant. However, if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL and the task is scheduled by CFS. When the BPF scheduler is loaded, all tasks which have the SCHED_EXT policy are switched to sched_ext. - To bridge the workflow imbalance between the scheduler core and sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for convenience and need not be used by a scheduler that doesn't require it. SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting the next task on the CPU. The BPF scheduler can manage an arbitrary number of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq(). - sched_ext guarantees system integrity no matter what the BPF scheduler does. To enable this, each task's ownership is tracked through p->scx.ops_state and all tasks are put on scx_tasks list. The disable path can always recover and revert all tasks back to CFS. See p->scx.ops_state and scx_tasks. - A task is not tied to its rq while enqueued. This decouples CPU selection from queueing and allows sharing a scheduling queue across an arbitrary subset of CPUs. This adds some complexities as a task may need to be bounced between rq's right before it starts executing. See dispatch_to_local_dsq() and move_task_to_local_dsq(). - One complication that arises from the above weak association between task and rq is that synchronizing with dequeue() gets complicated as dequeue() may happen anytime while the task is enqueued and the dispatch path might need to release the rq lock to transfer the task. Solving this requires a bit of complexity. See the logic around p->scx.sticky_cpu and p->scx.ops_qseq. - Both enable and disable paths are a bit complicated. The enable path switches all tasks without blocking to avoid issues which can arise from partially switched states (e.g. the switching task itself being starved). The disable path can't trust the BPF scheduler at all, so it also has to guarantee forward progress without blocking. See scx_ops_enable() and scx_ops_disable_workfn(). - When sched_ext is disabled, static_branches are used to shut down the entry points from hot paths. v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab scx_ops_enable_mutex which can lead to deadlocks in the disable path. Fixed. - Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead to use-after-free. - Consolidated per-cpu variable usages and other cleanups. v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple groups can be expressed. Later CPU hotplug operations are put into their own group. - SCX_OPS_DISABLING state is replaced with the new bypass mechanism which allows temporarily putting the system into simple FIFO scheduling mode bypassing the BPF scheduler. In addition to the shut down path, this will also be used to isolate the BPF scheduler across PM events. Enabling and disabling the bypass mode requires iterating all runnable tasks. rq->scx.runnable_list addition is moved from the later watchdog patch. - ops.prep_enable() is replaced with ops.init_task() and ops.enable/disable() are now called whenever the task enters and leaves sched_ext instead of when the task becomes schedulable on sched_ext and stops being so. A new operation - ops.exit_task() - is called when the task stops being schedulable on sched_ext. - scx_bpf_dispatch() can now be called from ops.select_cpu() too. This removes the need for communicating local dispatch decision made by ops.select_cpu() to ops.enqueue() via per-task storage. SCX_KF_SELECT_CPU is added to support the change. - SCX_TASK_ENQ_LOCAL which told the BPF scheudler that scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly if it finds a suitable idle CPU. If such behavior is not desired, users can use scx_bpf_select_cpu_dfl() which returns the verdict in a bool out param. - scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up queueing many tasks on a local DSQ which makes tasks to execute in order while other CPUs stay idle which made some hackbench numbers really bad. Fixed. - The current state of sched_ext can now be monitored through files under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is to enable monitoring on kernels which don't enable debugfs. - sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may be NULL and a BPF scheduler which derefs the pointer without checking could crash the kernel. Tell BPF. This is currently a bit ugly. A better way to annotate this is expected in the future. - scx_exit_info updated to carry pointers to message buffers instead of embedding them directly. This decouples buffer sizes from API so that they can be changed without breaking compatibility. - exit_code added to scx_exit_info. This is used to indicate different exit conditions on non-error exits and will be used to handle e.g. CPU hotplugs. - The patch "sched_ext: Allow BPF schedulers to switch all eligible tasks into sched_ext" is folded in and the interface is changed so that partial switching is indicated with a new ops flag %SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry and in turn SCX_KF_INIT. ops.init() is now called with SCX_KF_SLEEPABLE. - Code reorganized so that only the parts necessary to integrate with the rest of the kernel are in the header files. - Changes to reflect the BPF and other kernel changes including the addition of bpf_sched_ext_ops.cfi_stubs. v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t instead of atomic64_t and scx_dsp_buf_ent.qseq which uses load_acquire/store_release is now unsigned long instead of u64. - Fix the bug where bpf_scx_btf_struct_access() was allowing write access to arbitrary fields. - Distinguish kfuncs which can be called from any sched_ext ops and from anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from sched_ext ops. - Rename "type" to "kind" in scx_exit_info to make it easier to use on languages in which "type" is a reserved keyword. - Since cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup"), PF_IDLE is not set on idle tasks which haven't been online yet which made scx_task_iter_next_filtered() include those idle tasks in iterations leading to oopses. Update scx_task_iter_next_filtered() to directly test p->sched_class against idle_sched_class instead of using is_idle_task() which tests PF_IDLE. - Other updates to match upstream changes such as adding const to set_cpumask() param and renaming check_preempt_curr() to wakeup_preempt(). v4: - SCHED_CHANGE_BLOCK replaced with the previous sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is because upstream is adaopting a different generic cleanup mechanism. Once that lands, the code will be adapted accordingly. - task_on_scx() used to test whether a task should be switched into SCX, which is confusing. Renamed to task_should_scx(). task_on_scx() now tests whether a task is currently on SCX. - scx_has_idle_cpus is barely used anymore and replaced with direct check on the idle cpumask. - SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer fully idle cores. - ops.enable() now sees up-to-date p->scx.weight value. - ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF schedulers expecting ->select_cpu() call. - Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest of the scheduler. v3: - ops.set_weight() added to allow BPF schedulers to track weight changes without polling p->scx.weight. - move_task_to_local_dsq() was losing SCX-specific enq_flags when enqueueing the task on the target dsq because it goes through activate_task() which loses the upper 32bit of the flags. Carry the flags through rq->scx.extra_enq_flags. - scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running() and scx_bpf_task_cpu() now use the new KF_RCU instead of KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them. - The kfunc helper access control mechanism implemented through sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always used when invoking scx_ops operations. v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is called from put_prev_taks_scx() and pick_next_task_scx() as necessary. To determine whether balance_scx() should be called from put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the comment in put_prev_task_scx() for details. - sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced with SCHED_CHANGE_BLOCK(). - Unused all_dsqs list removed. This was a left-over from previous iterations. - p->scx.kf_mask is added to track and enforce which kfunc helpers are allowed. Also, init/exit sequences are updated to make some kfuncs always safe to call regardless of the current BPF scheduler state. Combined, this should make all the kfuncs safe. - BPF now supports sleepable struct_ops operations. Hacky workaround removed and operations and kfunc helpers are tagged appropriately. - BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask() and friends are added so that BPF schedulers can use the idle masks with the generic helpers. This replaces the hacky kfunc helpers added by a separate patch in V1. - CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is enabled. This restriction will be removed by a later patch which adds core-sched support. - Add MAINTAINERS entries and other misc changes. Signed-off-by: Tejun Heo <tj@kernel.org> Co-authored-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Andrea Righi <andrea.righi@canonical.com>
2024-06-19 04:09:17 +08:00
.ddsp_dsq_id = SCX_DSQ_INVALID,
.slice = SCX_SLICE_DFL,
},
#endif
.ptraced = LIST_HEAD_INIT(init_task.ptraced),
.ptrace_entry = LIST_HEAD_INIT(init_task.ptrace_entry),
.real_parent = &init_task,
.parent = &init_task,
.children = LIST_HEAD_INIT(init_task.children),
.sibling = LIST_HEAD_INIT(init_task.sibling),
.group_leader = &init_task,
RCU_POINTER_INITIALIZER(real_cred, &init_cred),
RCU_POINTER_INITIALIZER(cred, &init_cred),
.comm = INIT_TASK_COMM,
.thread = INIT_THREAD,
.fs = &init_fs,
.files = &init_files,
#ifdef CONFIG_IO_URING
.io_uring = NULL,
#endif
.signal = &init_signals,
.sighand = &init_sighand,
.nsproxy = &init_nsproxy,
.pending = {
.list = LIST_HEAD_INIT(init_task.pending.list),
.signal = {{0}}
},
.blocked = {{0}},
.alloc_lock = __SPIN_LOCK_UNLOCKED(init_task.alloc_lock),
.journal_info = NULL,
INIT_CPU_TIMERS(init_task)
.pi_lock = __RAW_SPIN_LOCK_UNLOCKED(init_task.pi_lock),
.timer_slack_ns = 50000, /* 50 usec default slack */
.thread_pid = &init_struct_pid,
.thread_node = LIST_HEAD_INIT(init_signals.thread_head),
#ifdef CONFIG_AUDIT
.loginuid = INVALID_UID,
.sessionid = AUDIT_SID_UNSET,
#endif
#ifdef CONFIG_PERF_EVENTS
.perf_event_mutex = __MUTEX_INITIALIZER(init_task.perf_event_mutex),
.perf_event_list = LIST_HEAD_INIT(init_task.perf_event_list),
#endif
#ifdef CONFIG_PREEMPT_RCU
.rcu_read_lock_nesting = 0,
.rcu_read_unlock_special.s = 0,
.rcu_node_entry = LIST_HEAD_INIT(init_task.rcu_node_entry),
.rcu_blocked_node = NULL,
#endif
#ifdef CONFIG_TASKS_RCU
.rcu_tasks_holdout = false,
.rcu_tasks_holdout_list = LIST_HEAD_INIT(init_task.rcu_tasks_holdout_list),
.rcu_tasks_idle_cpu = -1,
2024-02-06 05:10:19 +08:00
.rcu_tasks_exit_list = LIST_HEAD_INIT(init_task.rcu_tasks_exit_list),
#endif
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 10:56:53 +08:00
#ifdef CONFIG_TASKS_TRACE_RCU
.trc_reader_nesting = 0,
.trc_reader_special.s = 0,
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 10:56:53 +08:00
.trc_holdout_list = LIST_HEAD_INIT(init_task.trc_holdout_list),
.trc_blkd_node = LIST_HEAD_INIT(init_task.trc_blkd_node),
rcu-tasks: Add an RCU Tasks Trace to simplify protection of tracing hooks Because RCU does not watch exception early-entry/late-exit, idle-loop, or CPU-hotplug execution, protection of tracing and BPF operations is needlessly complicated. This commit therefore adds a variant of Tasks RCU that: o Has explicit read-side markers to allow finite grace periods in the face of in-kernel loops for PREEMPT=n builds. These markers are rcu_read_lock_trace() and rcu_read_unlock_trace(). o Protects code in the idle loop, exception entry/exit, and CPU-hotplug code paths. In this respect, RCU-tasks trace is similar to SRCU, but with lighter-weight readers. o Avoids expensive read-side instruction, having overhead similar to that of Preemptible RCU. There are of course downsides: o The grace-period code can send IPIs to CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. This is mitigated by later commits. o It is necessary to scan the full tasklist, much as for Tasks RCU. o There is a single callback queue guarded by a single lock, again, much as for Tasks RCU. However, those early use cases that request multiple grace periods in quick succession are expected to do so from a single task, which makes the single lock almost irrelevant. If needed, multiple callback queues can be provided using any number of schemes. Perhaps most important, this variant of RCU does not affect the vanilla flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace readers can operate from idle, offline, and exception entry/exit in no way enables rcu_preempt and rcu_sched readers to do so. The memory ordering was outlined here: https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/ This effort benefited greatly from off-list discussions of BPF requirements with Alexei Starovoitov and Andrii Nakryiko. At least some of the on-list discussions are captured in the Link: tags below. In addition, KCSAN was quite helpful in finding some early bugs. Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/ Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/ Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/ Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Andrii Nakryiko <andriin@fb.com> [ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ] [ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ] [ paulmck: Fix locking issue reported by rcutorture. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-10 10:56:53 +08:00
#endif
#ifdef CONFIG_CPUSETS
.mems_allowed_seq = SEQCNT_SPINLOCK_ZERO(init_task.mems_allowed_seq,
&init_task.alloc_lock),
#endif
#ifdef CONFIG_RT_MUTEXES
.pi_waiters = RB_ROOT_CACHED,
.pi_top_task = NULL,
#endif
INIT_PREV_CPUTIME(init_task)
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
.vtime.seqcount = SEQCNT_ZERO(init_task.vtime_seqcount),
.vtime.starttime = 0,
.vtime.state = VTIME_SYS,
#endif
#ifdef CONFIG_NUMA_BALANCING
mm: replace all open encodings for NUMA_NO_NODE Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 07:42:58 +08:00
.numa_preferred_nid = NUMA_NO_NODE,
.numa_group = NULL,
.numa_faults = NULL,
#endif
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
.kasan_depth = 1,
#endif
#ifdef CONFIG_KCSAN
.kcsan_ctx = {
kcsan: Add support for scoped accesses This adds support for scoped accesses, where the memory range is checked for the duration of the scope. The feature is implemented by inserting the relevant access information into a list of scoped accesses for the current execution context, which are then checked (until removed) on every call (through instrumentation) into the KCSAN runtime. An alternative, more complex, implementation could set up a watchpoint for the scoped access, and keep the watchpoint set up. This, however, would require first exposing a handle to the watchpoint, as well as dealing with cases such as accesses by the same thread while the watchpoint is still set up (and several more cases). It is also doubtful if this would provide any benefit, since the majority of delay where the watchpoint is set up is likely due to the injected delays by KCSAN. Therefore, the implementation in this patch is simpler and avoids hurting KCSAN's main use-case (normal data race detection); it also implicitly increases scoped-access race-detection-ability due to increased probability of setting up watchpoints by repeatedly calling __kcsan_check_access() throughout the scope of the access. The implementation required adding an additional conditional branch to the fast-path. However, the microbenchmark showed a *speedup* of ~5% on the fast-path. This appears to be due to subtly improved codegen by GCC from moving get_ctx() and associated load of preempt_count earlier. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-26 00:41:56 +08:00
.scoped_accesses = {LIST_POISON1, NULL},
},
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
.softirqs_enabled = 1,
#endif
#ifdef CONFIG_LOCKDEP
.lockdep_depth = 0, /* no locks held yet */
.curr_chain_key = INITIAL_CHAIN_KEY,
.lockdep_recursion = 0,
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2021-01-29 23:13:53 +08:00
.ret_stack = NULL,
.tracing_graph_pause = ATOMIC_INIT(0),
#endif
#if defined(CONFIG_TRACING) && defined(CONFIG_PREEMPTION)
.trace_recursion = 0,
#endif
#ifdef CONFIG_LIVEPATCH
.patch_state = KLP_TRANSITION_IDLE,
#endif
#ifdef CONFIG_SECURITY
.security = NULL,
#endif
#ifdef CONFIG_SECCOMP_FILTER
.seccomp = { .filter_count = ATOMIC_INIT(0) },
#endif
};
2012-05-03 17:02:48 +08:00
EXPORT_SYMBOL(init_task);
/*
* Initial thread structure. Alignment of this is handled by a special
* linker map entry.
*/
#ifndef CONFIG_THREAD_INFO_IN_TASK
struct thread_info init_thread_info __init_thread_info = INIT_THREAD_INFO(init_task);
#endif