linux/drivers/soc/qcom/rpmhpd.c

728 lines
17 KiB
C
Raw Normal View History

soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, The Linux Foundation. All rights reserved.*/
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
#include <linux/mutex.h>
#include <linux/pm_domain.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <soc/qcom/cmd-db.h>
#include <soc/qcom/rpmh.h>
#include <dt-bindings/power/qcom-rpmpd.h>
#define domain_to_rpmhpd(domain) container_of(domain, struct rpmhpd, pd)
#define RPMH_ARC_MAX_LEVELS 16
/**
* struct rpmhpd - top level RPMh power domain resource data structure
* @dev: rpmh power domain controller device
* @pd: generic_pm_domain corresponding to the power domain
* @parent: generic_pm_domain corresponding to the parent's power domain
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
* @peer: A peer power domain in case Active only Voting is
* supported
* @active_only: True if it represents an Active only peer
* @corner: current corner
* @active_corner: current active corner
* @enable_corner: lowest non-zero corner
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
* @level: An array of level (vlvl) to corner (hlvl) mappings
* derived from cmd-db
* @level_count: Number of levels supported by the power domain. max
* being 16 (0 - 15)
* @enabled: true if the power domain is enabled
* @res_name: Resource name used for cmd-db lookup
* @addr: Resource address as looped up using resource name from
* cmd-db
*/
struct rpmhpd {
struct device *dev;
struct generic_pm_domain pd;
struct generic_pm_domain *parent;
struct rpmhpd *peer;
const bool active_only;
unsigned int corner;
unsigned int active_corner;
unsigned int enable_corner;
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
u32 level[RPMH_ARC_MAX_LEVELS];
size_t level_count;
bool enabled;
const char *res_name;
u32 addr;
};
struct rpmhpd_desc {
struct rpmhpd **rpmhpds;
size_t num_pds;
};
static DEFINE_MUTEX(rpmhpd_lock);
/* RPMH powerdomains */
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
static struct rpmhpd cx_ao;
static struct rpmhpd mx;
static struct rpmhpd mx_ao;
static struct rpmhpd cx = {
.pd = { .name = "cx", },
.peer = &cx_ao,
.res_name = "cx.lvl",
};
static struct rpmhpd cx_ao = {
.pd = { .name = "cx_ao", },
.active_only = true,
.peer = &cx,
.res_name = "cx.lvl",
};
static struct rpmhpd cx_ao_w_mx_parent;
static struct rpmhpd cx_w_mx_parent = {
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
.pd = { .name = "cx", },
.peer = &cx_ao_w_mx_parent,
.parent = &mx.pd,
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
.res_name = "cx.lvl",
};
static struct rpmhpd cx_ao_w_mx_parent = {
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
.pd = { .name = "cx_ao", },
.active_only = true,
.peer = &cx_w_mx_parent,
.parent = &mx_ao.pd,
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
.res_name = "cx.lvl",
};
static struct rpmhpd ebi = {
.pd = { .name = "ebi", },
.res_name = "ebi.lvl",
};
static struct rpmhpd gfx = {
.pd = { .name = "gfx", },
.res_name = "gfx.lvl",
};
static struct rpmhpd lcx = {
.pd = { .name = "lcx", },
.res_name = "lcx.lvl",
};
static struct rpmhpd lmx = {
.pd = { .name = "lmx", },
.res_name = "lmx.lvl",
};
static struct rpmhpd mmcx_ao;
static struct rpmhpd mmcx = {
.pd = { .name = "mmcx", },
.peer = &mmcx_ao,
.res_name = "mmcx.lvl",
};
static struct rpmhpd mmcx_ao = {
.pd = { .name = "mmcx_ao", },
.active_only = true,
.peer = &mmcx,
.res_name = "mmcx.lvl",
};
static struct rpmhpd mmcx_ao_w_cx_parent;
static struct rpmhpd mmcx_w_cx_parent = {
.pd = { .name = "mmcx", },
.peer = &mmcx_ao_w_cx_parent,
.parent = &cx.pd,
.res_name = "mmcx.lvl",
};
static struct rpmhpd mmcx_ao_w_cx_parent = {
.pd = { .name = "mmcx_ao", },
.active_only = true,
.peer = &mmcx_w_cx_parent,
.parent = &cx_ao.pd,
.res_name = "mmcx.lvl",
};
static struct rpmhpd mss = {
.pd = { .name = "mss", },
.res_name = "mss.lvl",
};
static struct rpmhpd mx_ao;
static struct rpmhpd mx = {
.pd = { .name = "mx", },
.peer = &mx_ao,
.res_name = "mx.lvl",
};
static struct rpmhpd mx_ao = {
.pd = { .name = "mx_ao", },
.active_only = true,
.peer = &mx,
.res_name = "mx.lvl",
};
static struct rpmhpd mxc_ao;
static struct rpmhpd mxc = {
.pd = { .name = "mxc", },
.peer = &mxc_ao,
.res_name = "mxc.lvl",
};
static struct rpmhpd mxc_ao = {
.pd = { .name = "mxc_ao", },
.active_only = true,
.peer = &mxc,
.res_name = "mxc.lvl",
};
static struct rpmhpd nsp = {
.pd = { .name = "nsp", },
.res_name = "nsp.lvl",
};
static struct rpmhpd qphy = {
.pd = { .name = "qphy", },
.res_name = "qphy.lvl",
};
/* SA8540P RPMH powerdomains */
static struct rpmhpd *sa8540p_rpmhpds[] = {
[SC8280XP_CX] = &cx,
[SC8280XP_CX_AO] = &cx_ao,
[SC8280XP_EBI] = &ebi,
[SC8280XP_GFX] = &gfx,
[SC8280XP_LCX] = &lcx,
[SC8280XP_LMX] = &lmx,
[SC8280XP_MMCX] = &mmcx,
[SC8280XP_MMCX_AO] = &mmcx_ao,
[SC8280XP_MX] = &mx,
[SC8280XP_MX_AO] = &mx_ao,
[SC8280XP_NSP] = &nsp,
};
static const struct rpmhpd_desc sa8540p_desc = {
.rpmhpds = sa8540p_rpmhpds,
.num_pds = ARRAY_SIZE(sa8540p_rpmhpds),
};
/* SDM845 RPMH powerdomains */
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
static struct rpmhpd *sdm845_rpmhpds[] = {
[SDM845_CX] = &cx_w_mx_parent,
[SDM845_CX_AO] = &cx_ao_w_mx_parent,
[SDM845_EBI] = &ebi,
[SDM845_GFX] = &gfx,
[SDM845_LCX] = &lcx,
[SDM845_LMX] = &lmx,
[SDM845_MSS] = &mss,
[SDM845_MX] = &mx,
[SDM845_MX_AO] = &mx_ao,
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
};
static const struct rpmhpd_desc sdm845_desc = {
.rpmhpds = sdm845_rpmhpds,
.num_pds = ARRAY_SIZE(sdm845_rpmhpds),
};
/* SDX55 RPMH powerdomains */
static struct rpmhpd *sdx55_rpmhpds[] = {
[SDX55_CX] = &cx_w_mx_parent,
[SDX55_MSS] = &mss,
[SDX55_MX] = &mx,
};
static const struct rpmhpd_desc sdx55_desc = {
.rpmhpds = sdx55_rpmhpds,
.num_pds = ARRAY_SIZE(sdx55_rpmhpds),
};
/* SDX65 RPMH powerdomains */
static struct rpmhpd *sdx65_rpmhpds[] = {
[SDX65_CX] = &cx_w_mx_parent,
[SDX65_CX_AO] = &cx_ao_w_mx_parent,
[SDX65_MSS] = &mss,
[SDX65_MX] = &mx,
[SDX65_MX_AO] = &mx_ao,
[SDX65_MXC] = &mxc,
};
static const struct rpmhpd_desc sdx65_desc = {
.rpmhpds = sdx65_rpmhpds,
.num_pds = ARRAY_SIZE(sdx65_rpmhpds),
};
/* SM6350 RPMH powerdomains */
static struct rpmhpd *sm6350_rpmhpds[] = {
[SM6350_CX] = &cx_w_mx_parent,
[SM6350_GFX] = &gfx,
[SM6350_LCX] = &lcx,
[SM6350_LMX] = &lmx,
[SM6350_MSS] = &mss,
[SM6350_MX] = &mx,
};
static const struct rpmhpd_desc sm6350_desc = {
.rpmhpds = sm6350_rpmhpds,
.num_pds = ARRAY_SIZE(sm6350_rpmhpds),
};
/* SM8150 RPMH powerdomains */
static struct rpmhpd *sm8150_rpmhpds[] = {
[SM8150_CX] = &cx_w_mx_parent,
[SM8150_CX_AO] = &cx_ao_w_mx_parent,
[SM8150_EBI] = &ebi,
[SM8150_GFX] = &gfx,
[SM8150_LCX] = &lcx,
[SM8150_LMX] = &lmx,
[SM8150_MMCX] = &mmcx,
[SM8150_MMCX_AO] = &mmcx_ao,
[SM8150_MSS] = &mss,
[SM8150_MX] = &mx,
[SM8150_MX_AO] = &mx_ao,
};
static const struct rpmhpd_desc sm8150_desc = {
.rpmhpds = sm8150_rpmhpds,
.num_pds = ARRAY_SIZE(sm8150_rpmhpds),
};
/* SM8250 RPMH powerdomains */
static struct rpmhpd *sm8250_rpmhpds[] = {
[SM8250_CX] = &cx_w_mx_parent,
[SM8250_CX_AO] = &cx_ao_w_mx_parent,
[SM8250_EBI] = &ebi,
[SM8250_GFX] = &gfx,
[SM8250_LCX] = &lcx,
[SM8250_LMX] = &lmx,
[SM8250_MMCX] = &mmcx,
[SM8250_MMCX_AO] = &mmcx_ao,
[SM8250_MX] = &mx,
[SM8250_MX_AO] = &mx_ao,
};
static const struct rpmhpd_desc sm8250_desc = {
.rpmhpds = sm8250_rpmhpds,
.num_pds = ARRAY_SIZE(sm8250_rpmhpds),
};
/* SM8350 Power domains */
static struct rpmhpd *sm8350_rpmhpds[] = {
[SM8350_CX] = &cx_w_mx_parent,
[SM8350_CX_AO] = &cx_ao_w_mx_parent,
[SM8350_EBI] = &ebi,
[SM8350_GFX] = &gfx,
[SM8350_LCX] = &lcx,
[SM8350_LMX] = &lmx,
[SM8350_MMCX] = &mmcx,
[SM8350_MMCX_AO] = &mmcx_ao,
[SM8350_MSS] = &mss,
[SM8350_MX] = &mx,
[SM8350_MX_AO] = &mx_ao,
[SM8350_MXC] = &mxc,
[SM8350_MXC_AO] = &mxc_ao,
};
static const struct rpmhpd_desc sm8350_desc = {
.rpmhpds = sm8350_rpmhpds,
.num_pds = ARRAY_SIZE(sm8350_rpmhpds),
};
/* SM8450 RPMH powerdomains */
static struct rpmhpd *sm8450_rpmhpds[] = {
[SM8450_CX] = &cx,
[SM8450_CX_AO] = &cx_ao,
[SM8450_EBI] = &ebi,
[SM8450_GFX] = &gfx,
[SM8450_LCX] = &lcx,
[SM8450_LMX] = &lmx,
[SM8450_MMCX] = &mmcx_w_cx_parent,
[SM8450_MMCX_AO] = &mmcx_ao_w_cx_parent,
[SM8450_MSS] = &mss,
[SM8450_MX] = &mx,
[SM8450_MX_AO] = &mx_ao,
[SM8450_MXC] = &mxc,
[SM8450_MXC_AO] = &mxc_ao,
};
static const struct rpmhpd_desc sm8450_desc = {
.rpmhpds = sm8450_rpmhpds,
.num_pds = ARRAY_SIZE(sm8450_rpmhpds),
};
/* SC7180 RPMH powerdomains */
static struct rpmhpd *sc7180_rpmhpds[] = {
[SC7180_CX] = &cx_w_mx_parent,
[SC7180_CX_AO] = &cx_ao_w_mx_parent,
[SC7180_GFX] = &gfx,
[SC7180_LCX] = &lcx,
[SC7180_LMX] = &lmx,
[SC7180_MSS] = &mss,
[SC7180_MX] = &mx,
[SC7180_MX_AO] = &mx_ao,
};
static const struct rpmhpd_desc sc7180_desc = {
.rpmhpds = sc7180_rpmhpds,
.num_pds = ARRAY_SIZE(sc7180_rpmhpds),
};
/* SC7280 RPMH powerdomains */
static struct rpmhpd *sc7280_rpmhpds[] = {
[SC7280_CX] = &cx,
[SC7280_CX_AO] = &cx_ao,
[SC7280_EBI] = &ebi,
[SC7280_GFX] = &gfx,
[SC7280_LCX] = &lcx,
[SC7280_LMX] = &lmx,
[SC7280_MSS] = &mss,
[SC7280_MX] = &mx,
[SC7280_MX_AO] = &mx_ao,
};
static const struct rpmhpd_desc sc7280_desc = {
.rpmhpds = sc7280_rpmhpds,
.num_pds = ARRAY_SIZE(sc7280_rpmhpds),
};
/* SC8180x RPMH powerdomains */
static struct rpmhpd *sc8180x_rpmhpds[] = {
[SC8180X_CX] = &cx_w_mx_parent,
[SC8180X_CX_AO] = &cx_ao_w_mx_parent,
[SC8180X_EBI] = &ebi,
[SC8180X_GFX] = &gfx,
[SC8180X_LCX] = &lcx,
[SC8180X_LMX] = &lmx,
[SC8180X_MMCX] = &mmcx,
[SC8180X_MMCX_AO] = &mmcx_ao,
[SC8180X_MSS] = &mss,
[SC8180X_MX] = &mx,
[SC8180X_MX_AO] = &mx_ao,
};
static const struct rpmhpd_desc sc8180x_desc = {
.rpmhpds = sc8180x_rpmhpds,
.num_pds = ARRAY_SIZE(sc8180x_rpmhpds),
};
/* SC8280xp RPMH powerdomains */
static struct rpmhpd *sc8280xp_rpmhpds[] = {
[SC8280XP_CX] = &cx,
[SC8280XP_CX_AO] = &cx_ao,
[SC8280XP_EBI] = &ebi,
[SC8280XP_GFX] = &gfx,
[SC8280XP_LCX] = &lcx,
[SC8280XP_LMX] = &lmx,
[SC8280XP_MMCX] = &mmcx,
[SC8280XP_MMCX_AO] = &mmcx_ao,
[SC8280XP_MX] = &mx,
[SC8280XP_MX_AO] = &mx_ao,
[SC8280XP_NSP] = &nsp,
[SC8280XP_QPHY] = &qphy,
};
static const struct rpmhpd_desc sc8280xp_desc = {
.rpmhpds = sc8280xp_rpmhpds,
.num_pds = ARRAY_SIZE(sc8280xp_rpmhpds),
};
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
static const struct of_device_id rpmhpd_match_table[] = {
{ .compatible = "qcom,sa8540p-rpmhpd", .data = &sa8540p_desc },
{ .compatible = "qcom,sc7180-rpmhpd", .data = &sc7180_desc },
{ .compatible = "qcom,sc7280-rpmhpd", .data = &sc7280_desc },
{ .compatible = "qcom,sc8180x-rpmhpd", .data = &sc8180x_desc },
{ .compatible = "qcom,sc8280xp-rpmhpd", .data = &sc8280xp_desc },
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
{ .compatible = "qcom,sdm845-rpmhpd", .data = &sdm845_desc },
{ .compatible = "qcom,sdx55-rpmhpd", .data = &sdx55_desc},
{ .compatible = "qcom,sdx65-rpmhpd", .data = &sdx65_desc},
{ .compatible = "qcom,sm6350-rpmhpd", .data = &sm6350_desc },
{ .compatible = "qcom,sm8150-rpmhpd", .data = &sm8150_desc },
{ .compatible = "qcom,sm8250-rpmhpd", .data = &sm8250_desc },
{ .compatible = "qcom,sm8350-rpmhpd", .data = &sm8350_desc },
{ .compatible = "qcom,sm8450-rpmhpd", .data = &sm8450_desc },
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
{ }
};
MODULE_DEVICE_TABLE(of, rpmhpd_match_table);
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
static int rpmhpd_send_corner(struct rpmhpd *pd, int state,
unsigned int corner, bool sync)
{
struct tcs_cmd cmd = {
.addr = pd->addr,
.data = corner,
};
/*
* Wait for an ack only when we are increasing the
* perf state of the power domain
*/
if (sync)
return rpmh_write(pd->dev, state, &cmd, 1);
else
return rpmh_write_async(pd->dev, state, &cmd, 1);
}
static void to_active_sleep(struct rpmhpd *pd, unsigned int corner,
unsigned int *active, unsigned int *sleep)
{
*active = corner;
if (pd->active_only)
*sleep = 0;
else
*sleep = *active;
}
/*
* This function is used to aggregate the votes across the active only
* resources and its peers. The aggregated votes are sent to RPMh as
* ACTIVE_ONLY votes (which take effect immediately), as WAKE_ONLY votes
* (applied by RPMh on system wakeup) and as SLEEP votes (applied by RPMh
* on system sleep).
* We send ACTIVE_ONLY votes for resources without any peers. For others,
* which have an active only peer, all 3 votes are sent.
*/
static int rpmhpd_aggregate_corner(struct rpmhpd *pd, unsigned int corner)
{
int ret;
struct rpmhpd *peer = pd->peer;
unsigned int active_corner, sleep_corner;
unsigned int this_active_corner = 0, this_sleep_corner = 0;
unsigned int peer_active_corner = 0, peer_sleep_corner = 0;
to_active_sleep(pd, corner, &this_active_corner, &this_sleep_corner);
if (peer && peer->enabled)
to_active_sleep(peer, peer->corner, &peer_active_corner,
&peer_sleep_corner);
active_corner = max(this_active_corner, peer_active_corner);
ret = rpmhpd_send_corner(pd, RPMH_ACTIVE_ONLY_STATE, active_corner,
active_corner > pd->active_corner);
if (ret)
return ret;
pd->active_corner = active_corner;
if (peer) {
peer->active_corner = active_corner;
ret = rpmhpd_send_corner(pd, RPMH_WAKE_ONLY_STATE,
active_corner, false);
if (ret)
return ret;
sleep_corner = max(this_sleep_corner, peer_sleep_corner);
return rpmhpd_send_corner(pd, RPMH_SLEEP_STATE, sleep_corner,
false);
}
return ret;
}
static int rpmhpd_power_on(struct generic_pm_domain *domain)
{
struct rpmhpd *pd = domain_to_rpmhpd(domain);
unsigned int corner;
int ret;
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
mutex_lock(&rpmhpd_lock);
corner = max(pd->corner, pd->enable_corner);
ret = rpmhpd_aggregate_corner(pd, corner);
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
if (!ret)
pd->enabled = true;
mutex_unlock(&rpmhpd_lock);
return ret;
}
static int rpmhpd_power_off(struct generic_pm_domain *domain)
{
struct rpmhpd *pd = domain_to_rpmhpd(domain);
int ret;
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
mutex_lock(&rpmhpd_lock);
ret = rpmhpd_aggregate_corner(pd, 0);
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
if (!ret)
pd->enabled = false;
mutex_unlock(&rpmhpd_lock);
return ret;
}
static int rpmhpd_set_performance_state(struct generic_pm_domain *domain,
unsigned int level)
{
struct rpmhpd *pd = domain_to_rpmhpd(domain);
int ret = 0, i;
mutex_lock(&rpmhpd_lock);
for (i = 0; i < pd->level_count; i++)
if (level <= pd->level[i])
break;
/*
* If the level requested is more than that supported by the
* max corner, just set it to max anyway.
*/
if (i == pd->level_count)
i--;
if (pd->enabled) {
/* Ensure that the domain isn't turn off */
if (i < pd->enable_corner)
i = pd->enable_corner;
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
ret = rpmhpd_aggregate_corner(pd, i);
if (ret)
goto out;
}
pd->corner = i;
out:
mutex_unlock(&rpmhpd_lock);
return ret;
}
static unsigned int rpmhpd_get_performance_state(struct generic_pm_domain *genpd,
struct dev_pm_opp *opp)
{
return dev_pm_opp_get_level(opp);
}
static int rpmhpd_update_level_mapping(struct rpmhpd *rpmhpd)
{
int i;
const u16 *buf;
buf = cmd_db_read_aux_data(rpmhpd->res_name, &rpmhpd->level_count);
if (IS_ERR(buf))
return PTR_ERR(buf);
/* 2 bytes used for each command DB aux data entry */
rpmhpd->level_count >>= 1;
if (rpmhpd->level_count > RPMH_ARC_MAX_LEVELS)
return -EINVAL;
for (i = 0; i < rpmhpd->level_count; i++) {
rpmhpd->level[i] = buf[i];
/* Remember the first corner with non-zero level */
if (!rpmhpd->level[rpmhpd->enable_corner] && rpmhpd->level[i])
rpmhpd->enable_corner = i;
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
/*
* The AUX data may be zero padded. These 0 valued entries at
* the end of the map must be ignored.
*/
if (i > 0 && rpmhpd->level[i] == 0) {
rpmhpd->level_count = i;
break;
}
pr_debug("%s: ARC hlvl=%2d --> vlvl=%4u\n", rpmhpd->res_name, i,
rpmhpd->level[i]);
}
return 0;
}
static int rpmhpd_probe(struct platform_device *pdev)
{
int i, ret;
size_t num_pds;
struct device *dev = &pdev->dev;
struct genpd_onecell_data *data;
struct rpmhpd **rpmhpds;
const struct rpmhpd_desc *desc;
desc = of_device_get_match_data(dev);
if (!desc)
return -EINVAL;
rpmhpds = desc->rpmhpds;
num_pds = desc->num_pds;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->domains = devm_kcalloc(dev, num_pds, sizeof(*data->domains),
GFP_KERNEL);
if (!data->domains)
return -ENOMEM;
data->num_domains = num_pds;
for (i = 0; i < num_pds; i++) {
if (!rpmhpds[i])
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
continue;
rpmhpds[i]->dev = dev;
rpmhpds[i]->addr = cmd_db_read_addr(rpmhpds[i]->res_name);
if (!rpmhpds[i]->addr) {
dev_err(dev, "Could not find RPMh address for resource %s\n",
rpmhpds[i]->res_name);
return -ENODEV;
}
ret = cmd_db_read_slave_id(rpmhpds[i]->res_name);
if (ret != CMD_DB_HW_ARC) {
dev_err(dev, "RPMh slave ID mismatch\n");
return -EINVAL;
}
ret = rpmhpd_update_level_mapping(rpmhpds[i]);
if (ret)
return ret;
rpmhpds[i]->pd.power_off = rpmhpd_power_off;
rpmhpds[i]->pd.power_on = rpmhpd_power_on;
rpmhpds[i]->pd.set_performance_state = rpmhpd_set_performance_state;
rpmhpds[i]->pd.opp_to_performance_state = rpmhpd_get_performance_state;
pm_genpd_init(&rpmhpds[i]->pd, NULL, true);
data->domains[i] = &rpmhpds[i]->pd;
}
/* Add subdomains */
for (i = 0; i < num_pds; i++) {
if (!rpmhpds[i])
continue;
if (rpmhpds[i]->parent)
pm_genpd_add_subdomain(rpmhpds[i]->parent,
&rpmhpds[i]->pd);
}
soc: qcom: rpmhpd: Add RPMh power domain driver The RPMh power domain driver aggregates the corner votes from various consumers for the ARC resources and communicates it to RPMh. With RPMh we use 2 different numbering space for corners, one used by the clients to express their performance needs, and another used to communicate to RPMh hardware. The clients express their performance requirements using a sparse numbering space which are mapped to meaningful levels like RET, SVS, NOMINAL, TURBO etc which then get mapped to another number space between 0 and 15 which is communicated to RPMh. The sparse number space, also referred to as vlvl is mapped to the continuous number space of 0 to 15, also referred to as hlvl, using command DB. Some power domain clients could request a performance state only while the CPU is active, while some others could request for a certain performance state all the time regardless of the state of the CPU. We handle this by internally aggregating the votes from both type of clients and then send the aggregated votes to RPMh. There are also 3 different types of votes that are comunicated to RPMh for every resource. 1. ACTIVE_ONLY: This specifies the requirement for the resource when the CPU is active 2. SLEEP: This specifies the requirement for the resource when the CPU is going to sleep 3. WAKE_ONLY: This specifies the requirement for the resource when the CPU is coming out of sleep to active state We add data for all power domains on sdm845 SoC as part of the patch. The driver can be extended to support other SoCs which support RPMh Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Andy Gross <andy.gross@linaro.org>
2019-01-10 12:02:07 +08:00
return of_genpd_add_provider_onecell(pdev->dev.of_node, data);
}
static struct platform_driver rpmhpd_driver = {
.driver = {
.name = "qcom-rpmhpd",
.of_match_table = rpmhpd_match_table,
.suppress_bind_attrs = true,
},
.probe = rpmhpd_probe,
};
static int __init rpmhpd_init(void)
{
return platform_driver_register(&rpmhpd_driver);
}
core_initcall(rpmhpd_init);
MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Power Domain Driver");
MODULE_LICENSE("GPL v2");