perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
/*
|
|
|
|
* builtin-test.c
|
|
|
|
*
|
|
|
|
* Builtin regression testing command: ever growing number of sanity tests
|
|
|
|
*/
|
2014-05-10 23:22:30 +08:00
|
|
|
#include <unistd.h>
|
|
|
|
#include <string.h>
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
#include "builtin.h"
|
2014-10-10 03:16:00 +08:00
|
|
|
#include "hist.h"
|
2013-01-25 03:22:55 +08:00
|
|
|
#include "intlist.h"
|
2012-11-10 08:46:41 +08:00
|
|
|
#include "tests.h"
|
2012-11-10 08:46:51 +08:00
|
|
|
#include "debug.h"
|
|
|
|
#include "color.h"
|
2015-12-15 23:39:39 +08:00
|
|
|
#include <subcmd/parse-options.h>
|
2012-11-10 08:46:51 +08:00
|
|
|
#include "symbol.h"
|
2011-01-04 21:55:27 +08:00
|
|
|
|
2015-10-05 22:40:19 +08:00
|
|
|
struct test __weak arch_tests[] = {
|
|
|
|
{
|
|
|
|
.func = NULL,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct test generic_tests[] = {
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
{
|
|
|
|
.desc = "vmlinux symtab matches kallsyms",
|
|
|
|
.func = test__vmlinux_matches_kallsyms,
|
|
|
|
},
|
2011-01-04 10:16:20 +08:00
|
|
|
{
|
2015-04-16 21:52:53 +08:00
|
|
|
.desc = "detect openat syscall event",
|
|
|
|
.func = test__openat_syscall_event,
|
2011-01-04 10:16:20 +08:00
|
|
|
},
|
2011-01-04 21:55:27 +08:00
|
|
|
{
|
2015-04-16 21:52:53 +08:00
|
|
|
.desc = "detect openat syscall event on all cpus",
|
|
|
|
.func = test__openat_syscall_event_on_all_cpus,
|
2011-01-04 21:55:27 +08:00
|
|
|
},
|
2011-01-15 20:42:46 +08:00
|
|
|
{
|
|
|
|
.desc = "read samples using the mmap interface",
|
|
|
|
.func = test__basic_mmap,
|
|
|
|
},
|
2011-07-14 17:25:33 +08:00
|
|
|
{
|
|
|
|
.desc = "parse events tests",
|
2012-11-10 08:46:51 +08:00
|
|
|
.func = test__parse_events,
|
2011-07-14 17:25:33 +08:00
|
|
|
},
|
2011-12-02 21:13:50 +08:00
|
|
|
{
|
|
|
|
.desc = "Validate PERF_RECORD_* events & perf_sample fields",
|
|
|
|
.func = test__PERF_RECORD,
|
|
|
|
},
|
2012-03-16 03:09:17 +08:00
|
|
|
{
|
|
|
|
.desc = "Test perf pmu format parsing",
|
2012-11-10 08:46:50 +08:00
|
|
|
.func = test__pmu,
|
2012-03-16 03:09:17 +08:00
|
|
|
},
|
2012-07-22 20:14:40 +08:00
|
|
|
{
|
2014-05-12 20:43:53 +08:00
|
|
|
.desc = "Test dso data read",
|
2012-11-10 08:46:51 +08:00
|
|
|
.func = test__dso_data,
|
2012-07-22 20:14:40 +08:00
|
|
|
},
|
2014-05-12 20:43:53 +08:00
|
|
|
{
|
|
|
|
.desc = "Test dso data cache",
|
|
|
|
.func = test__dso_data_cache,
|
|
|
|
},
|
2014-05-12 20:50:03 +08:00
|
|
|
{
|
|
|
|
.desc = "Test dso data reopen",
|
|
|
|
.func = test__dso_data_reopen,
|
|
|
|
},
|
2012-09-07 00:11:18 +08:00
|
|
|
{
|
|
|
|
.desc = "roundtrip evsel->name check",
|
2012-11-10 08:46:47 +08:00
|
|
|
.func = test__perf_evsel__roundtrip_name_test,
|
2012-09-07 00:11:18 +08:00
|
|
|
},
|
2012-09-18 22:56:28 +08:00
|
|
|
{
|
|
|
|
.desc = "Check parsing of sched tracepoints fields",
|
2012-11-10 08:46:48 +08:00
|
|
|
.func = test__perf_evsel__tp_sched_test,
|
2012-09-18 22:56:28 +08:00
|
|
|
},
|
2012-09-27 00:23:10 +08:00
|
|
|
{
|
2015-04-16 21:52:53 +08:00
|
|
|
.desc = "Generate and check syscalls:sys_enter_openat event fields",
|
|
|
|
.func = test__syscall_openat_tp_fields,
|
2012-09-27 00:23:10 +08:00
|
|
|
},
|
2012-10-31 06:02:05 +08:00
|
|
|
{
|
|
|
|
.desc = "struct perf_event_attr setup",
|
2012-11-10 08:46:51 +08:00
|
|
|
.func = test__attr,
|
2012-10-31 06:02:05 +08:00
|
|
|
},
|
2012-12-10 16:29:57 +08:00
|
|
|
{
|
2013-05-23 18:08:38 +08:00
|
|
|
.desc = "Test matching and linking multiple hists",
|
2012-12-10 16:29:57 +08:00
|
|
|
.func = test__hists_link,
|
|
|
|
},
|
2012-12-15 00:06:13 +08:00
|
|
|
{
|
2014-11-12 16:27:05 +08:00
|
|
|
.desc = "Try 'import perf' in python, checking link problems",
|
2012-12-15 00:06:13 +08:00
|
|
|
.func = test__python_use,
|
|
|
|
},
|
2013-03-11 02:41:10 +08:00
|
|
|
{
|
|
|
|
.desc = "Test breakpoint overflow signal handler",
|
|
|
|
.func = test__bp_signal,
|
|
|
|
},
|
2013-03-11 02:41:11 +08:00
|
|
|
{
|
|
|
|
.desc = "Test breakpoint overflow sampling",
|
|
|
|
.func = test__bp_signal_overflow,
|
|
|
|
},
|
2013-03-15 13:58:11 +08:00
|
|
|
{
|
|
|
|
.desc = "Test number of exit event of a simple workload",
|
|
|
|
.func = test__task_exit,
|
|
|
|
},
|
2013-03-18 10:41:47 +08:00
|
|
|
{
|
|
|
|
.desc = "Test software clock events have valid period values",
|
|
|
|
.func = test__sw_clock_freq,
|
|
|
|
},
|
2013-08-07 19:38:45 +08:00
|
|
|
{
|
|
|
|
.desc = "Test object code reading",
|
|
|
|
.func = test__code_reading,
|
|
|
|
},
|
2013-08-27 16:23:13 +08:00
|
|
|
{
|
|
|
|
.desc = "Test sample parsing",
|
|
|
|
.func = test__sample_parsing,
|
|
|
|
},
|
2013-09-01 02:50:53 +08:00
|
|
|
{
|
|
|
|
.desc = "Test using a dummy software event to keep tracking",
|
|
|
|
.func = test__keep_tracking,
|
|
|
|
},
|
2013-09-05 04:18:16 +08:00
|
|
|
{
|
|
|
|
.desc = "Test parsing with no sample_id_all bit set",
|
|
|
|
.func = test__parse_no_sample_id_all,
|
|
|
|
},
|
2014-04-25 11:28:14 +08:00
|
|
|
{
|
|
|
|
.desc = "Test filtering hist entries",
|
|
|
|
.func = test__hists_filter,
|
|
|
|
},
|
2014-03-06 00:20:31 +08:00
|
|
|
{
|
|
|
|
.desc = "Test mmap thread lookup",
|
|
|
|
.func = test__mmap_thread_lookup,
|
|
|
|
},
|
2014-03-17 21:39:00 +08:00
|
|
|
{
|
|
|
|
.desc = "Test thread mg sharing",
|
|
|
|
.func = test__thread_mg_share,
|
|
|
|
},
|
2014-05-12 13:43:18 +08:00
|
|
|
{
|
|
|
|
.desc = "Test output sorting of hist entries",
|
|
|
|
.func = test__hists_output,
|
|
|
|
},
|
2014-05-23 17:04:42 +08:00
|
|
|
{
|
|
|
|
.desc = "Test cumulation of child hist entries",
|
|
|
|
.func = test__hists_cumulate,
|
|
|
|
},
|
2014-08-16 03:08:36 +08:00
|
|
|
{
|
|
|
|
.desc = "Test tracking with sched_switch",
|
|
|
|
.func = test__switch_tracking,
|
|
|
|
},
|
perf tests: Add test for perf_evlist__filter_pollfd()
That will use a synthetic evlist with just what is touched by this new
method to check that it works as expected.
Output in verbose mode:
$ perf test -v pollfd
33: Filter fds with revents mask in a pollfd array :
--- start ---
filtering all but pollfd[2]:
before: 5 [ 5, 4, 3, 2, 1 ]
after: 1 [ 3 ]
filtering all but (pollfd[0], pollfd[3]):
before: 5 [ 5, 4, 3, 2, 1 ]
after: 2 [ 5, 2 ]
test child finished with 0
---- end ----
Filter fds with revents mask in a pollfd array: Ok
$
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/n/tip-x7c8liszdvc3ocmanf2cet8p@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-08-13 10:34:06 +08:00
|
|
|
{
|
2014-09-04 05:02:59 +08:00
|
|
|
.desc = "Filter fds with revents mask in a fdarray",
|
|
|
|
.func = test__fdarray__filter,
|
perf tests: Add test for perf_evlist__filter_pollfd()
That will use a synthetic evlist with just what is touched by this new
method to check that it works as expected.
Output in verbose mode:
$ perf test -v pollfd
33: Filter fds with revents mask in a pollfd array :
--- start ---
filtering all but pollfd[2]:
before: 5 [ 5, 4, 3, 2, 1 ]
after: 1 [ 3 ]
filtering all but (pollfd[0], pollfd[3]):
before: 5 [ 5, 4, 3, 2, 1 ]
after: 2 [ 5, 2 ]
test child finished with 0
---- end ----
Filter fds with revents mask in a pollfd array: Ok
$
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/n/tip-x7c8liszdvc3ocmanf2cet8p@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-08-13 10:34:06 +08:00
|
|
|
},
|
perf tests: Add pollfd growing test
[acme@ssdandy linux]$ perf test "Add fd"
34: Add fd to pollfd array, making it autogrow : Ok
[acme@ssdandy linux]$ perf test -v "Add fd"
34: Add fd to pollfd array, making it autogrow :
--- start ---
test child forked, pid 19817
before growing array: 2 [ 1, 2 ]
after 3rd add_pollfd: 3 [ 1, 2, 35 ]
after 4th add_pollfd: 4 [ 1, 2, 35, 88 ]
test child finished with 0
---- end ----
Add fd to pollfd array, making it autogrow: Ok
[acme@ssdandy linux]$
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jean Pihet <jean.pihet@linaro.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-smflpyta146bzog7z0effjss@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-08-19 03:49:00 +08:00
|
|
|
{
|
2014-09-04 05:02:59 +08:00
|
|
|
.desc = "Add fd to a fdarray, making it autogrow",
|
|
|
|
.func = test__fdarray__add,
|
perf tests: Add pollfd growing test
[acme@ssdandy linux]$ perf test "Add fd"
34: Add fd to pollfd array, making it autogrow : Ok
[acme@ssdandy linux]$ perf test -v "Add fd"
34: Add fd to pollfd array, making it autogrow :
--- start ---
test child forked, pid 19817
before growing array: 2 [ 1, 2 ]
after 3rd add_pollfd: 3 [ 1, 2, 35 ]
after 4th add_pollfd: 4 [ 1, 2, 35, 88 ]
test child finished with 0
---- end ----
Add fd to pollfd array, making it autogrow: Ok
[acme@ssdandy linux]$
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jean Pihet <jean.pihet@linaro.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-smflpyta146bzog7z0effjss@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-08-19 03:49:00 +08:00
|
|
|
},
|
perf tools: Add kmod_path__parse function
Provides united way of parsing kernel module path
into several components.
The new kmod_path__parse function and few defines:
int __kmod_path__parse(struct kmod_path *m, const char *path,
bool alloc_name, bool alloc_ext);
#define kmod_path__parse(__m, __p) __kmod_path__parse(__m, __p, false, false)
#define kmod_path__parse_name(__m, __p) __kmod_path__parse(__m, __p, true , false)
#define kmod_path__parse_ext(__m, __p) __kmod_path__parse(__m, __p, false, true)
parse kernel module @path and updates @m argument like:
@comp - true if @path contains supported compression suffix,
false otherwise
@kmod - true if @path contains '.ko' suffix in right position,
false otherwise
@name - if (@alloc_name && @kmod) is true, it contains strdup-ed base name
of the kernel module without suffixes, otherwise strudup-ed
base name of @path
@ext - if (@alloc_ext && @comp) is true, it contains strdup-ed string
the compression suffix
It returns 0 if there's no strdup error, -ENOMEM otherwise.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/n/tip-9t6eqg8j610r94l743hkntiv@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-02-05 22:40:25 +08:00
|
|
|
{
|
|
|
|
.desc = "Test kmod_path__parse function",
|
|
|
|
.func = test__kmod_path__parse,
|
|
|
|
},
|
2015-06-26 17:29:08 +08:00
|
|
|
{
|
|
|
|
.desc = "Test thread map",
|
|
|
|
.func = test__thread_map,
|
|
|
|
},
|
2015-07-08 18:04:02 +08:00
|
|
|
{
|
|
|
|
.desc = "Test LLVM searching and compiling",
|
|
|
|
.func = test__llvm,
|
2015-11-17 16:32:48 +08:00
|
|
|
.subtest = {
|
|
|
|
.skip_if_fail = true,
|
|
|
|
.get_nr = test__llvm_subtest_get_nr,
|
|
|
|
.get_desc = test__llvm_subtest_get_desc,
|
|
|
|
},
|
2015-07-08 18:04:02 +08:00
|
|
|
},
|
2015-09-04 16:58:31 +08:00
|
|
|
{
|
|
|
|
.desc = "Test topology in session",
|
|
|
|
.func = test_session_topology,
|
|
|
|
},
|
2015-11-06 21:49:43 +08:00
|
|
|
{
|
|
|
|
.desc = "Test BPF filter",
|
|
|
|
.func = test__bpf,
|
2015-11-17 16:32:49 +08:00
|
|
|
.subtest = {
|
|
|
|
.skip_if_fail = true,
|
|
|
|
.get_nr = test__bpf_subtest_get_nr,
|
|
|
|
.get_desc = test__bpf_subtest_get_desc,
|
|
|
|
},
|
2015-11-06 21:49:43 +08:00
|
|
|
},
|
2015-10-25 22:51:20 +08:00
|
|
|
{
|
|
|
|
.desc = "Test thread map synthesize",
|
|
|
|
.func = test__thread_map_synthesize,
|
|
|
|
},
|
2015-10-25 22:51:24 +08:00
|
|
|
{
|
|
|
|
.desc = "Test cpu map synthesize",
|
|
|
|
.func = test__cpu_map_synthesize,
|
|
|
|
},
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
{
|
|
|
|
.func = NULL,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2015-10-05 22:40:19 +08:00
|
|
|
static struct test *tests[] = {
|
|
|
|
generic_tests,
|
|
|
|
arch_tests,
|
|
|
|
};
|
|
|
|
|
2015-09-06 03:02:20 +08:00
|
|
|
static bool perf_test__matches(struct test *test, int curr, int argc, const char *argv[])
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
{
|
2011-11-29 22:52:07 +08:00
|
|
|
int i;
|
|
|
|
|
|
|
|
if (argc == 0)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
for (i = 0; i < argc; ++i) {
|
|
|
|
char *end;
|
|
|
|
long nr = strtoul(argv[i], &end, 10);
|
|
|
|
|
|
|
|
if (*end == '\0') {
|
|
|
|
if (nr == curr + 1)
|
|
|
|
return true;
|
|
|
|
continue;
|
|
|
|
}
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
|
2015-11-07 04:03:38 +08:00
|
|
|
if (strcasestr(test->desc, argv[i]))
|
2011-11-29 22:52:07 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
perf tests: Pass the subtest index to each test routine
Some tests have sub-tests we want to run, so allow passing this.
Wang tried to avoid having to touch all tests, but then, having the
test.func in an anonymous union makes the build fail on older compilers,
like the one in RHEL6, where:
test a = {
.func = foo,
};
fails.
To fix it leave the func pointer in the main structure and pass the subtest
index to all tests, end result function is the same, but we have just one
function pointer, not two, with and without the subtest index as an argument.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-5genj0ficwdmelpoqlds0u4y@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-19 23:01:48 +08:00
|
|
|
static int run_test(struct test *test, int subtest)
|
2014-05-10 23:22:30 +08:00
|
|
|
{
|
|
|
|
int status, err = -1, child = fork();
|
2014-08-14 10:22:45 +08:00
|
|
|
char sbuf[STRERR_BUFSIZE];
|
2014-05-10 23:22:30 +08:00
|
|
|
|
|
|
|
if (child < 0) {
|
2014-08-14 10:22:45 +08:00
|
|
|
pr_err("failed to fork test: %s\n",
|
|
|
|
strerror_r(errno, sbuf, sizeof(sbuf)));
|
2014-05-10 23:22:30 +08:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!child) {
|
|
|
|
pr_debug("test child forked, pid %d\n", getpid());
|
2015-11-17 16:32:50 +08:00
|
|
|
if (!verbose) {
|
|
|
|
int nullfd = open("/dev/null", O_WRONLY);
|
|
|
|
if (nullfd >= 0) {
|
|
|
|
close(STDERR_FILENO);
|
|
|
|
close(STDOUT_FILENO);
|
|
|
|
|
|
|
|
dup2(nullfd, STDOUT_FILENO);
|
|
|
|
dup2(STDOUT_FILENO, STDERR_FILENO);
|
|
|
|
close(nullfd);
|
|
|
|
}
|
2015-12-12 06:06:53 +08:00
|
|
|
} else {
|
|
|
|
signal(SIGSEGV, sighandler_dump_stack);
|
|
|
|
signal(SIGFPE, sighandler_dump_stack);
|
2015-11-17 16:32:50 +08:00
|
|
|
}
|
|
|
|
|
perf tests: Pass the subtest index to each test routine
Some tests have sub-tests we want to run, so allow passing this.
Wang tried to avoid having to touch all tests, but then, having the
test.func in an anonymous union makes the build fail on older compilers,
like the one in RHEL6, where:
test a = {
.func = foo,
};
fails.
To fix it leave the func pointer in the main structure and pass the subtest
index to all tests, end result function is the same, but we have just one
function pointer, not two, with and without the subtest index as an argument.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Link: http://lkml.kernel.org/n/tip-5genj0ficwdmelpoqlds0u4y@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-11-19 23:01:48 +08:00
|
|
|
err = test->func(subtest);
|
2014-05-10 23:22:30 +08:00
|
|
|
exit(err);
|
|
|
|
}
|
|
|
|
|
|
|
|
wait(&status);
|
|
|
|
|
|
|
|
if (WIFEXITED(status)) {
|
2015-05-11 20:28:35 +08:00
|
|
|
err = (signed char)WEXITSTATUS(status);
|
2014-05-10 23:22:30 +08:00
|
|
|
pr_debug("test child finished with %d\n", err);
|
|
|
|
} else if (WIFSIGNALED(status)) {
|
|
|
|
err = -1;
|
|
|
|
pr_debug("test child interrupted\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2015-10-05 22:40:19 +08:00
|
|
|
#define for_each_test(j, t) \
|
|
|
|
for (j = 0; j < ARRAY_SIZE(tests); j++) \
|
|
|
|
for (t = &tests[j][0]; t->func; t++)
|
2015-09-06 03:02:20 +08:00
|
|
|
|
2015-11-17 16:32:48 +08:00
|
|
|
static int test_and_print(struct test *t, bool force_skip, int subtest)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (!force_skip) {
|
|
|
|
pr_debug("\n--- start ---\n");
|
|
|
|
err = run_test(t, subtest);
|
|
|
|
pr_debug("---- end ----\n");
|
|
|
|
} else {
|
|
|
|
pr_debug("\n--- force skipped ---\n");
|
|
|
|
err = TEST_SKIP;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!t->subtest.get_nr)
|
|
|
|
pr_debug("%s:", t->desc);
|
|
|
|
else
|
|
|
|
pr_debug("%s subtest %d:", t->desc, subtest);
|
|
|
|
|
|
|
|
switch (err) {
|
|
|
|
case TEST_OK:
|
|
|
|
pr_info(" Ok\n");
|
|
|
|
break;
|
|
|
|
case TEST_SKIP:
|
|
|
|
color_fprintf(stderr, PERF_COLOR_YELLOW, " Skip\n");
|
|
|
|
break;
|
|
|
|
case TEST_FAIL:
|
|
|
|
default:
|
|
|
|
color_fprintf(stderr, PERF_COLOR_RED, " FAILED!\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2013-01-25 03:22:55 +08:00
|
|
|
static int __cmd_test(int argc, const char *argv[], struct intlist *skiplist)
|
2011-11-29 22:52:07 +08:00
|
|
|
{
|
2015-09-06 03:02:20 +08:00
|
|
|
struct test *t;
|
2015-10-05 22:40:19 +08:00
|
|
|
unsigned int j;
|
2011-11-29 22:52:07 +08:00
|
|
|
int i = 0;
|
2012-10-25 01:44:41 +08:00
|
|
|
int width = 0;
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
|
2015-10-05 22:40:19 +08:00
|
|
|
for_each_test(j, t) {
|
2015-09-06 03:02:20 +08:00
|
|
|
int len = strlen(t->desc);
|
2012-10-25 01:44:41 +08:00
|
|
|
|
|
|
|
if (width < len)
|
|
|
|
width = len;
|
|
|
|
}
|
2012-10-31 06:01:43 +08:00
|
|
|
|
2015-10-05 22:40:19 +08:00
|
|
|
for_each_test(j, t) {
|
2011-11-29 22:52:07 +08:00
|
|
|
int curr = i++, err;
|
|
|
|
|
2015-09-06 03:02:20 +08:00
|
|
|
if (!perf_test__matches(t, curr, argc, argv))
|
2011-11-29 22:52:07 +08:00
|
|
|
continue;
|
|
|
|
|
2015-09-06 03:02:20 +08:00
|
|
|
pr_info("%2d: %-*s:", i, width, t->desc);
|
2013-01-25 03:22:55 +08:00
|
|
|
|
|
|
|
if (intlist__find(skiplist, i)) {
|
|
|
|
color_fprintf(stderr, PERF_COLOR_YELLOW, " Skip (user override)\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2015-11-17 16:32:48 +08:00
|
|
|
if (!t->subtest.get_nr) {
|
|
|
|
test_and_print(t, false, -1);
|
|
|
|
} else {
|
|
|
|
int subn = t->subtest.get_nr();
|
|
|
|
/*
|
|
|
|
* minus 2 to align with normal testcases.
|
|
|
|
* For subtest we print additional '.x' in number.
|
|
|
|
* for example:
|
|
|
|
*
|
|
|
|
* 35: Test LLVM searching and compiling :
|
|
|
|
* 35.1: Basic BPF llvm compiling test : Ok
|
|
|
|
*/
|
|
|
|
int subw = width > 2 ? width - 2 : width;
|
|
|
|
bool skip = false;
|
|
|
|
int subi;
|
|
|
|
|
|
|
|
if (subn <= 0) {
|
|
|
|
color_fprintf(stderr, PERF_COLOR_YELLOW,
|
|
|
|
" Skip (not compiled in)\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
pr_info("\n");
|
|
|
|
|
|
|
|
for (subi = 0; subi < subn; subi++) {
|
|
|
|
int len = strlen(t->subtest.get_desc(subi));
|
|
|
|
|
|
|
|
if (subw < len)
|
|
|
|
subw = len;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (subi = 0; subi < subn; subi++) {
|
|
|
|
pr_info("%2d.%1d: %-*s:", i, subi + 1, subw,
|
|
|
|
t->subtest.get_desc(subi));
|
|
|
|
err = test_and_print(t, skip, subi);
|
|
|
|
if (err != TEST_OK && t->subtest.skip_if_fail)
|
|
|
|
skip = true;
|
|
|
|
}
|
2012-12-19 22:33:39 +08:00
|
|
|
}
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-11-29 22:52:07 +08:00
|
|
|
static int perf_test__list(int argc, const char **argv)
|
|
|
|
{
|
2015-10-05 22:40:19 +08:00
|
|
|
unsigned int j;
|
2015-09-06 03:02:20 +08:00
|
|
|
struct test *t;
|
2011-11-29 22:52:07 +08:00
|
|
|
int i = 0;
|
|
|
|
|
2015-10-05 22:40:19 +08:00
|
|
|
for_each_test(j, t) {
|
2015-09-06 03:02:20 +08:00
|
|
|
if (argc > 1 && !strstr(t->desc, argv[1]))
|
2011-11-29 22:52:07 +08:00
|
|
|
continue;
|
|
|
|
|
2015-09-06 03:02:20 +08:00
|
|
|
pr_info("%2d: %s\n", ++i, t->desc);
|
2011-11-29 22:52:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
|
2012-09-11 06:15:03 +08:00
|
|
|
int cmd_test(int argc, const char **argv, const char *prefix __maybe_unused)
|
2011-11-29 22:52:07 +08:00
|
|
|
{
|
2015-03-18 21:35:55 +08:00
|
|
|
const char *test_usage[] = {
|
2011-11-29 22:52:07 +08:00
|
|
|
"perf test [<options>] [{list <test-name-fragment>|[<test-name-fragments>|<test-numbers>]}]",
|
|
|
|
NULL,
|
|
|
|
};
|
2013-01-25 03:22:55 +08:00
|
|
|
const char *skip = NULL;
|
2011-11-29 22:52:07 +08:00
|
|
|
const struct option test_options[] = {
|
2013-01-25 03:22:55 +08:00
|
|
|
OPT_STRING('s', "skip", &skip, "tests", "tests to skip"),
|
2012-01-08 01:25:26 +08:00
|
|
|
OPT_INCR('v', "verbose", &verbose,
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
"be more verbose (show symbol address, etc)"),
|
|
|
|
OPT_END()
|
2011-11-29 22:52:07 +08:00
|
|
|
};
|
2015-03-18 21:35:55 +08:00
|
|
|
const char * const test_subcommands[] = { "list", NULL };
|
2013-01-25 03:22:55 +08:00
|
|
|
struct intlist *skiplist = NULL;
|
2014-10-10 03:16:00 +08:00
|
|
|
int ret = hists__init();
|
|
|
|
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
|
2015-03-18 21:35:55 +08:00
|
|
|
argc = parse_options_subcommand(argc, argv, test_options, test_subcommands, test_usage, 0);
|
2011-11-29 22:52:07 +08:00
|
|
|
if (argc >= 1 && !strcmp(argv[0], "list"))
|
|
|
|
return perf_test__list(argc, argv);
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
|
|
|
|
symbol_conf.priv_size = sizeof(int);
|
|
|
|
symbol_conf.sort_by_name = true;
|
|
|
|
symbol_conf.try_vmlinux_path = true;
|
|
|
|
|
2014-08-12 14:40:45 +08:00
|
|
|
if (symbol__init(NULL) < 0)
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
return -1;
|
|
|
|
|
2013-01-25 03:22:55 +08:00
|
|
|
if (skip != NULL)
|
|
|
|
skiplist = intlist__new(skip);
|
|
|
|
|
|
|
|
return __cmd_test(argc, argv, skiplist);
|
perf test: Initial regression testing command
First an example with the first internal test:
[acme@doppio linux-2.6-tip]$ perf test
1: vmlinux symtab matches kallsyms: Ok
So it run just one test, that is "vmlinux symtab matches kallsyms", and it was
successful.
If we run it in verbose mode, we'll see details about errors and extra warnings
for non-fatal problems:
[acme@doppio linux-2.6-tip]$ perf test -v
1: vmlinux symtab matches kallsyms:
--- start ---
Looking at the vmlinux_path (5 entries long)
No build_id in vmlinux, ignoring it
No build_id in /boot/vmlinux, ignoring it
No build_id in /boot/vmlinux-2.6.34-rc4-tip+, ignoring it
Using /lib/modules/2.6.34-rc4-tip+/build/vmlinux for symbols
Maps only in vmlinux:
ffffffff81cb81b1-ffffffff81e1149b 0 [kernel].init.text
ffffffff81e1149c-ffffffff9fffffff 0 [kernel].exit.text
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2
Maps in vmlinux with a different name in kallsyms:
ffffffffff600000-ffffffffff6000ff 0 [kernel].vsyscall_0 in kallsyms as [kernel].0
ffffffffff600100-ffffffffff6003ff 0 [kernel].vsyscall_fn in kallsyms as:
*ffffffffff600100-ffffffffff60012f 0 [kernel].2
ffffffffff600400-ffffffffff6007ff 0 [kernel].vsyscall_1 in kallsyms as [kernel].6
ffffffffff600800-ffffffffffffffff 0 [kernel].vsyscall_2 in kallsyms as [kernel].8
Maps only in kallsyms:
ffffffffff600130-ffffffffff6003ff 0 [kernel].4
---- end ----
vmlinux symtab matches kallsyms: Ok
[acme@doppio linux-2.6-tip]$
In the above case we only know the name of the non contiguous kernel ranges in
the address space when reading the symbol information from the ELF symtab in
vmlinux.
The /proc/kallsyms file lack this, we only notice they are separate because
there are modules after the kernel and after that more kernel functions, so we
need to have a module rbtree backed by the module .ko path to get symtabs in
the vmlinux case.
The tool uses it to match by address to emit appropriate warning, but don't
considers this fatal.
The .init.text and .exit.text ines, of course, aren't in kallsyms, so I left
these cases just as extra info in verbose mode.
The end of the sections also aren't in kallsyms, so we the symbols layer does
another pass and sets the end addresses as the next map start minus one, which
sometimes pads, causing harmless mismatches.
But at least the symbols match, tested it by copying /proc/kallsyms to
/tmp/kallsyms and doing changes to see if they were detected.
This first test also should serve as a first stab at documenting the
symbol library by providing a self contained example that exercises it
together with comments about what is being done.
More tests to check if actions done on a monitored app, like doing mmaps, etc,
makes the kernel generate the expected events should be added next.
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2010-04-30 05:58:32 +08:00
|
|
|
}
|