linux/include/trace/trace_events.h

470 lines
14 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Stage 1 of the trace events.
*
* Override the macros in the event tracepoint header <trace/events/XXX.h>
* to include the following:
*
* struct trace_event_raw_<call> {
* struct trace_entry ent;
* <type> <item>;
* <type2> <item2>[<len>];
* [...]
* };
*
* The <type> <item> is created by the __field(type, item) macro or
* the __array(type2, item2, len) macro.
* We simply do "type item;", and that will create the fields
* in the structure.
*/
#include <linux/trace_events.h>
#ifndef TRACE_SYSTEM_VAR
#define TRACE_SYSTEM_VAR TRACE_SYSTEM
#endif
#include "stages/init.h"
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
/*
* DECLARE_EVENT_CLASS can be used to add a generic function
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
* handlers for events. That is, if all events have the same
* parameters and just have distinct trace points.
* Each tracepoint can be defined with DEFINE_EVENT and that
* will map the DECLARE_EVENT_CLASS to the tracepoint.
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
*
* TRACE_EVENT is a one to one mapping between tracepoint and template.
*/
#undef TRACE_EVENT
#define TRACE_EVENT(name, proto, args, tstruct, assign, print) \
DECLARE_EVENT_CLASS(name, \
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
PARAMS(proto), \
PARAMS(args), \
PARAMS(tstruct), \
PARAMS(assign), \
PARAMS(print)); \
DEFINE_EVENT(name, name, PARAMS(proto), PARAMS(args));
#include "stages/stage1_struct_define.h"
#undef DECLARE_EVENT_CLASS
#define DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, print) \
struct trace_event_raw_##name { \
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
struct trace_entry ent; \
tstruct \
char __data[]; \
}; \
\
static struct trace_event_class event_class_##name;
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
#undef DEFINE_EVENT
#define DEFINE_EVENT(template, name, proto, args) \
static struct trace_event_call __used \
__attribute__((__aligned__(4))) event_##name
#undef DEFINE_EVENT_FN
#define DEFINE_EVENT_FN(template, name, proto, args, reg, unreg) \
DEFINE_EVENT(template, name, PARAMS(proto), PARAMS(args))
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#undef DEFINE_EVENT_PRINT
#define DEFINE_EVENT_PRINT(template, name, proto, args, print) \
DEFINE_EVENT(template, name, PARAMS(proto), PARAMS(args))
tracing: Move tracepoint callbacks from declaration to definition It's not strictly correct for the tracepoint reg/unreg callbacks to occur when a client is hooking up, because the actual tracepoint may not be present yet. This happens to be fine for syscall, since that's in the core kernel, but it would cause problems for tracepoints defined in a module that hasn't been loaded yet. It also means the reg/unreg has to be EXPORTed for any modules to use the tracepoint (as in SystemTap). This patch removes DECLARE_TRACE_WITH_CALLBACK, and instead introduces DEFINE_TRACE_FN which stores the callbacks in struct tracepoint. The callbacks are used now when the active state of the tracepoint changes in set_tracepoint & disable_tracepoint. This also introduces TRACE_EVENT_FN, so ftrace events can also provide registration callbacks if needed. Signed-off-by: Josh Stone <jistone@redhat.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Jiaying Zhang <jiayingz@google.com> Cc: Martin Bligh <mbligh@google.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> LKML-Reference: <1251150194-1713-4-git-send-email-jistone@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-25 05:43:13 +08:00
/* Callbacks are meaningless to ftrace. */
#undef TRACE_EVENT_FN
#define TRACE_EVENT_FN(name, proto, args, tstruct, \
assign, print, reg, unreg) \
TRACE_EVENT(name, PARAMS(proto), PARAMS(args), \
PARAMS(tstruct), PARAMS(assign), PARAMS(print)) \
#undef TRACE_EVENT_FN_COND
#define TRACE_EVENT_FN_COND(name, proto, args, cond, tstruct, \
assign, print, reg, unreg) \
TRACE_EVENT_CONDITION(name, PARAMS(proto), PARAMS(args), PARAMS(cond), \
PARAMS(tstruct), PARAMS(assign), PARAMS(print)) \
tracing: Move tracepoint callbacks from declaration to definition It's not strictly correct for the tracepoint reg/unreg callbacks to occur when a client is hooking up, because the actual tracepoint may not be present yet. This happens to be fine for syscall, since that's in the core kernel, but it would cause problems for tracepoints defined in a module that hasn't been loaded yet. It also means the reg/unreg has to be EXPORTed for any modules to use the tracepoint (as in SystemTap). This patch removes DECLARE_TRACE_WITH_CALLBACK, and instead introduces DEFINE_TRACE_FN which stores the callbacks in struct tracepoint. The callbacks are used now when the active state of the tracepoint changes in set_tracepoint & disable_tracepoint. This also introduces TRACE_EVENT_FN, so ftrace events can also provide registration callbacks if needed. Signed-off-by: Josh Stone <jistone@redhat.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Jiaying Zhang <jiayingz@google.com> Cc: Martin Bligh <mbligh@google.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> LKML-Reference: <1251150194-1713-4-git-send-email-jistone@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-25 05:43:13 +08:00
#undef TRACE_EVENT_FLAGS
#define TRACE_EVENT_FLAGS(name, value) \
__TRACE_EVENT_FLAGS(name, value)
#undef TRACE_EVENT_PERF_PERM
#define TRACE_EVENT_PERF_PERM(name, expr...) \
__TRACE_EVENT_PERF_PERM(name, expr)
#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)
/*
* Stage 2 of the trace events.
*
tracing/events: provide string with undefined size support This patch provides the support for dynamic size strings on event tracing. The key concept is to use a structure with an ending char array field of undefined size and use such ability to allocate the minimal size on the ring buffer to make one or more string entries fit inside, as opposite to a fixed length strings with upper bound. The strings themselves are represented using fields which have an offset value from the beginning of the entry. This patch provides three new macros: __string(item, src) This one declares a string to the structure inside TP_STRUCT__entry. You need to provide the name of the string field and the source that will be copied inside. This will also add the dynamic size of the string needed for the ring buffer entry allocation. A stack allocated structure is used to temporarily store the offset of each strings, avoiding double calls to strlen() on each event insertion. __get_str(field) This one will give you a pointer to the string you have created. This is an abstract helper to resolve the absolute address given the field name which is a relative address from the beginning of the trace_structure. __assign_str(dst, src) Use this macro to automatically perform the string copy from src to dst. src must be a variable to assign and dst is the name of a __string field. Example on how to use it: TRACE_EVENT(my_event, TP_PROTO(char *src1, char *src2), TP_ARGS(src1, src2), TP_STRUCT__entry( __string(str1, src1) __string(str2, src2) ), TP_fast_assign( __assign_str(str1, src1); __assign_str(str2, src2); ), TP_printk("%s %s", __get_str(src1), __get_str(src2)) ) Of course you can mix-up any __field or __array inside this TRACE_EVENT. The position of the __string or __assign_str doesn't matter. Changes in v2: Address the suggestion of Steven Rostedt: drop the opening_string() macro and redefine __ending_string() to get the size of the string to be copied instead of overwritting the whole ring buffer allocation. Changes in v3: Address other suggestions of Steven Rostedt and Peter Zijlstra with some changes: drop the __ending_string and the need to have only one string field. Use offsets instead of absolute addresses. [ Impact: allow more compact memory usage for string tracing ] Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
2009-04-19 10:51:29 +08:00
* Include the following:
*
* struct trace_event_data_offsets_<call> {
* u32 <item1>;
* u32 <item2>;
tracing/events: provide string with undefined size support This patch provides the support for dynamic size strings on event tracing. The key concept is to use a structure with an ending char array field of undefined size and use such ability to allocate the minimal size on the ring buffer to make one or more string entries fit inside, as opposite to a fixed length strings with upper bound. The strings themselves are represented using fields which have an offset value from the beginning of the entry. This patch provides three new macros: __string(item, src) This one declares a string to the structure inside TP_STRUCT__entry. You need to provide the name of the string field and the source that will be copied inside. This will also add the dynamic size of the string needed for the ring buffer entry allocation. A stack allocated structure is used to temporarily store the offset of each strings, avoiding double calls to strlen() on each event insertion. __get_str(field) This one will give you a pointer to the string you have created. This is an abstract helper to resolve the absolute address given the field name which is a relative address from the beginning of the trace_structure. __assign_str(dst, src) Use this macro to automatically perform the string copy from src to dst. src must be a variable to assign and dst is the name of a __string field. Example on how to use it: TRACE_EVENT(my_event, TP_PROTO(char *src1, char *src2), TP_ARGS(src1, src2), TP_STRUCT__entry( __string(str1, src1) __string(str2, src2) ), TP_fast_assign( __assign_str(str1, src1); __assign_str(str2, src2); ), TP_printk("%s %s", __get_str(src1), __get_str(src2)) ) Of course you can mix-up any __field or __array inside this TRACE_EVENT. The position of the __string or __assign_str doesn't matter. Changes in v2: Address the suggestion of Steven Rostedt: drop the opening_string() macro and redefine __ending_string() to get the size of the string to be copied instead of overwritting the whole ring buffer allocation. Changes in v3: Address other suggestions of Steven Rostedt and Peter Zijlstra with some changes: drop the __ending_string and the need to have only one string field. Use offsets instead of absolute addresses. [ Impact: allow more compact memory usage for string tracing ] Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
2009-04-19 10:51:29 +08:00
* [...]
* };
*
* The __dynamic_array() macro will create each u32 <item>, this is
* to keep the offset of each array from the beginning of the event.
* The size of an array is also encoded, in the higher 16 bits of <item>.
tracing/events: provide string with undefined size support This patch provides the support for dynamic size strings on event tracing. The key concept is to use a structure with an ending char array field of undefined size and use such ability to allocate the minimal size on the ring buffer to make one or more string entries fit inside, as opposite to a fixed length strings with upper bound. The strings themselves are represented using fields which have an offset value from the beginning of the entry. This patch provides three new macros: __string(item, src) This one declares a string to the structure inside TP_STRUCT__entry. You need to provide the name of the string field and the source that will be copied inside. This will also add the dynamic size of the string needed for the ring buffer entry allocation. A stack allocated structure is used to temporarily store the offset of each strings, avoiding double calls to strlen() on each event insertion. __get_str(field) This one will give you a pointer to the string you have created. This is an abstract helper to resolve the absolute address given the field name which is a relative address from the beginning of the trace_structure. __assign_str(dst, src) Use this macro to automatically perform the string copy from src to dst. src must be a variable to assign and dst is the name of a __string field. Example on how to use it: TRACE_EVENT(my_event, TP_PROTO(char *src1, char *src2), TP_ARGS(src1, src2), TP_STRUCT__entry( __string(str1, src1) __string(str2, src2) ), TP_fast_assign( __assign_str(str1, src1); __assign_str(str2, src2); ), TP_printk("%s %s", __get_str(src1), __get_str(src2)) ) Of course you can mix-up any __field or __array inside this TRACE_EVENT. The position of the __string or __assign_str doesn't matter. Changes in v2: Address the suggestion of Steven Rostedt: drop the opening_string() macro and redefine __ending_string() to get the size of the string to be copied instead of overwritting the whole ring buffer allocation. Changes in v3: Address other suggestions of Steven Rostedt and Peter Zijlstra with some changes: drop the __ending_string and the need to have only one string field. Use offsets instead of absolute addresses. [ Impact: allow more compact memory usage for string tracing ] Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
2009-04-19 10:51:29 +08:00
*/
#include "stages/stage2_data_offsets.h"
tracing: Add __bitmask() macro to trace events to cpumasks and other bitmasks Being able to show a cpumask of events can be useful as some events may affect only some CPUs. There is no standard way to record the cpumask and converting it to a string is rather expensive during the trace as traces happen in hotpaths. It would be better to record the raw event mask and be able to parse it at print time. The following macros were added for use with the TRACE_EVENT() macro: __bitmask() __assign_bitmask() __get_bitmask() To test this, I added this to the sched_migrate_task event, which looked like this: TRACE_EVENT(sched_migrate_task, TP_PROTO(struct task_struct *p, int dest_cpu, const struct cpumask *cpus), TP_ARGS(p, dest_cpu, cpus), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, orig_cpu ) __field( int, dest_cpu ) __bitmask( cpumask, num_possible_cpus() ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; __entry->orig_cpu = task_cpu(p); __entry->dest_cpu = dest_cpu; __assign_bitmask(cpumask, cpumask_bits(cpus), num_possible_cpus()); ), TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d cpumask=%s", __entry->comm, __entry->pid, __entry->prio, __entry->orig_cpu, __entry->dest_cpu, __get_bitmask(cpumask)) ); With the output of: ksmtuned-3613 [003] d..2 485.220508: sched_migrate_task: comm=ksmtuned pid=3615 prio=120 orig_cpu=3 dest_cpu=2 cpumask=00000000,0000000f migration/1-13 [001] d..5 485.221202: sched_migrate_task: comm=ksmtuned pid=3614 prio=120 orig_cpu=1 dest_cpu=0 cpumask=00000000,0000000f awk-3615 [002] d.H5 485.221747: sched_migrate_task: comm=rcu_preempt pid=7 prio=120 orig_cpu=0 dest_cpu=1 cpumask=00000000,000000ff migration/2-18 [002] d..5 485.222062: sched_migrate_task: comm=ksmtuned pid=3615 prio=120 orig_cpu=2 dest_cpu=3 cpumask=00000000,0000000f Link: http://lkml.kernel.org/r/1399377998-14870-6-git-send-email-javi.merino@arm.com Link: http://lkml.kernel.org/r/20140506132238.22e136d1@gandalf.local.home Suggested-by: Javi Merino <javi.merino@arm.com> Tested-by: Javi Merino <javi.merino@arm.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-05-07 01:10:24 +08:00
#undef DECLARE_EVENT_CLASS
#define DECLARE_EVENT_CLASS(call, proto, args, tstruct, assign, print) \
struct trace_event_data_offsets_##call { \
tracing/events: provide string with undefined size support This patch provides the support for dynamic size strings on event tracing. The key concept is to use a structure with an ending char array field of undefined size and use such ability to allocate the minimal size on the ring buffer to make one or more string entries fit inside, as opposite to a fixed length strings with upper bound. The strings themselves are represented using fields which have an offset value from the beginning of the entry. This patch provides three new macros: __string(item, src) This one declares a string to the structure inside TP_STRUCT__entry. You need to provide the name of the string field and the source that will be copied inside. This will also add the dynamic size of the string needed for the ring buffer entry allocation. A stack allocated structure is used to temporarily store the offset of each strings, avoiding double calls to strlen() on each event insertion. __get_str(field) This one will give you a pointer to the string you have created. This is an abstract helper to resolve the absolute address given the field name which is a relative address from the beginning of the trace_structure. __assign_str(dst, src) Use this macro to automatically perform the string copy from src to dst. src must be a variable to assign and dst is the name of a __string field. Example on how to use it: TRACE_EVENT(my_event, TP_PROTO(char *src1, char *src2), TP_ARGS(src1, src2), TP_STRUCT__entry( __string(str1, src1) __string(str2, src2) ), TP_fast_assign( __assign_str(str1, src1); __assign_str(str2, src2); ), TP_printk("%s %s", __get_str(src1), __get_str(src2)) ) Of course you can mix-up any __field or __array inside this TRACE_EVENT. The position of the __string or __assign_str doesn't matter. Changes in v2: Address the suggestion of Steven Rostedt: drop the opening_string() macro and redefine __ending_string() to get the size of the string to be copied instead of overwritting the whole ring buffer allocation. Changes in v3: Address other suggestions of Steven Rostedt and Peter Zijlstra with some changes: drop the __ending_string and the need to have only one string field. Use offsets instead of absolute addresses. [ Impact: allow more compact memory usage for string tracing ] Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
2009-04-19 10:51:29 +08:00
tstruct; \
};
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
#undef DEFINE_EVENT
#define DEFINE_EVENT(template, name, proto, args)
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#undef DEFINE_EVENT_PRINT
#define DEFINE_EVENT_PRINT(template, name, proto, args, print)
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#undef TRACE_EVENT_FLAGS
#define TRACE_EVENT_FLAGS(event, flag)
#undef TRACE_EVENT_PERF_PERM
#define TRACE_EVENT_PERF_PERM(event, expr...)
tracing/events: provide string with undefined size support This patch provides the support for dynamic size strings on event tracing. The key concept is to use a structure with an ending char array field of undefined size and use such ability to allocate the minimal size on the ring buffer to make one or more string entries fit inside, as opposite to a fixed length strings with upper bound. The strings themselves are represented using fields which have an offset value from the beginning of the entry. This patch provides three new macros: __string(item, src) This one declares a string to the structure inside TP_STRUCT__entry. You need to provide the name of the string field and the source that will be copied inside. This will also add the dynamic size of the string needed for the ring buffer entry allocation. A stack allocated structure is used to temporarily store the offset of each strings, avoiding double calls to strlen() on each event insertion. __get_str(field) This one will give you a pointer to the string you have created. This is an abstract helper to resolve the absolute address given the field name which is a relative address from the beginning of the trace_structure. __assign_str(dst, src) Use this macro to automatically perform the string copy from src to dst. src must be a variable to assign and dst is the name of a __string field. Example on how to use it: TRACE_EVENT(my_event, TP_PROTO(char *src1, char *src2), TP_ARGS(src1, src2), TP_STRUCT__entry( __string(str1, src1) __string(str2, src2) ), TP_fast_assign( __assign_str(str1, src1); __assign_str(str2, src2); ), TP_printk("%s %s", __get_str(src1), __get_str(src2)) ) Of course you can mix-up any __field or __array inside this TRACE_EVENT. The position of the __string or __assign_str doesn't matter. Changes in v2: Address the suggestion of Steven Rostedt: drop the opening_string() macro and redefine __ending_string() to get the size of the string to be copied instead of overwritting the whole ring buffer allocation. Changes in v3: Address other suggestions of Steven Rostedt and Peter Zijlstra with some changes: drop the __ending_string and the need to have only one string field. Use offsets instead of absolute addresses. [ Impact: allow more compact memory usage for string tracing ] Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
2009-04-19 10:51:29 +08:00
#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)
/*
* Stage 3 of the trace events.
*
* Override the macros in the event tracepoint header <trace/events/XXX.h>
* to include the following:
*
* enum print_line_t
* trace_raw_output_<call>(struct trace_iterator *iter, int flags)
* {
* struct trace_seq *s = &iter->seq;
* struct trace_event_raw_<call> *field; <-- defined in stage 1
* struct trace_seq *p = &iter->tmp_seq;
*
* -------(for event)-------
*
* struct trace_entry *entry;
*
* entry = iter->ent;
*
* if (entry->type != event_<call>->event.type) {
* WARN_ON_ONCE(1);
* return TRACE_TYPE_UNHANDLED;
* }
*
* field = (typeof(field))entry;
*
* trace_seq_init(p);
* return trace_output_call(iter, <call>, <TP_printk> "\n");
*
* ------(or, for event class)------
*
* int ret;
*
* field = (typeof(field))iter->ent;
*
* ret = trace_raw_output_prep(iter, trace_event);
* if (ret != TRACE_TYPE_HANDLED)
* return ret;
*
* trace_event_printf(iter, <TP_printk> "\n");
*
* return trace_handle_return(s);
* -------
* }
*
* This is the method used to print the raw event to the trace
* output format. Note, this is not needed if the data is read
* in binary.
*/
#include "stages/stage3_trace_output.h"
trace: Add __print_ns_to_secs() and __print_ns_without_secs() helpers To have nanosecond output displayed in a more human readable format, its nicer to convert it to a seconds format (XXX.YYYYYYYYY). The problem is that to do so, the numbers must be divided by NSEC_PER_SEC, and moded too. But as these numbers are 64 bit, this can not be done simply with '/' and '%' operators, but must use do_div() instead. Instead of performing the expensive do_div() in the hot path of the tracepoint, it is more efficient to perform it during the output phase. But passing in do_div() can confuse the parser, and do_div() doesn't work exactly like a normal C function. It modifies the number in place, and we don't want to modify the actual values in the ring buffer. Two helper functions are now created: __print_ns_to_secs() and __print_ns_without_secs() They both take a value of nanoseconds, and the former will return that number divided by NSEC_PER_SEC, and the latter will mod it with NSEC_PER_SEC giving a way to print a nice human readable format: __print_fmt("time=%llu.%09u", __print_ns_to_secs(REC->nsec_val), __print_ns_without_secs(REC->nsec_val)) Link: https://lkml.kernel.org/r/e503b903045496c4ccde52843e1e318b422f7a56.1624372313.git.bristot@redhat.com Cc: Phil Auld <pauld@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kate Carcia <kcarcia@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Alexandre Chartre <alexandre.chartre@oracle.com> Cc: Clark Willaims <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-06-22 22:42:26 +08:00
#undef DECLARE_EVENT_CLASS
#define DECLARE_EVENT_CLASS(call, proto, args, tstruct, assign, print) \
static notrace enum print_line_t \
trace_raw_output_##call(struct trace_iterator *iter, int flags, \
struct trace_event *trace_event) \
{ \
struct trace_seq *s = &iter->seq; \
struct trace_seq __maybe_unused *p = &iter->tmp_seq; \
struct trace_event_raw_##call *field; \
int ret; \
\
field = (typeof(field))iter->ent; \
\
ret = trace_raw_output_prep(iter, trace_event); \
if (ret != TRACE_TYPE_HANDLED) \
return ret; \
\
trace_event_printf(iter, print); \
\
return trace_handle_return(s); \
} \
static struct trace_event_functions trace_event_type_funcs_##call = { \
.trace = trace_raw_output_##call, \
};
tracing: Create new TRACE_EVENT_TEMPLATE There are some places in the kernel that define several tracepoints and they are all identical besides the name. The code to enable, disable and record is created for every trace point even if most of the code is identical. This patch adds TRACE_EVENT_TEMPLATE that lets the developer create a template TRACE_EVENT and create trace points with DEFINE_EVENT, which is based off of a given template. Each trace point used by this will share most of the code, and bring down the size of the kernel when there are several duplicate events. Usage is: TRACE_EVENT_TEMPLATE(name, proto, args, tstruct, assign, print); Which would be the same as defining a normal TRACE_EVENT. To create the trace events that the trace points will use: DEFINE_EVENT(template, name, proto, args) is done. The template is the name of the TRACE_EVENT_TEMPLATE to use. The name is the name of the trace point. The parameters proto and args must be the same as the proto and args of the template. If they are not the same, then a compile error will result. I tried hard removing this duplication but the C preprocessor is not powerful enough (or my CPP magic experience points is not at a high enough level) to not need them. A lot of trace events are coming in with new XFS development. Most of the trace points are identical except for the name. The following shows the advantage of having TRACE_EVENT_TEMPLATE: $ size fs/xfs/xfs.o.* text data bss dec hex filename 452114 2788 3520 458422 6feb6 fs/xfs/xfs.o.old 638482 38116 3744 680342 a6196 fs/xfs/xfs.o.template 996954 38116 4480 1039550 fdcbe fs/xfs/xfs.o.trace xfs.o.old is without any tracepoints. xfs.o.template uses the new TRACE_EVENT_TEMPLATE. xfs.o.trace uses the current TRACE_EVENT macros. Requested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:27:27 +08:00
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#undef DEFINE_EVENT_PRINT
#define DEFINE_EVENT_PRINT(template, call, proto, args, print) \
static notrace enum print_line_t \
trace_raw_output_##call(struct trace_iterator *iter, int flags, \
struct trace_event *event) \
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
{ \
struct trace_event_raw_##template *field; \
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
struct trace_entry *entry; \
struct trace_seq *p = &iter->tmp_seq; \
\
entry = iter->ent; \
\
if (entry->type != event_##call.event.type) { \
WARN_ON_ONCE(1); \
return TRACE_TYPE_UNHANDLED; \
} \
\
field = (typeof(field))entry; \
\
trace_seq_init(p); \
return trace_output_call(iter, #call, print); \
} \
static struct trace_event_functions trace_event_type_funcs_##call = { \
.trace = trace_raw_output_##call, \
};
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)
#include "stages/stage4_event_fields.h"
#undef DECLARE_EVENT_CLASS
#define DECLARE_EVENT_CLASS(call, proto, args, tstruct, func, print) \
ftrace: Rework event_create_dir() Rework event_create_dir() to use an array of static data instead of function pointers where possible. The problem is that it would call the function pointer on module load before parse_args(), possibly even before jump_labels were initialized. Luckily the generated functions don't use jump_labels but it still seems fragile. It also gets in the way of changing when we make the module map executable. The generated function are basically calling trace_define_field() with a bunch of static arguments. So instead of a function, capture these arguments in a static array, avoiding the function call. Now there are a number of cases where the fields are dynamic (syscall arguments, kprobes and uprobes), in which case a static array does not work, for these we preserve the function call. Luckily all these cases are not related to modules and so we can retain the function call for them. Also fix up all broken tracepoint definitions that now generate a compile error. Tested-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191111132458.342979914@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 04:26:59 +08:00
static struct trace_event_fields trace_event_fields_##call[] = { \
tstruct \
{} };
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#undef DEFINE_EVENT_PRINT
#define DEFINE_EVENT_PRINT(template, name, proto, args, print)
tracing: Create new DEFINE_EVENT_PRINT After creating the TRACE_EVENT_TEMPLATE I started to look at other trace points to see what duplication was made. I noticed that there are several trace points where they are almost identical except for the name and the output format. Since TRACE_EVENT_TEMPLATE was successful in bringing down the size of trace events, I added a DEFINE_EVENT_PRINT. DEFINE_EVENT_PRINT is used just like DEFINE_EVENT is. That is, the DEFINE_EVENT_PRINT also uses a TRACE_EVENT_TEMPLATE, but it allows the developer to overwrite the print format. If there are two or more TRACE_EVENTS that are identical except for the name and print, then they can be converted to use a TRACE_EVENT_TEMPLATE. Since the TRACE_EVENT_TEMPLATE already does the print output, the first trace event would have its print format held in the TRACE_EVENT_TEMPLATE and be defined with a DEFINE_EVENT. The rest will use the DEFINE_EVENT_PRINT and override the print format. Converting the sched trace points to both DEFINE_EVENT and DEFINE_EVENT_PRINT. Five were converted to DEFINE_EVENT and two were converted to DEFINE_EVENT_PRINT. I was able to get the following: $ size kernel/sched.o-* text data bss dec hex filename 79299 6776 2520 88595 15a13 kernel/sched.o-notrace 101941 11896 2584 116421 1c6c5 kernel/sched.o-templ 104779 11896 2584 119259 1d1db kernel/sched.o-trace sched.o-notrace is the scheduler compiled with no trace points. sched.o-templ is with the use of DEFINE_EVENT and DEFINE_EVENT_PRINT sched.o-trace is the current trace events. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-11-19 09:36:26 +08:00
#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)
#include "stages/stage5_get_offsets.h"
#undef DECLARE_EVENT_CLASS
#define DECLARE_EVENT_CLASS(call, proto, args, tstruct, assign, print) \
static inline notrace int trace_event_get_offsets_##call( \
struct trace_event_data_offsets_##call *__data_offsets, proto) \
{ \
int __data_size = 0; \
int __maybe_unused __item_length; \
struct trace_event_raw_##call __maybe_unused *entry; \
\
tstruct; \
\
return __data_size; \
}
#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)
/*
* Stage 4 of the trace events.
*
* Override the macros in the event tracepoint header <trace/events/XXX.h>
* to include the following:
*
* For those macros defined with TRACE_EVENT:
*
* static struct trace_event_call event_<call>;
*
* static void trace_event_raw_event_<call>(void *__data, proto)
* {
* struct trace_event_file *trace_file = __data;
* struct trace_event_call *event_call = trace_file->event_call;
* struct trace_event_data_offsets_<call> __maybe_unused __data_offsets;
* unsigned long eflags = trace_file->flags;
* enum event_trigger_type __tt = ETT_NONE;
* struct ring_buffer_event *event;
* struct trace_event_raw_<call> *entry; <-- defined in stage 1
* struct trace_buffer *buffer;
* unsigned long irq_flags;
* int __data_size;
* int pc;
*
* if (!(eflags & EVENT_FILE_FL_TRIGGER_COND)) {
* if (eflags & EVENT_FILE_FL_TRIGGER_MODE)
* event_triggers_call(trace_file, NULL);
* if (eflags & EVENT_FILE_FL_SOFT_DISABLED)
* return;
* }
*
* local_save_flags(irq_flags);
* pc = preempt_count();
*
* __data_size = trace_event_get_offsets_<call>(&__data_offsets, args);
*
* event = trace_event_buffer_lock_reserve(&buffer, trace_file,
* event_<call>->event.type,
* sizeof(*entry) + __data_size,
* irq_flags, pc);
* if (!event)
* return;
* entry = ring_buffer_event_data(event);
*
* { <assign>; } <-- Here we assign the entries by the __field and
* __array macros.
*
* if (eflags & EVENT_FILE_FL_TRIGGER_COND)
* __tt = event_triggers_call(trace_file, entry);
*
* if (test_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT,
* &trace_file->flags))
* ring_buffer_discard_commit(buffer, event);
* else if (!filter_check_discard(trace_file, entry, buffer, event))
* trace_buffer_unlock_commit(buffer, event, irq_flags, pc);
*
* if (__tt)
* event_triggers_post_call(trace_file, __tt);
* }
*
* static struct trace_event ftrace_event_type_<call> = {
* .trace = trace_raw_output_<call>, <-- stage 2
* };
*
* static char print_fmt_<call>[] = <TP_printk>;
*
* static struct trace_event_class __used event_class_<template> = {
* .system = "<system>",
ftrace: Rework event_create_dir() Rework event_create_dir() to use an array of static data instead of function pointers where possible. The problem is that it would call the function pointer on module load before parse_args(), possibly even before jump_labels were initialized. Luckily the generated functions don't use jump_labels but it still seems fragile. It also gets in the way of changing when we make the module map executable. The generated function are basically calling trace_define_field() with a bunch of static arguments. So instead of a function, capture these arguments in a static array, avoiding the function call. Now there are a number of cases where the fields are dynamic (syscall arguments, kprobes and uprobes), in which case a static array does not work, for these we preserve the function call. Luckily all these cases are not related to modules and so we can retain the function call for them. Also fix up all broken tracepoint definitions that now generate a compile error. Tested-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191111132458.342979914@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 04:26:59 +08:00
* .fields_array = trace_event_fields_<call>,
* .fields = LIST_HEAD_INIT(event_class_##call.fields),
* .raw_init = trace_event_raw_init,
* .probe = trace_event_raw_event_##call,
* .reg = trace_event_reg,
* };
*
* static struct trace_event_call event_<call> = {
* .class = event_class_<template>,
* {
* .tp = &__tracepoint_<call>,
* },
* .event = &ftrace_event_type_<call>,
* .print_fmt = print_fmt_<call>,
* .flags = TRACE_EVENT_FL_TRACEPOINT,
* };
* // its only safe to use pointers when doing linker tricks to
* // create an array.
* static struct trace_event_call __used
* __section("_ftrace_events") *__event_<call> = &event_<call>;
*
*/
#ifdef CONFIG_PERF_EVENTS
#define _TRACE_PERF_PROTO(call, proto) \
static notrace void \
perf_trace_##call(void *__data, proto);
#define _TRACE_PERF_INIT(call) \
.perf_probe = perf_trace_##call,
#else
#define _TRACE_PERF_PROTO(call, proto)
#define _TRACE_PERF_INIT(call)
#endif /* CONFIG_PERF_EVENTS */
#include "stages/stage6_event_callback.h"
#undef DECLARE_EVENT_CLASS
#define DECLARE_EVENT_CLASS(call, proto, args, tstruct, assign, print) \
\
static notrace void \
trace_event_raw_event_##call(void *__data, proto) \
{ \
struct trace_event_file *trace_file = __data; \
struct trace_event_data_offsets_##call __maybe_unused __data_offsets;\
struct trace_event_buffer fbuffer; \
struct trace_event_raw_##call *entry; \
int __data_size; \
\
if (trace_trigger_soft_disabled(trace_file)) \
return; \
\
__data_size = trace_event_get_offsets_##call(&__data_offsets, args); \
\
entry = trace_event_buffer_reserve(&fbuffer, trace_file, \
sizeof(*entry) + __data_size); \
\
if (!entry) \
return; \
\
tstruct \
\
{ assign; } \
\
trace_event_buffer_commit(&fbuffer); \
}
/*
* The ftrace_test_probe is compiled out, it is only here as a build time check
* to make sure that if the tracepoint handling changes, the ftrace probe will
* fail to compile unless it too is updated.
*/
#undef DEFINE_EVENT
#define DEFINE_EVENT(template, call, proto, args) \
static inline void ftrace_test_probe_##call(void) \
{ \
check_trace_callback_type_##call(trace_event_raw_event_##template); \
}
#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)
#include "stages/stage7_class_define.h"
#undef DECLARE_EVENT_CLASS
#define DECLARE_EVENT_CLASS(call, proto, args, tstruct, assign, print) \
_TRACE_PERF_PROTO(call, PARAMS(proto)); \
static char print_fmt_##call[] = print; \
static struct trace_event_class __used __refdata event_class_##call = { \
.system = TRACE_SYSTEM_STRING, \
ftrace: Rework event_create_dir() Rework event_create_dir() to use an array of static data instead of function pointers where possible. The problem is that it would call the function pointer on module load before parse_args(), possibly even before jump_labels were initialized. Luckily the generated functions don't use jump_labels but it still seems fragile. It also gets in the way of changing when we make the module map executable. The generated function are basically calling trace_define_field() with a bunch of static arguments. So instead of a function, capture these arguments in a static array, avoiding the function call. Now there are a number of cases where the fields are dynamic (syscall arguments, kprobes and uprobes), in which case a static array does not work, for these we preserve the function call. Luckily all these cases are not related to modules and so we can retain the function call for them. Also fix up all broken tracepoint definitions that now generate a compile error. Tested-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191111132458.342979914@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 04:26:59 +08:00
.fields_array = trace_event_fields_##call, \
.fields = LIST_HEAD_INIT(event_class_##call.fields),\
.raw_init = trace_event_raw_init, \
.probe = trace_event_raw_event_##call, \
.reg = trace_event_reg, \
_TRACE_PERF_INIT(call) \
};
#undef DEFINE_EVENT
#define DEFINE_EVENT(template, call, proto, args) \
\
static struct trace_event_call __used event_##call = { \
.class = &event_class_##template, \
{ \
.tp = &__tracepoint_##call, \
}, \
.event.funcs = &trace_event_type_funcs_##template, \
.print_fmt = print_fmt_##template, \
.flags = TRACE_EVENT_FL_TRACEPOINT, \
}; \
static struct trace_event_call __used \
__section("_ftrace_events") *__event_##call = &event_##call
#undef DEFINE_EVENT_PRINT
#define DEFINE_EVENT_PRINT(template, call, proto, args, print) \
\
static char print_fmt_##call[] = print; \
\
static struct trace_event_call __used event_##call = { \
.class = &event_class_##template, \
{ \
.tp = &__tracepoint_##call, \
}, \
.event.funcs = &trace_event_type_funcs_##call, \
.print_fmt = print_fmt_##call, \
.flags = TRACE_EVENT_FL_TRACEPOINT, \
}; \
static struct trace_event_call __used \
__section("_ftrace_events") *__event_##call = &event_##call
#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)