linux/kernel/sched/membarrier.c

153 lines
4.5 KiB
C
Raw Normal View History

membarrier: Provide expedited private command Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built from all runqueues for which current thread's mm is the same as the thread calling sys_membarrier. It executes faster than the non-expedited variant (no blocking). It also works on NOHZ_FULL configurations. Scheduler-wise, it requires a memory barrier before and after context switching between processes (which have different mm). The memory barrier before context switch is already present. For the barrier after context switch: * Our TSO archs can do RELEASE without being a full barrier. Look at x86 spin_unlock() being a regular STORE for example. But for those archs, all atomics imply smp_mb and all of them have atomic ops in switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full barrier. * From all weakly ordered machines, only ARM64 and PPC can do RELEASE, the rest does indeed do smp_mb(), so there the spin_unlock() is a full barrier and we're good. * ARM64 has a very heavy barrier in switch_to(), which suffices. * PPC just removed its barrier from switch_to(), but appears to be talking about adding something to switch_mm(). So add a smp_mb__after_unlock_lock() for now, until this is settled on the PPC side. Changes since v3: - Properly document the memory barriers provided by each architecture. Changes since v2: - Address comments from Peter Zijlstra, - Add smp_mb__after_unlock_lock() after finish_lock_switch() in finish_task_switch() to add the memory barrier we need after storing to rq->curr. This is much simpler than the previous approach relying on atomic_dec_and_test() in mmdrop(), which actually added a memory barrier in the common case of switching between userspace processes. - Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full kernel, rather than having the whole membarrier system call returning -ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full. Adapt the CMD_QUERY mask accordingly. Changes since v1: - move membarrier code under kernel/sched/ because it uses the scheduler runqueue, - only add the barrier when we switch from a kernel thread. The case where we switch from a user-space thread is already handled by the atomic_dec_and_test() in mmdrop(). - add a comment to mmdrop() documenting the requirement on the implicit memory barrier. CC: Peter Zijlstra <peterz@infradead.org> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Boqun Feng <boqun.feng@gmail.com> CC: Andrew Hunter <ahh@google.com> CC: Maged Michael <maged.michael@gmail.com> CC: gromer@google.com CC: Avi Kivity <avi@scylladb.com> CC: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> CC: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dave Watson <davejwatson@fb.com>
2017-07-29 04:40:40 +08:00
/*
* Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
*
* membarrier system call
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/syscalls.h>
#include <linux/membarrier.h>
#include <linux/tick.h>
#include <linux/cpumask.h>
#include "sched.h" /* for cpu_rq(). */
/*
* Bitmask made from a "or" of all commands within enum membarrier_cmd,
* except MEMBARRIER_CMD_QUERY.
*/
#define MEMBARRIER_CMD_BITMASK \
(MEMBARRIER_CMD_SHARED | MEMBARRIER_CMD_PRIVATE_EXPEDITED)
static void ipi_mb(void *info)
{
smp_mb(); /* IPIs should be serializing but paranoid. */
}
static void membarrier_private_expedited(void)
{
int cpu;
bool fallback = false;
cpumask_var_t tmpmask;
if (num_online_cpus() == 1)
return;
/*
* Matches memory barriers around rq->curr modification in
* scheduler.
*/
smp_mb(); /* system call entry is not a mb. */
/*
* Expedited membarrier commands guarantee that they won't
* block, hence the GFP_NOWAIT allocation flag and fallback
* implementation.
*/
if (!zalloc_cpumask_var(&tmpmask, GFP_NOWAIT)) {
/* Fallback for OOM. */
fallback = true;
}
cpus_read_lock();
for_each_online_cpu(cpu) {
struct task_struct *p;
/*
* Skipping the current CPU is OK even through we can be
* migrated at any point. The current CPU, at the point
* where we read raw_smp_processor_id(), is ensured to
* be in program order with respect to the caller
* thread. Therefore, we can skip this CPU from the
* iteration.
*/
if (cpu == raw_smp_processor_id())
continue;
rcu_read_lock();
p = task_rcu_dereference(&cpu_rq(cpu)->curr);
if (p && p->mm == current->mm) {
if (!fallback)
__cpumask_set_cpu(cpu, tmpmask);
else
smp_call_function_single(cpu, ipi_mb, NULL, 1);
}
rcu_read_unlock();
}
if (!fallback) {
smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
free_cpumask_var(tmpmask);
}
cpus_read_unlock();
/*
* Memory barrier on the caller thread _after_ we finished
* waiting for the last IPI. Matches memory barriers around
* rq->curr modification in scheduler.
*/
smp_mb(); /* exit from system call is not a mb */
}
/**
* sys_membarrier - issue memory barriers on a set of threads
* @cmd: Takes command values defined in enum membarrier_cmd.
* @flags: Currently needs to be 0. For future extensions.
*
* If this system call is not implemented, -ENOSYS is returned. If the
* command specified does not exist, not available on the running
* kernel, or if the command argument is invalid, this system call
* returns -EINVAL. For a given command, with flags argument set to 0,
* this system call is guaranteed to always return the same value until
* reboot.
*
* All memory accesses performed in program order from each targeted thread
* is guaranteed to be ordered with respect to sys_membarrier(). If we use
* the semantic "barrier()" to represent a compiler barrier forcing memory
* accesses to be performed in program order across the barrier, and
* smp_mb() to represent explicit memory barriers forcing full memory
* ordering across the barrier, we have the following ordering table for
* each pair of barrier(), sys_membarrier() and smp_mb():
*
* The pair ordering is detailed as (O: ordered, X: not ordered):
*
* barrier() smp_mb() sys_membarrier()
* barrier() X X O
* smp_mb() X O O
* sys_membarrier() O O O
*/
SYSCALL_DEFINE2(membarrier, int, cmd, int, flags)
{
if (unlikely(flags))
return -EINVAL;
switch (cmd) {
case MEMBARRIER_CMD_QUERY:
{
int cmd_mask = MEMBARRIER_CMD_BITMASK;
if (tick_nohz_full_enabled())
cmd_mask &= ~MEMBARRIER_CMD_SHARED;
return cmd_mask;
}
case MEMBARRIER_CMD_SHARED:
/* MEMBARRIER_CMD_SHARED is not compatible with nohz_full. */
if (tick_nohz_full_enabled())
return -EINVAL;
if (num_online_cpus() > 1)
synchronize_sched();
return 0;
case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
membarrier_private_expedited();
return 0;
default:
return -EINVAL;
}
}