2018-03-15 07:13:07 +08:00
|
|
|
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
|
2007-02-03 00:48:20 +08:00
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* Module Name: tbfadt - FADT table utilities
|
|
|
|
*
|
2023-04-05 21:38:21 +08:00
|
|
|
* Copyright (C) 2000 - 2023, Intel Corp.
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
2018-03-15 07:13:07 +08:00
|
|
|
*****************************************************************************/
|
2007-02-03 00:48:20 +08:00
|
|
|
|
|
|
|
#include <acpi/acpi.h>
|
2009-01-09 13:30:03 +08:00
|
|
|
#include "accommon.h"
|
|
|
|
#include "actables.h"
|
2007-02-03 00:48:20 +08:00
|
|
|
|
|
|
|
#define _COMPONENT ACPI_TABLES
|
|
|
|
ACPI_MODULE_NAME("tbfadt")
|
|
|
|
|
|
|
|
/* Local prototypes */
|
2012-05-22 16:35:00 +08:00
|
|
|
static void
|
2007-02-03 00:48:20 +08:00
|
|
|
acpi_tb_init_generic_address(struct acpi_generic_address *generic_address,
|
2012-05-22 16:35:00 +08:00
|
|
|
u8 space_id,
|
2014-04-30 10:06:09 +08:00
|
|
|
u8 byte_width,
|
2016-03-24 09:40:40 +08:00
|
|
|
u64 address, const char *register_name, u8 flags);
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
static void acpi_tb_convert_fadt(void);
|
|
|
|
|
2009-02-18 14:06:12 +08:00
|
|
|
static void acpi_tb_setup_fadt_registers(void);
|
|
|
|
|
2014-01-08 13:43:46 +08:00
|
|
|
static u64
|
|
|
|
acpi_tb_select_address(char *register_name, u32 address32, u64 address64);
|
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
/* Table for conversion of FADT to common internal format and FADT validation */
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
typedef struct acpi_fadt_info {
|
2016-03-24 09:40:40 +08:00
|
|
|
const char *name;
|
2012-01-12 11:09:58 +08:00
|
|
|
u16 address64;
|
|
|
|
u16 address32;
|
|
|
|
u16 length;
|
2008-12-31 13:07:26 +08:00
|
|
|
u8 default_length;
|
2014-04-30 10:06:09 +08:00
|
|
|
u8 flags;
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
} acpi_fadt_info;
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2012-01-12 11:09:58 +08:00
|
|
|
#define ACPI_FADT_OPTIONAL 0
|
2007-02-03 00:48:20 +08:00
|
|
|
#define ACPI_FADT_REQUIRED 1
|
|
|
|
#define ACPI_FADT_SEPARATE_LENGTH 2
|
2014-04-30 10:06:09 +08:00
|
|
|
#define ACPI_FADT_GPE_REGISTER 4
|
2007-02-03 00:48:20 +08:00
|
|
|
|
|
|
|
static struct acpi_fadt_info fadt_info_table[] = {
|
2008-12-31 13:07:26 +08:00
|
|
|
{"Pm1aEventBlock",
|
|
|
|
ACPI_FADT_OFFSET(xpm1a_event_block),
|
2007-02-03 00:48:20 +08:00
|
|
|
ACPI_FADT_OFFSET(pm1a_event_block),
|
2008-12-31 13:07:26 +08:00
|
|
|
ACPI_FADT_OFFSET(pm1_event_length),
|
|
|
|
ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */
|
|
|
|
ACPI_FADT_REQUIRED},
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 13:07:26 +08:00
|
|
|
{"Pm1bEventBlock",
|
|
|
|
ACPI_FADT_OFFSET(xpm1b_event_block),
|
2007-02-03 00:48:20 +08:00
|
|
|
ACPI_FADT_OFFSET(pm1b_event_block),
|
2008-12-31 13:07:26 +08:00
|
|
|
ACPI_FADT_OFFSET(pm1_event_length),
|
|
|
|
ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */
|
2012-01-12 11:09:58 +08:00
|
|
|
ACPI_FADT_OPTIONAL},
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 13:07:26 +08:00
|
|
|
{"Pm1aControlBlock",
|
|
|
|
ACPI_FADT_OFFSET(xpm1a_control_block),
|
2007-02-03 00:48:20 +08:00
|
|
|
ACPI_FADT_OFFSET(pm1a_control_block),
|
2008-12-31 13:07:26 +08:00
|
|
|
ACPI_FADT_OFFSET(pm1_control_length),
|
|
|
|
ACPI_PM1_REGISTER_WIDTH,
|
|
|
|
ACPI_FADT_REQUIRED},
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 13:07:26 +08:00
|
|
|
{"Pm1bControlBlock",
|
|
|
|
ACPI_FADT_OFFSET(xpm1b_control_block),
|
2007-02-03 00:48:20 +08:00
|
|
|
ACPI_FADT_OFFSET(pm1b_control_block),
|
2008-12-31 13:07:26 +08:00
|
|
|
ACPI_FADT_OFFSET(pm1_control_length),
|
|
|
|
ACPI_PM1_REGISTER_WIDTH,
|
2012-01-12 11:09:58 +08:00
|
|
|
ACPI_FADT_OPTIONAL},
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 13:07:26 +08:00
|
|
|
{"Pm2ControlBlock",
|
|
|
|
ACPI_FADT_OFFSET(xpm2_control_block),
|
2007-02-03 00:48:20 +08:00
|
|
|
ACPI_FADT_OFFSET(pm2_control_block),
|
2008-12-31 13:07:26 +08:00
|
|
|
ACPI_FADT_OFFSET(pm2_control_length),
|
|
|
|
ACPI_PM2_REGISTER_WIDTH,
|
|
|
|
ACPI_FADT_SEPARATE_LENGTH},
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 13:07:26 +08:00
|
|
|
{"PmTimerBlock",
|
|
|
|
ACPI_FADT_OFFSET(xpm_timer_block),
|
2007-02-03 00:48:20 +08:00
|
|
|
ACPI_FADT_OFFSET(pm_timer_block),
|
2008-12-31 13:07:26 +08:00
|
|
|
ACPI_FADT_OFFSET(pm_timer_length),
|
|
|
|
ACPI_PM_TIMER_WIDTH,
|
2013-08-08 15:29:51 +08:00
|
|
|
ACPI_FADT_SEPARATE_LENGTH}, /* ACPI 5.0A: Timer is optional */
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 13:07:26 +08:00
|
|
|
{"Gpe0Block",
|
|
|
|
ACPI_FADT_OFFSET(xgpe0_block),
|
2007-02-03 00:48:20 +08:00
|
|
|
ACPI_FADT_OFFSET(gpe0_block),
|
2008-12-31 13:07:26 +08:00
|
|
|
ACPI_FADT_OFFSET(gpe0_block_length),
|
|
|
|
0,
|
2014-04-30 10:06:09 +08:00
|
|
|
ACPI_FADT_SEPARATE_LENGTH | ACPI_FADT_GPE_REGISTER},
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 13:07:26 +08:00
|
|
|
{"Gpe1Block",
|
|
|
|
ACPI_FADT_OFFSET(xgpe1_block),
|
2007-02-03 00:48:20 +08:00
|
|
|
ACPI_FADT_OFFSET(gpe1_block),
|
2008-12-31 13:07:26 +08:00
|
|
|
ACPI_FADT_OFFSET(gpe1_block_length),
|
|
|
|
0,
|
2014-04-30 10:06:09 +08:00
|
|
|
ACPI_FADT_SEPARATE_LENGTH | ACPI_FADT_GPE_REGISTER}
|
2007-02-03 00:48:20 +08:00
|
|
|
};
|
|
|
|
|
2009-02-18 15:03:30 +08:00
|
|
|
#define ACPI_FADT_INFO_ENTRIES \
|
|
|
|
(sizeof (fadt_info_table) / sizeof (struct acpi_fadt_info))
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2009-02-18 14:06:12 +08:00
|
|
|
/* Table used to split Event Blocks into separate status/enable registers */
|
|
|
|
|
|
|
|
typedef struct acpi_fadt_pm_info {
|
|
|
|
struct acpi_generic_address *target;
|
2012-01-12 11:09:58 +08:00
|
|
|
u16 source;
|
2009-02-18 14:06:12 +08:00
|
|
|
u8 register_num;
|
|
|
|
|
|
|
|
} acpi_fadt_pm_info;
|
|
|
|
|
|
|
|
static struct acpi_fadt_pm_info fadt_pm_info_table[] = {
|
|
|
|
{&acpi_gbl_xpm1a_status,
|
|
|
|
ACPI_FADT_OFFSET(xpm1a_event_block),
|
|
|
|
0},
|
|
|
|
|
|
|
|
{&acpi_gbl_xpm1a_enable,
|
|
|
|
ACPI_FADT_OFFSET(xpm1a_event_block),
|
|
|
|
1},
|
|
|
|
|
|
|
|
{&acpi_gbl_xpm1b_status,
|
|
|
|
ACPI_FADT_OFFSET(xpm1b_event_block),
|
|
|
|
0},
|
|
|
|
|
|
|
|
{&acpi_gbl_xpm1b_enable,
|
|
|
|
ACPI_FADT_OFFSET(xpm1b_event_block),
|
|
|
|
1}
|
|
|
|
};
|
|
|
|
|
2009-02-18 15:03:30 +08:00
|
|
|
#define ACPI_FADT_PM_INFO_ENTRIES \
|
|
|
|
(sizeof (fadt_pm_info_table) / sizeof (struct acpi_fadt_pm_info))
|
2009-02-18 14:06:12 +08:00
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_tb_init_generic_address
|
|
|
|
*
|
2007-02-03 00:48:20 +08:00
|
|
|
* PARAMETERS: generic_address - GAS struct to be initialized
|
2012-12-19 13:36:49 +08:00
|
|
|
* space_id - ACPI Space ID for this register
|
ACPI: fix FADT parsing
The (1.0 inherited) separate length fields in the FADT are byte granular.
Further, PM1a/b may have distinct lengths (if using the v2 fields was
okay) and may live in distinct address spaces. acpi_tb_convert_fadt()
should account for all of these conditions.
Apart from these changes I'm puzzled by the fact that, not just for
acpi_gbl_xpm1{a,b}_enable, acpi_hw_low_level_{read,write}() get an
explicit size passed rather than using the size found in the passed GAS.
What happens on a platform that defines PM1{a,b} wider than 16 bits? Of
course, acpi_hw_low_level_{read,write}() at present are entirely
un-prepared to deal with sizes other than 8, 16, or 32, not to speak of a
non-zero bit_offset or access_width...
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-09-20 06:50:32 +08:00
|
|
|
* byte_width - Width of this register
|
2012-07-12 09:40:10 +08:00
|
|
|
* address - Address of the register
|
2014-01-08 13:43:46 +08:00
|
|
|
* register_name - ASCII name of the ACPI register
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
|
|
|
* RETURN: None
|
|
|
|
*
|
2007-02-03 00:48:20 +08:00
|
|
|
* DESCRIPTION: Initialize a Generic Address Structure (GAS)
|
|
|
|
* See the ACPI specification for a full description and
|
|
|
|
* definition of this structure.
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2012-05-22 16:35:00 +08:00
|
|
|
static void
|
2007-02-03 00:48:20 +08:00
|
|
|
acpi_tb_init_generic_address(struct acpi_generic_address *generic_address,
|
2012-05-22 16:35:00 +08:00
|
|
|
u8 space_id,
|
2014-04-30 10:06:09 +08:00
|
|
|
u8 byte_width,
|
2016-03-24 09:40:40 +08:00
|
|
|
u64 address, const char *register_name, u8 flags)
|
2007-02-03 00:48:20 +08:00
|
|
|
{
|
2012-05-22 16:35:00 +08:00
|
|
|
u8 bit_width;
|
|
|
|
|
2014-04-30 10:06:09 +08:00
|
|
|
/*
|
|
|
|
* Bit width field in the GAS is only one byte long, 255 max.
|
|
|
|
* Check for bit_width overflow in GAS.
|
|
|
|
*/
|
2012-05-22 16:35:00 +08:00
|
|
|
bit_width = (u8)(byte_width * 8);
|
2014-04-30 10:06:09 +08:00
|
|
|
if (byte_width > 31) { /* (31*8)=248, (32*8)=256 */
|
|
|
|
/*
|
|
|
|
* No error for GPE blocks, because we do not use the bit_width
|
|
|
|
* for GPEs, the legacy length (byte_width) is used instead to
|
|
|
|
* allow for a large number of GPEs.
|
|
|
|
*/
|
|
|
|
if (!(flags & ACPI_FADT_GPE_REGISTER)) {
|
|
|
|
ACPI_ERROR((AE_INFO,
|
|
|
|
"%s - 32-bit FADT register is too long (%u bytes, %u bits) "
|
|
|
|
"to convert to GAS struct - 255 bits max, truncating",
|
|
|
|
register_name, byte_width,
|
|
|
|
(byte_width * 8)));
|
|
|
|
}
|
2012-05-22 16:35:00 +08:00
|
|
|
|
|
|
|
bit_width = 255;
|
|
|
|
}
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
/*
|
|
|
|
* The 64-bit Address field is non-aligned in the byte packed
|
|
|
|
* GAS struct.
|
|
|
|
*/
|
|
|
|
ACPI_MOVE_64_TO_64(&generic_address->address, &address);
|
|
|
|
|
|
|
|
/* All other fields are byte-wide */
|
|
|
|
|
2008-12-31 03:06:06 +08:00
|
|
|
generic_address->space_id = space_id;
|
2012-05-22 16:35:00 +08:00
|
|
|
generic_address->bit_width = bit_width;
|
2007-02-03 00:48:20 +08:00
|
|
|
generic_address->bit_offset = 0;
|
2008-12-31 03:06:06 +08:00
|
|
|
generic_address->access_width = 0; /* Access width ANY */
|
2007-02-03 00:48:20 +08:00
|
|
|
}
|
|
|
|
|
2014-01-08 13:43:46 +08:00
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_tb_select_address
|
|
|
|
*
|
|
|
|
* PARAMETERS: register_name - ASCII name of the ACPI register
|
|
|
|
* address32 - 32-bit address of the register
|
|
|
|
* address64 - 64-bit address of the register
|
|
|
|
*
|
|
|
|
* RETURN: The resolved 64-bit address
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Select between 32-bit and 64-bit versions of addresses within
|
|
|
|
* the FADT. Used for the FACS and DSDT addresses.
|
|
|
|
*
|
|
|
|
* NOTES:
|
|
|
|
*
|
|
|
|
* Check for FACS and DSDT address mismatches. An address mismatch between
|
|
|
|
* the 32-bit and 64-bit address fields (FIRMWARE_CTRL/X_FIRMWARE_CTRL and
|
|
|
|
* DSDT/X_DSDT) could be a corrupted address field or it might indicate
|
|
|
|
* the presence of two FACS or two DSDT tables.
|
|
|
|
*
|
|
|
|
* November 2013:
|
|
|
|
* By default, as per the ACPICA specification, a valid 64-bit address is
|
|
|
|
* used regardless of the value of the 32-bit address. However, this
|
|
|
|
* behavior can be overridden via the acpi_gbl_use32_bit_fadt_addresses flag.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
static u64
|
|
|
|
acpi_tb_select_address(char *register_name, u32 address32, u64 address64)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (!address64) {
|
|
|
|
|
|
|
|
/* 64-bit address is zero, use 32-bit address */
|
|
|
|
|
|
|
|
return ((u64)address32);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (address32 && (address64 != (u64)address32)) {
|
|
|
|
|
|
|
|
/* Address mismatch between 32-bit and 64-bit versions */
|
|
|
|
|
|
|
|
ACPI_BIOS_WARNING((AE_INFO,
|
|
|
|
"32/64X %s address mismatch in FADT: "
|
|
|
|
"0x%8.8X/0x%8.8X%8.8X, using %u-bit address",
|
|
|
|
register_name, address32,
|
|
|
|
ACPI_FORMAT_UINT64(address64),
|
|
|
|
acpi_gbl_use32_bit_fadt_addresses ? 32 :
|
|
|
|
64));
|
|
|
|
|
|
|
|
/* 32-bit address override */
|
|
|
|
|
|
|
|
if (acpi_gbl_use32_bit_fadt_addresses) {
|
|
|
|
return ((u64)address32);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Default is to use the 64-bit address */
|
|
|
|
|
|
|
|
return (address64);
|
|
|
|
}
|
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_tb_parse_fadt
|
|
|
|
*
|
2015-10-14 13:53:57 +08:00
|
|
|
* PARAMETERS: None
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
|
|
|
* RETURN: None
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Initialize the FADT, DSDT and FACS tables
|
|
|
|
* (FADT contains the addresses of the DSDT and FACS)
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2015-10-14 13:53:57 +08:00
|
|
|
void acpi_tb_parse_fadt(void)
|
2007-02-03 00:48:20 +08:00
|
|
|
{
|
|
|
|
u32 length;
|
|
|
|
struct acpi_table_header *table;
|
2016-12-14 15:04:33 +08:00
|
|
|
struct acpi_table_desc *fadt_desc;
|
|
|
|
acpi_status status;
|
2007-02-03 00:48:20 +08:00
|
|
|
|
|
|
|
/*
|
2007-02-03 00:48:20 +08:00
|
|
|
* The FADT has multiple versions with different lengths,
|
|
|
|
* and it contains pointers to both the DSDT and FACS tables.
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
|
|
|
* Get a local copy of the FADT and convert it to a common format
|
|
|
|
* Map entire FADT, assumed to be smaller than one page.
|
|
|
|
*/
|
2016-12-14 15:04:33 +08:00
|
|
|
fadt_desc = &acpi_gbl_root_table_list.tables[acpi_gbl_fadt_index];
|
|
|
|
status = acpi_tb_get_table(fadt_desc, &table);
|
|
|
|
if (ACPI_FAILURE(status)) {
|
2007-02-03 00:48:20 +08:00
|
|
|
return;
|
|
|
|
}
|
2016-12-14 15:04:33 +08:00
|
|
|
length = fadt_desc->length;
|
2007-02-03 00:48:20 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Validate the FADT checksum before we copy the table. Ignore
|
|
|
|
* checksum error as we want to try to get the DSDT and FACS.
|
|
|
|
*/
|
2022-10-28 01:58:36 +08:00
|
|
|
(void)acpi_ut_verify_checksum(table, length);
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2009-02-18 14:06:12 +08:00
|
|
|
/* Create a local copy of the FADT in common ACPI 2.0+ format */
|
2007-02-03 00:48:20 +08:00
|
|
|
|
|
|
|
acpi_tb_create_local_fadt(table, length);
|
|
|
|
|
|
|
|
/* All done with the real FADT, unmap it */
|
|
|
|
|
2016-12-14 15:04:33 +08:00
|
|
|
acpi_tb_put_table(fadt_desc);
|
2007-02-03 00:48:20 +08:00
|
|
|
|
|
|
|
/* Obtain the DSDT and FACS tables via their addresses within the FADT */
|
|
|
|
|
2016-09-07 14:06:17 +08:00
|
|
|
acpi_tb_install_standard_table((acpi_physical_address)acpi_gbl_FADT.
|
|
|
|
Xdsdt,
|
|
|
|
ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL,
|
ACPICA: Use original pointer for virtual origin tables
ACPICA commit dfa3feffa8f760b686207d09dc880cd2f26c72af
Currently the pointer to the table is cast to acpi_physical_address and
later cast back to a pointer to be dereferenced. Whether or not this is
supported is implementation-defined.
On CHERI, and thus Arm's experimental Morello prototype architecture,
pointers are represented as capabilities, which are unforgeable bounded
pointers, providing always-on fine-grained spatial memory safety. This
means that any pointer cast to a plain integer will lose all its
associated metadata, and when cast back to a pointer it will give a
null-derived pointer (one that has the same metadata as null but an
address equal to the integer) that will trap on any dereference. As a
result, this is an implementation where acpi_physical_address cannot be
used as a hack to store real pointers.
Thus, alter the lifecycle of table descriptors. Internal physical tables
keep the current behaviour where only the address is set on install, and
the pointer is set on acquire. Virtual tables (internal and external)
now store the pointer on initialisation and use that on acquire (which
will redundantly set *table_ptr to itself, but changing that is both
unnecessary and overly complicated as acpi_tb_acquire_table is called with
both a pointer to a variable and a pointer to Table->Pointer itself).
This requires propagating the (possible) table pointer everywhere in
order to make sure pointers make it through to acpi_tb_acquire_temp_table,
which requires a change to the acpi_install_table interface. Instead of
taking an ACPI_PHYSADDR_TYPE and a boolean indicating whether it's
physical or virtual, it is now split into acpi_install_table (that takes
an external virtual table pointer) and acpi_install_physical_table (that
takes an ACPI_PHYSADDR_TYPE for an internal physical table address).
This also has the benefit of providing a cleaner API.
Link: https://github.com/acpica/acpica/commit/dfa3feff
Signed-off-by: Bob Moore <robert.moore@intel.com>
[ rjw: Adjust the code in tables.c to match interface changes ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-23 00:22:28 +08:00
|
|
|
NULL, FALSE, TRUE, &acpi_gbl_dsdt_index);
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2011-11-16 10:57:28 +08:00
|
|
|
/* If Hardware Reduced flag is set, there is no FACS */
|
|
|
|
|
|
|
|
if (!acpi_gbl_reduced_hardware) {
|
2015-07-01 14:43:11 +08:00
|
|
|
if (acpi_gbl_FADT.facs) {
|
2016-09-07 14:06:17 +08:00
|
|
|
acpi_tb_install_standard_table((acpi_physical_address)
|
|
|
|
acpi_gbl_FADT.facs,
|
|
|
|
ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL,
|
ACPICA: Use original pointer for virtual origin tables
ACPICA commit dfa3feffa8f760b686207d09dc880cd2f26c72af
Currently the pointer to the table is cast to acpi_physical_address and
later cast back to a pointer to be dereferenced. Whether or not this is
supported is implementation-defined.
On CHERI, and thus Arm's experimental Morello prototype architecture,
pointers are represented as capabilities, which are unforgeable bounded
pointers, providing always-on fine-grained spatial memory safety. This
means that any pointer cast to a plain integer will lose all its
associated metadata, and when cast back to a pointer it will give a
null-derived pointer (one that has the same metadata as null but an
address equal to the integer) that will trap on any dereference. As a
result, this is an implementation where acpi_physical_address cannot be
used as a hack to store real pointers.
Thus, alter the lifecycle of table descriptors. Internal physical tables
keep the current behaviour where only the address is set on install, and
the pointer is set on acquire. Virtual tables (internal and external)
now store the pointer on initialisation and use that on acquire (which
will redundantly set *table_ptr to itself, but changing that is both
unnecessary and overly complicated as acpi_tb_acquire_table is called with
both a pointer to a variable and a pointer to Table->Pointer itself).
This requires propagating the (possible) table pointer everywhere in
order to make sure pointers make it through to acpi_tb_acquire_temp_table,
which requires a change to the acpi_install_table interface. Instead of
taking an ACPI_PHYSADDR_TYPE and a boolean indicating whether it's
physical or virtual, it is now split into acpi_install_table (that takes
an external virtual table pointer) and acpi_install_physical_table (that
takes an ACPI_PHYSADDR_TYPE for an internal physical table address).
This also has the benefit of providing a cleaner API.
Link: https://github.com/acpica/acpica/commit/dfa3feff
Signed-off-by: Bob Moore <robert.moore@intel.com>
[ rjw: Adjust the code in tables.c to match interface changes ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-23 00:22:28 +08:00
|
|
|
NULL, FALSE, TRUE,
|
2016-09-07 14:06:17 +08:00
|
|
|
&acpi_gbl_facs_index);
|
2015-07-01 14:43:11 +08:00
|
|
|
}
|
|
|
|
if (acpi_gbl_FADT.Xfacs) {
|
2016-09-07 14:06:17 +08:00
|
|
|
acpi_tb_install_standard_table((acpi_physical_address)
|
|
|
|
acpi_gbl_FADT.Xfacs,
|
|
|
|
ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL,
|
ACPICA: Use original pointer for virtual origin tables
ACPICA commit dfa3feffa8f760b686207d09dc880cd2f26c72af
Currently the pointer to the table is cast to acpi_physical_address and
later cast back to a pointer to be dereferenced. Whether or not this is
supported is implementation-defined.
On CHERI, and thus Arm's experimental Morello prototype architecture,
pointers are represented as capabilities, which are unforgeable bounded
pointers, providing always-on fine-grained spatial memory safety. This
means that any pointer cast to a plain integer will lose all its
associated metadata, and when cast back to a pointer it will give a
null-derived pointer (one that has the same metadata as null but an
address equal to the integer) that will trap on any dereference. As a
result, this is an implementation where acpi_physical_address cannot be
used as a hack to store real pointers.
Thus, alter the lifecycle of table descriptors. Internal physical tables
keep the current behaviour where only the address is set on install, and
the pointer is set on acquire. Virtual tables (internal and external)
now store the pointer on initialisation and use that on acquire (which
will redundantly set *table_ptr to itself, but changing that is both
unnecessary and overly complicated as acpi_tb_acquire_table is called with
both a pointer to a variable and a pointer to Table->Pointer itself).
This requires propagating the (possible) table pointer everywhere in
order to make sure pointers make it through to acpi_tb_acquire_temp_table,
which requires a change to the acpi_install_table interface. Instead of
taking an ACPI_PHYSADDR_TYPE and a boolean indicating whether it's
physical or virtual, it is now split into acpi_install_table (that takes
an external virtual table pointer) and acpi_install_physical_table (that
takes an ACPI_PHYSADDR_TYPE for an internal physical table address).
This also has the benefit of providing a cleaner API.
Link: https://github.com/acpica/acpica/commit/dfa3feff
Signed-off-by: Bob Moore <robert.moore@intel.com>
[ rjw: Adjust the code in tables.c to match interface changes ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-23 00:22:28 +08:00
|
|
|
NULL, FALSE, TRUE,
|
2016-09-07 14:06:17 +08:00
|
|
|
&acpi_gbl_xfacs_index);
|
2015-07-01 14:43:11 +08:00
|
|
|
}
|
2011-11-16 10:57:28 +08:00
|
|
|
}
|
2007-02-03 00:48:20 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_tb_create_local_fadt
|
|
|
|
*
|
2012-07-12 09:40:10 +08:00
|
|
|
* PARAMETERS: table - Pointer to BIOS FADT
|
|
|
|
* length - Length of the table
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
|
|
|
* RETURN: None
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Get a local copy of the FADT and convert it to a common format.
|
|
|
|
* Performs validation on some important FADT fields.
|
|
|
|
*
|
2007-05-03 03:51:37 +08:00
|
|
|
* NOTE: We create a local copy of the FADT regardless of the version.
|
|
|
|
*
|
2007-02-03 00:48:20 +08:00
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
void acpi_tb_create_local_fadt(struct acpi_table_header *table, u32 length)
|
|
|
|
{
|
2007-02-03 00:48:20 +08:00
|
|
|
/*
|
2007-05-03 03:51:37 +08:00
|
|
|
* Check if the FADT is larger than the largest table that we expect
|
2016-03-24 09:39:28 +08:00
|
|
|
* (typically the current ACPI specification version). If so, truncate
|
|
|
|
* the table, and issue a warning.
|
2007-02-03 00:48:20 +08:00
|
|
|
*/
|
|
|
|
if (length > sizeof(struct acpi_table_fadt)) {
|
2012-07-16 09:39:54 +08:00
|
|
|
ACPI_BIOS_WARNING((AE_INFO,
|
2016-03-24 09:39:28 +08:00
|
|
|
"FADT (revision %u) is longer than %s length, "
|
2012-07-16 09:39:54 +08:00
|
|
|
"truncating length %u to %u",
|
2016-03-24 09:39:28 +08:00
|
|
|
table->revision, ACPI_FADT_CONFORMANCE,
|
|
|
|
length,
|
2012-07-16 09:39:54 +08:00
|
|
|
(u32)sizeof(struct acpi_table_fadt)));
|
2007-02-03 00:48:20 +08:00
|
|
|
}
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2007-05-03 03:51:37 +08:00
|
|
|
/* Clear the entire local FADT */
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2015-07-01 14:45:11 +08:00
|
|
|
memset(&acpi_gbl_FADT, 0, sizeof(struct acpi_table_fadt));
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2007-05-03 03:51:37 +08:00
|
|
|
/* Copy the original FADT, up to sizeof (struct acpi_table_fadt) */
|
|
|
|
|
2015-07-01 14:45:11 +08:00
|
|
|
memcpy(&acpi_gbl_FADT, table,
|
|
|
|
ACPI_MIN(length, sizeof(struct acpi_table_fadt)));
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2011-11-16 10:57:28 +08:00
|
|
|
/* Take a copy of the Hardware Reduced flag */
|
|
|
|
|
|
|
|
acpi_gbl_reduced_hardware = FALSE;
|
|
|
|
if (acpi_gbl_FADT.flags & ACPI_FADT_HW_REDUCED) {
|
|
|
|
acpi_gbl_reduced_hardware = TRUE;
|
|
|
|
}
|
|
|
|
|
2009-02-18 14:06:12 +08:00
|
|
|
/* Convert the local copy of the FADT to the common internal format */
|
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
acpi_tb_convert_fadt();
|
2009-02-18 14:06:12 +08:00
|
|
|
|
|
|
|
/* Initialize the global ACPI register structures */
|
|
|
|
|
|
|
|
acpi_tb_setup_fadt_registers();
|
2007-02-03 00:48:20 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_tb_convert_fadt
|
|
|
|
*
|
2014-01-08 13:43:46 +08:00
|
|
|
* PARAMETERS: none - acpi_gbl_FADT is used.
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
|
|
|
* RETURN: None
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Converts all versions of the FADT to a common internal format.
|
2014-01-08 13:43:46 +08:00
|
|
|
* Expand 32-bit addresses to 64-bit as necessary. Also validate
|
|
|
|
* important fields within the FADT.
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
2014-01-08 13:43:46 +08:00
|
|
|
* NOTE: acpi_gbl_FADT must be of size (struct acpi_table_fadt), and must
|
|
|
|
* contain a copy of the actual BIOS-provided FADT.
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
2009-03-19 10:12:13 +08:00
|
|
|
* Notes on 64-bit register addresses:
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
2009-03-19 10:12:13 +08:00
|
|
|
* After this FADT conversion, later ACPICA code will only use the 64-bit "X"
|
|
|
|
* fields of the FADT for all ACPI register addresses.
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
2014-01-08 13:43:46 +08:00
|
|
|
* The 64-bit X fields are optional extensions to the original 32-bit FADT
|
2009-03-19 10:12:13 +08:00
|
|
|
* V1.0 fields. Even if they are present in the FADT, they are optional and
|
|
|
|
* are unused if the BIOS sets them to zero. Therefore, we must copy/expand
|
2017-06-05 16:41:04 +08:00
|
|
|
* 32-bit V1.0 fields to the 64-bit X fields if the 64-bit X field is originally
|
|
|
|
* zero.
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
2014-01-08 13:43:46 +08:00
|
|
|
* For ACPI 1.0 FADTs (that contain no 64-bit addresses), all 32-bit address
|
|
|
|
* fields are expanded to the corresponding 64-bit X fields in the internal
|
|
|
|
* common FADT.
|
2009-03-19 10:12:13 +08:00
|
|
|
*
|
|
|
|
* For ACPI 2.0+ FADTs, all valid (non-zero) 32-bit address fields are expanded
|
2014-01-08 13:43:46 +08:00
|
|
|
* to the corresponding 64-bit X fields, if the 64-bit field is originally
|
|
|
|
* zero. Adhering to the ACPI specification, we completely ignore the 32-bit
|
|
|
|
* field if the 64-bit field is valid, regardless of whether the host OS is
|
|
|
|
* 32-bit or 64-bit.
|
|
|
|
*
|
|
|
|
* Possible additional checks:
|
|
|
|
* (acpi_gbl_FADT.pm1_event_length >= 4)
|
|
|
|
* (acpi_gbl_FADT.pm1_control_length >= 2)
|
|
|
|
* (acpi_gbl_FADT.pm_timer_length >= 4)
|
|
|
|
* Gpe block lengths must be multiple of 2
|
2007-02-03 00:48:20 +08:00
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
2007-02-03 00:48:20 +08:00
|
|
|
static void acpi_tb_convert_fadt(void)
|
2007-02-03 00:48:20 +08:00
|
|
|
{
|
2016-03-24 09:40:40 +08:00
|
|
|
const char *name;
|
2009-03-19 10:12:13 +08:00
|
|
|
struct acpi_generic_address *address64;
|
|
|
|
u32 address32;
|
2014-01-08 13:43:46 +08:00
|
|
|
u8 length;
|
2014-04-30 10:06:09 +08:00
|
|
|
u8 flags;
|
2008-06-10 13:42:13 +08:00
|
|
|
u32 i;
|
2007-02-03 00:48:20 +08:00
|
|
|
|
|
|
|
/*
|
2016-11-15 03:56:17 +08:00
|
|
|
* For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which
|
2007-05-03 03:51:37 +08:00
|
|
|
* should be zero are indeed zero. This will workaround BIOSs that
|
|
|
|
* inadvertently place values in these fields.
|
|
|
|
*
|
2012-12-19 13:36:49 +08:00
|
|
|
* The ACPI 1.0 reserved fields that will be zeroed are the bytes located
|
|
|
|
* at offset 45, 55, 95, and the word located at offset 109, 110.
|
2011-02-14 15:50:42 +08:00
|
|
|
*
|
2016-11-15 03:56:17 +08:00
|
|
|
* Note: The FADT revision value is unreliable. Only the length can be
|
|
|
|
* trusted.
|
2007-05-03 03:51:37 +08:00
|
|
|
*/
|
2016-11-15 03:56:17 +08:00
|
|
|
if (acpi_gbl_FADT.header.length <= ACPI_FADT_V2_SIZE) {
|
2007-05-03 03:51:37 +08:00
|
|
|
acpi_gbl_FADT.preferred_profile = 0;
|
|
|
|
acpi_gbl_FADT.pstate_control = 0;
|
|
|
|
acpi_gbl_FADT.cst_control = 0;
|
|
|
|
acpi_gbl_FADT.boot_flags = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2014-01-08 13:43:46 +08:00
|
|
|
* Now we can update the local FADT length to the length of the
|
|
|
|
* current FADT version as defined by the ACPI specification.
|
|
|
|
* Thus, we will have a common FADT internally.
|
2007-02-03 00:48:20 +08:00
|
|
|
*/
|
2014-01-08 13:43:46 +08:00
|
|
|
acpi_gbl_FADT.header.length = sizeof(struct acpi_table_fadt);
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 03:06:06 +08:00
|
|
|
/*
|
2015-07-01 14:43:11 +08:00
|
|
|
* Expand the 32-bit DSDT addresses to 64-bit as necessary.
|
2014-01-08 13:43:46 +08:00
|
|
|
* Later ACPICA code will always use the X 64-bit field.
|
2008-12-31 03:06:06 +08:00
|
|
|
*/
|
2014-01-08 13:43:46 +08:00
|
|
|
acpi_gbl_FADT.Xdsdt = acpi_tb_select_address("DSDT",
|
|
|
|
acpi_gbl_FADT.dsdt,
|
|
|
|
acpi_gbl_FADT.Xdsdt);
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2011-11-16 10:57:28 +08:00
|
|
|
/* If Hardware Reduced flag is set, we are all done */
|
|
|
|
|
|
|
|
if (acpi_gbl_reduced_hardware) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2008-12-31 03:06:06 +08:00
|
|
|
/* Examine all of the 64-bit extended address fields (X fields) */
|
2007-02-03 00:48:20 +08:00
|
|
|
|
2008-12-31 03:06:06 +08:00
|
|
|
for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) {
|
|
|
|
/*
|
2014-01-08 13:43:46 +08:00
|
|
|
* Get the 32-bit and 64-bit addresses, as well as the register
|
|
|
|
* length and register name.
|
2008-12-31 03:06:06 +08:00
|
|
|
*/
|
2014-01-08 13:43:46 +08:00
|
|
|
address32 = *ACPI_ADD_PTR(u32,
|
|
|
|
&acpi_gbl_FADT,
|
|
|
|
fadt_info_table[i].address32);
|
|
|
|
|
2008-12-31 03:06:06 +08:00
|
|
|
address64 = ACPI_ADD_PTR(struct acpi_generic_address,
|
|
|
|
&acpi_gbl_FADT,
|
2008-12-31 13:07:26 +08:00
|
|
|
fadt_info_table[i].address64);
|
2014-01-08 13:43:46 +08:00
|
|
|
|
|
|
|
length = *ACPI_ADD_PTR(u8,
|
|
|
|
&acpi_gbl_FADT,
|
|
|
|
fadt_info_table[i].length);
|
|
|
|
|
2008-12-31 03:06:06 +08:00
|
|
|
name = fadt_info_table[i].name;
|
2014-04-30 10:06:09 +08:00
|
|
|
flags = fadt_info_table[i].flags;
|
2008-12-31 03:06:06 +08:00
|
|
|
|
2014-01-08 13:43:46 +08:00
|
|
|
/*
|
|
|
|
* Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X"
|
|
|
|
* generic address structures as necessary. Later code will always use
|
|
|
|
* the 64-bit address structures.
|
|
|
|
*
|
|
|
|
* November 2013:
|
|
|
|
* Now always use the 64-bit address if it is valid (non-zero), in
|
|
|
|
* accordance with the ACPI specification which states that a 64-bit
|
|
|
|
* address supersedes the 32-bit version. This behavior can be
|
|
|
|
* overridden by the acpi_gbl_use32_bit_fadt_addresses flag.
|
|
|
|
*
|
|
|
|
* During 64-bit address construction and verification,
|
|
|
|
* these cases are handled:
|
|
|
|
*
|
|
|
|
* Address32 zero, Address64 [don't care] - Use Address64
|
|
|
|
*
|
2016-09-07 14:06:39 +08:00
|
|
|
* No override: if acpi_gbl_use32_bit_fadt_addresses is FALSE, and:
|
2014-01-08 13:43:46 +08:00
|
|
|
* Address32 non-zero, Address64 zero - Copy/use Address32
|
|
|
|
* Address32 non-zero == Address64 non-zero - Use Address64
|
|
|
|
* Address32 non-zero != Address64 non-zero - Warning, use Address64
|
|
|
|
*
|
|
|
|
* Override: if acpi_gbl_use32_bit_fadt_addresses is TRUE, and:
|
2016-09-07 14:06:39 +08:00
|
|
|
* Address32 non-zero, Address64 zero - Copy/use Address32
|
|
|
|
* Address32 non-zero == Address64 non-zero - Copy/use Address32
|
2014-01-08 13:43:46 +08:00
|
|
|
* Address32 non-zero != Address64 non-zero - Warning, copy/use Address32
|
|
|
|
*
|
|
|
|
* Note: space_id is always I/O for 32-bit legacy address fields
|
|
|
|
*/
|
|
|
|
if (address32) {
|
2016-09-07 14:06:39 +08:00
|
|
|
if (address64->address) {
|
|
|
|
if (address64->address != (u64)address32) {
|
|
|
|
|
|
|
|
/* Address mismatch */
|
|
|
|
|
|
|
|
ACPI_BIOS_WARNING((AE_INFO,
|
|
|
|
"32/64X address mismatch in FADT/%s: "
|
|
|
|
"0x%8.8X/0x%8.8X%8.8X, using %u-bit address",
|
|
|
|
name, address32,
|
|
|
|
ACPI_FORMAT_UINT64
|
|
|
|
(address64->address),
|
|
|
|
acpi_gbl_use32_bit_fadt_addresses
|
|
|
|
? 32 : 64));
|
|
|
|
}
|
2014-01-08 13:43:46 +08:00
|
|
|
|
2016-09-07 14:06:39 +08:00
|
|
|
/*
|
|
|
|
* For each extended field, check for length mismatch
|
|
|
|
* between the legacy length field and the corresponding
|
|
|
|
* 64-bit X length field.
|
|
|
|
* Note: If the legacy length field is > 0xFF bits, ignore
|
|
|
|
* this check. (GPE registers can be larger than the
|
2019-02-16 05:36:19 +08:00
|
|
|
* 64-bit GAS structure can accommodate, 0xFF bits).
|
2016-09-07 14:06:39 +08:00
|
|
|
*/
|
|
|
|
if ((ACPI_MUL_8(length) <= ACPI_UINT8_MAX) &&
|
|
|
|
(address64->bit_width !=
|
|
|
|
ACPI_MUL_8(length))) {
|
|
|
|
ACPI_BIOS_WARNING((AE_INFO,
|
|
|
|
"32/64X length mismatch in FADT/%s: %u/%u",
|
|
|
|
name,
|
|
|
|
ACPI_MUL_8(length),
|
|
|
|
address64->
|
|
|
|
bit_width));
|
|
|
|
}
|
|
|
|
}
|
2014-01-08 13:43:46 +08:00
|
|
|
|
2016-09-07 14:06:39 +08:00
|
|
|
/*
|
|
|
|
* Hardware register access code always uses the 64-bit fields.
|
|
|
|
* So if the 64-bit field is zero or is to be overridden,
|
|
|
|
* initialize it with the 32-bit fields.
|
|
|
|
* Note that when the 32-bit address favor is specified, the
|
|
|
|
* 64-bit fields are always re-initialized so that
|
|
|
|
* access_size/bit_width/bit_offset fields can be correctly
|
|
|
|
* configured to the values to trigger a 32-bit compatible
|
|
|
|
* access mode in the hardware register access code.
|
|
|
|
*/
|
|
|
|
if (!address64->address
|
|
|
|
|| acpi_gbl_use32_bit_fadt_addresses) {
|
2014-01-08 13:43:46 +08:00
|
|
|
acpi_tb_init_generic_address(address64,
|
|
|
|
ACPI_ADR_SPACE_SYSTEM_IO,
|
2016-09-07 14:06:39 +08:00
|
|
|
length,
|
2014-01-08 13:43:46 +08:00
|
|
|
(u64)address32,
|
2014-04-30 10:06:09 +08:00
|
|
|
name, flags);
|
2014-01-08 13:43:46 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-30 10:06:09 +08:00
|
|
|
if (fadt_info_table[i].flags & ACPI_FADT_REQUIRED) {
|
2007-02-03 00:48:20 +08:00
|
|
|
/*
|
2013-08-08 15:29:51 +08:00
|
|
|
* Field is required (Pm1a_event, Pm1a_control).
|
2007-02-03 00:48:20 +08:00
|
|
|
* Both the address and length must be non-zero.
|
|
|
|
*/
|
|
|
|
if (!address64->address || !length) {
|
2012-07-16 09:39:54 +08:00
|
|
|
ACPI_BIOS_ERROR((AE_INFO,
|
|
|
|
"Required FADT field %s has zero address and/or length: "
|
|
|
|
"0x%8.8X%8.8X/0x%X",
|
|
|
|
name,
|
|
|
|
ACPI_FORMAT_UINT64(address64->
|
|
|
|
address),
|
|
|
|
length));
|
2007-02-03 00:48:20 +08:00
|
|
|
}
|
2014-04-30 10:06:09 +08:00
|
|
|
} else if (fadt_info_table[i].flags & ACPI_FADT_SEPARATE_LENGTH) {
|
2007-02-03 00:48:20 +08:00
|
|
|
/*
|
2012-07-12 09:40:10 +08:00
|
|
|
* Field is optional (Pm2_control, GPE0, GPE1) AND has its own
|
2009-02-18 15:03:30 +08:00
|
|
|
* length field. If present, both the address and length must
|
|
|
|
* be valid.
|
2007-02-03 00:48:20 +08:00
|
|
|
*/
|
2009-02-18 15:03:30 +08:00
|
|
|
if ((address64->address && !length) ||
|
|
|
|
(!address64->address && length)) {
|
2012-07-16 09:39:54 +08:00
|
|
|
ACPI_BIOS_WARNING((AE_INFO,
|
2016-03-24 09:39:28 +08:00
|
|
|
"Optional FADT field %s has valid %s but zero %s: "
|
|
|
|
"0x%8.8X%8.8X/0x%X", name,
|
|
|
|
(length ? "Length" :
|
|
|
|
"Address"),
|
|
|
|
(length ? "Address" :
|
|
|
|
"Length"),
|
2012-07-16 09:39:54 +08:00
|
|
|
ACPI_FORMAT_UINT64
|
|
|
|
(address64->address),
|
|
|
|
length));
|
2007-02-03 00:48:20 +08:00
|
|
|
}
|
|
|
|
}
|
2007-02-03 00:48:20 +08:00
|
|
|
}
|
|
|
|
}
|
2009-02-18 14:06:12 +08:00
|
|
|
|
2009-02-18 15:03:30 +08:00
|
|
|
/*******************************************************************************
|
2009-02-18 14:06:12 +08:00
|
|
|
*
|
|
|
|
* FUNCTION: acpi_tb_setup_fadt_registers
|
|
|
|
*
|
|
|
|
* PARAMETERS: None, uses acpi_gbl_FADT.
|
|
|
|
*
|
|
|
|
* RETURN: None
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Initialize global ACPI PM1 register definitions. Optionally,
|
|
|
|
* force FADT register definitions to their default lengths.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
static void acpi_tb_setup_fadt_registers(void)
|
|
|
|
{
|
|
|
|
struct acpi_generic_address *target64;
|
|
|
|
struct acpi_generic_address *source64;
|
|
|
|
u8 pm1_register_byte_width;
|
|
|
|
u32 i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Optionally check all register lengths against the default values and
|
|
|
|
* update them if they are incorrect.
|
|
|
|
*/
|
|
|
|
if (acpi_gbl_use_default_register_widths) {
|
|
|
|
for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) {
|
|
|
|
target64 =
|
|
|
|
ACPI_ADD_PTR(struct acpi_generic_address,
|
|
|
|
&acpi_gbl_FADT,
|
|
|
|
fadt_info_table[i].address64);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If a valid register (Address != 0) and the (default_length > 0)
|
|
|
|
* (Not a GPE register), then check the width against the default.
|
|
|
|
*/
|
|
|
|
if ((target64->address) &&
|
|
|
|
(fadt_info_table[i].default_length > 0) &&
|
|
|
|
(fadt_info_table[i].default_length !=
|
|
|
|
target64->bit_width)) {
|
2012-07-16 09:39:54 +08:00
|
|
|
ACPI_BIOS_WARNING((AE_INFO,
|
|
|
|
"Invalid length for FADT/%s: %u, using default %u",
|
|
|
|
fadt_info_table[i].name,
|
|
|
|
target64->bit_width,
|
|
|
|
fadt_info_table[i].
|
|
|
|
default_length));
|
2009-02-18 14:06:12 +08:00
|
|
|
|
|
|
|
/* Incorrect size, set width to the default */
|
|
|
|
|
|
|
|
target64->bit_width =
|
|
|
|
fadt_info_table[i].default_length;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the length of the individual PM1 registers (enable and status).
|
|
|
|
* Each register is defined to be (event block length / 2). Extra divide
|
|
|
|
* by 8 converts bits to bytes.
|
|
|
|
*/
|
2009-02-18 15:03:30 +08:00
|
|
|
pm1_register_byte_width = (u8)
|
|
|
|
ACPI_DIV_16(acpi_gbl_FADT.xpm1a_event_block.bit_width);
|
2009-02-18 14:06:12 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate separate GAS structs for the PM1x (A/B) Status and Enable
|
|
|
|
* registers. These addresses do not appear (directly) in the FADT, so it
|
|
|
|
* is useful to pre-calculate them from the PM1 Event Block definitions.
|
|
|
|
*
|
|
|
|
* The PM event blocks are split into two register blocks, first is the
|
|
|
|
* PM Status Register block, followed immediately by the PM Enable
|
|
|
|
* Register block. Each is of length (pm1_event_length/2)
|
|
|
|
*
|
|
|
|
* Note: The PM1A event block is required by the ACPI specification.
|
|
|
|
* However, the PM1B event block is optional and is rarely, if ever,
|
|
|
|
* used.
|
|
|
|
*/
|
|
|
|
|
|
|
|
for (i = 0; i < ACPI_FADT_PM_INFO_ENTRIES; i++) {
|
|
|
|
source64 =
|
|
|
|
ACPI_ADD_PTR(struct acpi_generic_address, &acpi_gbl_FADT,
|
|
|
|
fadt_pm_info_table[i].source);
|
|
|
|
|
2009-03-04 14:31:25 +08:00
|
|
|
if (source64->address) {
|
|
|
|
acpi_tb_init_generic_address(fadt_pm_info_table[i].
|
|
|
|
target, source64->space_id,
|
|
|
|
pm1_register_byte_width,
|
|
|
|
source64->address +
|
|
|
|
(fadt_pm_info_table[i].
|
|
|
|
register_num *
|
2012-05-22 16:35:00 +08:00
|
|
|
pm1_register_byte_width),
|
2014-04-30 10:06:09 +08:00
|
|
|
"PmRegisters", 0);
|
2009-03-04 14:31:25 +08:00
|
|
|
}
|
2009-02-18 14:06:12 +08:00
|
|
|
}
|
|
|
|
}
|