linux/net/mac80211/iface.c

2149 lines
56 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Interface handling
*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright (c) 2006 Jiri Benc <jbenc@suse.cz>
* Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright (c) 2016 Intel Deutschland GmbH
* Copyright (C) 2018-2021 Intel Corporation
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/kcov.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include "ieee80211_i.h"
#include "sta_info.h"
#include "debugfs_netdev.h"
#include "mesh.h"
#include "led.h"
#include "driver-ops.h"
#include "wme.h"
#include "rate.h"
/**
* DOC: Interface list locking
*
* The interface list in each struct ieee80211_local is protected
* three-fold:
*
* (1) modifications may only be done under the RTNL
* (2) modifications and readers are protected against each other by
* the iflist_mtx.
* (3) modifications are done in an RCU manner so atomic readers
* can traverse the list in RCU-safe blocks.
*
* As a consequence, reads (traversals) of the list can be protected
* by either the RTNL, the iflist_mtx or RCU.
*/
static void ieee80211_iface_work(struct work_struct *work);
bool __ieee80211_recalc_txpower(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_chanctx_conf *chanctx_conf;
int power;
rcu_read_lock();
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
if (!chanctx_conf) {
rcu_read_unlock();
return false;
}
power = ieee80211_chandef_max_power(&chanctx_conf->def);
rcu_read_unlock();
if (sdata->user_power_level != IEEE80211_UNSET_POWER_LEVEL)
power = min(power, sdata->user_power_level);
if (sdata->ap_power_level != IEEE80211_UNSET_POWER_LEVEL)
power = min(power, sdata->ap_power_level);
if (power != sdata->vif.bss_conf.txpower) {
sdata->vif.bss_conf.txpower = power;
ieee80211_hw_config(sdata->local, 0);
return true;
}
return false;
}
void ieee80211_recalc_txpower(struct ieee80211_sub_if_data *sdata,
bool update_bss)
{
if (__ieee80211_recalc_txpower(sdata) ||
(update_bss && ieee80211_sdata_running(sdata)))
ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_TXPOWER);
}
static u32 __ieee80211_idle_off(struct ieee80211_local *local)
{
if (!(local->hw.conf.flags & IEEE80211_CONF_IDLE))
return 0;
local->hw.conf.flags &= ~IEEE80211_CONF_IDLE;
return IEEE80211_CONF_CHANGE_IDLE;
}
static u32 __ieee80211_idle_on(struct ieee80211_local *local)
{
if (local->hw.conf.flags & IEEE80211_CONF_IDLE)
return 0;
ieee80211_flush_queues(local, NULL, false);
local->hw.conf.flags |= IEEE80211_CONF_IDLE;
return IEEE80211_CONF_CHANGE_IDLE;
}
static u32 __ieee80211_recalc_idle(struct ieee80211_local *local,
bool force_active)
{
bool working, scanning, active;
unsigned int led_trig_start = 0, led_trig_stop = 0;
lockdep_assert_held(&local->mtx);
active = force_active ||
!list_empty(&local->chanctx_list) ||
local->monitors;
working = !local->ops->remain_on_channel &&
!list_empty(&local->roc_list);
scanning = test_bit(SCAN_SW_SCANNING, &local->scanning) ||
test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning);
if (working || scanning)
led_trig_start |= IEEE80211_TPT_LEDTRIG_FL_WORK;
else
led_trig_stop |= IEEE80211_TPT_LEDTRIG_FL_WORK;
if (active)
led_trig_start |= IEEE80211_TPT_LEDTRIG_FL_CONNECTED;
else
led_trig_stop |= IEEE80211_TPT_LEDTRIG_FL_CONNECTED;
ieee80211_mod_tpt_led_trig(local, led_trig_start, led_trig_stop);
if (working || scanning || active)
return __ieee80211_idle_off(local);
return __ieee80211_idle_on(local);
}
u32 ieee80211_idle_off(struct ieee80211_local *local)
{
return __ieee80211_recalc_idle(local, true);
}
void ieee80211_recalc_idle(struct ieee80211_local *local)
{
u32 change = __ieee80211_recalc_idle(local, false);
if (change)
ieee80211_hw_config(local, change);
}
static int ieee80211_verify_mac(struct ieee80211_sub_if_data *sdata, u8 *addr,
bool check_dup)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_sub_if_data *iter;
u64 new, mask, tmp;
u8 *m;
int ret = 0;
if (is_zero_ether_addr(local->hw.wiphy->addr_mask))
return 0;
m = addr;
new = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) |
((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) |
((u64)m[4] << 1*8) | ((u64)m[5] << 0*8);
m = local->hw.wiphy->addr_mask;
mask = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) |
((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) |
((u64)m[4] << 1*8) | ((u64)m[5] << 0*8);
if (!check_dup)
return ret;
mutex_lock(&local->iflist_mtx);
list_for_each_entry(iter, &local->interfaces, list) {
if (iter == sdata)
continue;
if (iter->vif.type == NL80211_IFTYPE_MONITOR &&
!(iter->u.mntr.flags & MONITOR_FLAG_ACTIVE))
continue;
m = iter->vif.addr;
tmp = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) |
((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) |
((u64)m[4] << 1*8) | ((u64)m[5] << 0*8);
if ((new & ~mask) != (tmp & ~mask)) {
ret = -EINVAL;
break;
}
}
mutex_unlock(&local->iflist_mtx);
return ret;
}
static int ieee80211_change_mac(struct net_device *dev, void *addr)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct sockaddr *sa = addr;
bool check_dup = true;
int ret;
if (ieee80211_sdata_running(sdata))
return -EBUSY;
if (sdata->vif.type == NL80211_IFTYPE_MONITOR &&
!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
check_dup = false;
ret = ieee80211_verify_mac(sdata, sa->sa_data, check_dup);
if (ret)
return ret;
ret = eth_mac_addr(dev, sa);
if (ret == 0)
memcpy(sdata->vif.addr, sa->sa_data, ETH_ALEN);
return ret;
}
static inline int identical_mac_addr_allowed(int type1, int type2)
{
return type1 == NL80211_IFTYPE_MONITOR ||
type2 == NL80211_IFTYPE_MONITOR ||
type1 == NL80211_IFTYPE_P2P_DEVICE ||
type2 == NL80211_IFTYPE_P2P_DEVICE ||
(type1 == NL80211_IFTYPE_AP && type2 == NL80211_IFTYPE_AP_VLAN) ||
(type1 == NL80211_IFTYPE_AP_VLAN &&
(type2 == NL80211_IFTYPE_AP ||
type2 == NL80211_IFTYPE_AP_VLAN));
}
static int ieee80211_check_concurrent_iface(struct ieee80211_sub_if_data *sdata,
enum nl80211_iftype iftype)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_sub_if_data *nsdata;
int ret;
ASSERT_RTNL();
/* we hold the RTNL here so can safely walk the list */
list_for_each_entry(nsdata, &local->interfaces, list) {
if (nsdata != sdata && ieee80211_sdata_running(nsdata)) {
/*
* Only OCB and monitor mode may coexist
*/
if ((sdata->vif.type == NL80211_IFTYPE_OCB &&
nsdata->vif.type != NL80211_IFTYPE_MONITOR) ||
(sdata->vif.type != NL80211_IFTYPE_MONITOR &&
nsdata->vif.type == NL80211_IFTYPE_OCB))
return -EBUSY;
/*
* Allow only a single IBSS interface to be up at any
* time. This is restricted because beacon distribution
* cannot work properly if both are in the same IBSS.
*
* To remove this restriction we'd have to disallow them
* from setting the same SSID on different IBSS interfaces
* belonging to the same hardware. Then, however, we're
* faced with having to adopt two different TSF timers...
*/
if (iftype == NL80211_IFTYPE_ADHOC &&
nsdata->vif.type == NL80211_IFTYPE_ADHOC)
return -EBUSY;
/*
* will not add another interface while any channel
* switch is active.
*/
if (nsdata->vif.csa_active)
return -EBUSY;
/*
* The remaining checks are only performed for interfaces
* with the same MAC address.
*/
if (!ether_addr_equal(sdata->vif.addr,
nsdata->vif.addr))
continue;
/*
* check whether it may have the same address
*/
if (!identical_mac_addr_allowed(iftype,
nsdata->vif.type))
return -ENOTUNIQ;
/*
* can only add VLANs to enabled APs
*/
if (iftype == NL80211_IFTYPE_AP_VLAN &&
nsdata->vif.type == NL80211_IFTYPE_AP)
sdata->bss = &nsdata->u.ap;
}
}
mutex_lock(&local->chanctx_mtx);
ret = ieee80211_check_combinations(sdata, NULL, 0, 0);
mutex_unlock(&local->chanctx_mtx);
return ret;
}
static int ieee80211_check_queues(struct ieee80211_sub_if_data *sdata,
enum nl80211_iftype iftype)
{
int n_queues = sdata->local->hw.queues;
int i;
if (iftype == NL80211_IFTYPE_NAN)
return 0;
if (iftype != NL80211_IFTYPE_P2P_DEVICE) {
for (i = 0; i < IEEE80211_NUM_ACS; i++) {
if (WARN_ON_ONCE(sdata->vif.hw_queue[i] ==
IEEE80211_INVAL_HW_QUEUE))
return -EINVAL;
if (WARN_ON_ONCE(sdata->vif.hw_queue[i] >=
n_queues))
return -EINVAL;
}
}
if ((iftype != NL80211_IFTYPE_AP &&
iftype != NL80211_IFTYPE_P2P_GO &&
iftype != NL80211_IFTYPE_MESH_POINT) ||
!ieee80211_hw_check(&sdata->local->hw, QUEUE_CONTROL)) {
sdata->vif.cab_queue = IEEE80211_INVAL_HW_QUEUE;
return 0;
}
if (WARN_ON_ONCE(sdata->vif.cab_queue == IEEE80211_INVAL_HW_QUEUE))
return -EINVAL;
if (WARN_ON_ONCE(sdata->vif.cab_queue >= n_queues))
return -EINVAL;
return 0;
}
static int ieee80211_open(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int err;
/* fail early if user set an invalid address */
if (!is_valid_ether_addr(dev->dev_addr))
return -EADDRNOTAVAIL;
err = ieee80211_check_concurrent_iface(sdata, sdata->vif.type);
if (err)
return err;
wiphy_lock(sdata->local->hw.wiphy);
err = ieee80211_do_open(&sdata->wdev, true);
wiphy_unlock(sdata->local->hw.wiphy);
return err;
}
static void ieee80211_do_stop(struct ieee80211_sub_if_data *sdata, bool going_down)
{
struct ieee80211_local *local = sdata->local;
unsigned long flags;
struct sk_buff *skb, *tmp;
u32 hw_reconf_flags = 0;
int i, flushed;
struct ps_data *ps;
struct cfg80211_chan_def chandef;
bool cancel_scan;
struct cfg80211_nan_func *func;
clear_bit(SDATA_STATE_RUNNING, &sdata->state);
cancel_scan = rcu_access_pointer(local->scan_sdata) == sdata;
if (cancel_scan)
ieee80211_scan_cancel(local);
/*
* Stop TX on this interface first.
*/
if (sdata->dev)
netif_tx_stop_all_queues(sdata->dev);
ieee80211_roc_purge(local, sdata);
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
ieee80211_mgd_stop(sdata);
break;
case NL80211_IFTYPE_ADHOC:
ieee80211_ibss_stop(sdata);
break;
case NL80211_IFTYPE_MONITOR:
if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
break;
list_del_rcu(&sdata->u.mntr.list);
break;
default:
break;
}
/*
* Remove all stations associated with this interface.
*
* This must be done before calling ops->remove_interface()
* because otherwise we can later invoke ops->sta_notify()
* whenever the STAs are removed, and that invalidates driver
* assumptions about always getting a vif pointer that is valid
* (because if we remove a STA after ops->remove_interface()
* the driver will have removed the vif info already!)
*
* For AP_VLANs stations may exist since there's nothing else that
* would have removed them, but in other modes there shouldn't
* be any stations.
*/
flushed = sta_info_flush(sdata);
WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_AP_VLAN && flushed > 0);
/* don't count this interface for allmulti while it is down */
if (sdata->flags & IEEE80211_SDATA_ALLMULTI)
atomic_dec(&local->iff_allmultis);
if (sdata->vif.type == NL80211_IFTYPE_AP) {
local->fif_pspoll--;
local->fif_probe_req--;
} else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
local->fif_probe_req--;
}
if (sdata->dev) {
netif_addr_lock_bh(sdata->dev);
spin_lock_bh(&local->filter_lock);
__hw_addr_unsync(&local->mc_list, &sdata->dev->mc,
sdata->dev->addr_len);
spin_unlock_bh(&local->filter_lock);
netif_addr_unlock_bh(sdata->dev);
}
del_timer_sync(&local->dynamic_ps_timer);
cancel_work_sync(&local->dynamic_ps_enable_work);
cancel_work_sync(&sdata->recalc_smps);
sdata_lock(sdata);
mutex_lock(&local->mtx);
sdata->vif.csa_active = false;
if (sdata->vif.type == NL80211_IFTYPE_STATION)
sdata->u.mgd.csa_waiting_bcn = false;
if (sdata->csa_block_tx) {
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
sdata->csa_block_tx = false;
}
mutex_unlock(&local->mtx);
sdata_unlock(sdata);
cancel_work_sync(&sdata->csa_finalize_work);
cancel_delayed_work_sync(&sdata->dfs_cac_timer_work);
if (sdata->wdev.cac_started) {
chandef = sdata->vif.bss_conf.chandef;
WARN_ON(local->suspended);
mutex_lock(&local->mtx);
ieee80211_vif_release_channel(sdata);
mutex_unlock(&local->mtx);
cfg80211_cac_event(sdata->dev, &chandef,
NL80211_RADAR_CAC_ABORTED,
GFP_KERNEL);
}
if (sdata->vif.type == NL80211_IFTYPE_AP) {
WARN_ON(!list_empty(&sdata->u.ap.vlans));
} else if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
/* remove all packets in parent bc_buf pointing to this dev */
ps = &sdata->bss->ps;
spin_lock_irqsave(&ps->bc_buf.lock, flags);
skb_queue_walk_safe(&ps->bc_buf, skb, tmp) {
if (skb->dev == sdata->dev) {
__skb_unlink(skb, &ps->bc_buf);
local->total_ps_buffered--;
ieee80211_free_txskb(&local->hw, skb);
}
}
spin_unlock_irqrestore(&ps->bc_buf.lock, flags);
}
if (going_down)
local->open_count--;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
mutex_lock(&local->mtx);
list_del(&sdata->u.vlan.list);
mutex_unlock(&local->mtx);
RCU_INIT_POINTER(sdata->vif.chanctx_conf, NULL);
/* see comment in the default case below */
ieee80211_free_keys(sdata, true);
/* no need to tell driver */
break;
case NL80211_IFTYPE_MONITOR:
if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) {
local->cooked_mntrs--;
break;
}
local->monitors--;
if (local->monitors == 0) {
local->hw.conf.flags &= ~IEEE80211_CONF_MONITOR;
hw_reconf_flags |= IEEE80211_CONF_CHANGE_MONITOR;
}
ieee80211_adjust_monitor_flags(sdata, -1);
break;
case NL80211_IFTYPE_NAN:
/* clean all the functions */
spin_lock_bh(&sdata->u.nan.func_lock);
idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, i) {
idr_remove(&sdata->u.nan.function_inst_ids, i);
cfg80211_free_nan_func(func);
}
idr_destroy(&sdata->u.nan.function_inst_ids);
spin_unlock_bh(&sdata->u.nan.func_lock);
break;
case NL80211_IFTYPE_P2P_DEVICE:
/* relies on synchronize_rcu() below */
RCU_INIT_POINTER(local->p2p_sdata, NULL);
fallthrough;
default:
cancel_work_sync(&sdata->work);
/*
* When we get here, the interface is marked down.
* Free the remaining keys, if there are any
* (which can happen in AP mode if userspace sets
* keys before the interface is operating)
*
* Force the key freeing to always synchronize_net()
* to wait for the RX path in case it is using this
* interface enqueuing frames at this very time on
* another CPU.
*/
ieee80211_free_keys(sdata, true);
skb_queue_purge(&sdata->skb_queue);
}
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for (i = 0; i < IEEE80211_MAX_QUEUES; i++) {
skb_queue_walk_safe(&local->pending[i], skb, tmp) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (info->control.vif == &sdata->vif) {
__skb_unlink(skb, &local->pending[i]);
ieee80211_free_txskb(&local->hw, skb);
}
}
}
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
ieee80211_txq_remove_vlan(local, sdata);
sdata->bss = NULL;
if (local->open_count == 0)
ieee80211_clear_tx_pending(local);
sdata->vif.bss_conf.beacon_int = 0;
/*
* If the interface goes down while suspended, presumably because
* the device was unplugged and that happens before our resume,
* then the driver is already unconfigured and the remainder of
* this function isn't needed.
* XXX: what about WoWLAN? If the device has software state, e.g.
* memory allocated, it might expect teardown commands from
* mac80211 here?
*/
if (local->suspended) {
WARN_ON(local->wowlan);
WARN_ON(rtnl_dereference(local->monitor_sdata));
return;
}
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
break;
case NL80211_IFTYPE_MONITOR:
if (local->monitors == 0)
ieee80211_del_virtual_monitor(local);
mutex_lock(&local->mtx);
ieee80211_recalc_idle(local);
mutex_unlock(&local->mtx);
if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
break;
fallthrough;
default:
if (going_down)
drv_remove_interface(local, sdata);
}
ieee80211_recalc_ps(local);
if (cancel_scan)
flush_delayed_work(&local->scan_work);
if (local->open_count == 0) {
ieee80211_stop_device(local);
/* no reconfiguring after stop! */
return;
}
/* do after stop to avoid reconfiguring when we stop anyway */
ieee80211_configure_filter(local);
ieee80211_hw_config(local, hw_reconf_flags);
if (local->monitors == local->open_count)
ieee80211_add_virtual_monitor(local);
}
static int ieee80211_stop(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
/* close all dependent VLAN interfaces before locking wiphy */
if (sdata->vif.type == NL80211_IFTYPE_AP) {
struct ieee80211_sub_if_data *vlan, *tmpsdata;
list_for_each_entry_safe(vlan, tmpsdata, &sdata->u.ap.vlans,
u.vlan.list)
dev_close(vlan->dev);
}
wiphy_lock(sdata->local->hw.wiphy);
ieee80211_do_stop(sdata, true);
wiphy_unlock(sdata->local->hw.wiphy);
return 0;
}
static void ieee80211_set_multicast_list(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
int allmulti, sdata_allmulti;
allmulti = !!(dev->flags & IFF_ALLMULTI);
sdata_allmulti = !!(sdata->flags & IEEE80211_SDATA_ALLMULTI);
if (allmulti != sdata_allmulti) {
if (dev->flags & IFF_ALLMULTI)
atomic_inc(&local->iff_allmultis);
else
atomic_dec(&local->iff_allmultis);
sdata->flags ^= IEEE80211_SDATA_ALLMULTI;
}
spin_lock_bh(&local->filter_lock);
__hw_addr_sync(&local->mc_list, &dev->mc, dev->addr_len);
spin_unlock_bh(&local->filter_lock);
ieee80211_queue_work(&local->hw, &local->reconfig_filter);
}
/*
* Called when the netdev is removed or, by the code below, before
* the interface type changes.
*/
static void ieee80211_teardown_sdata(struct ieee80211_sub_if_data *sdata)
{
/* free extra data */
ieee80211_free_keys(sdata, false);
ieee80211_debugfs_remove_netdev(sdata);
ieee80211_destroy_frag_cache(&sdata->frags);
if (ieee80211_vif_is_mesh(&sdata->vif))
ieee80211_mesh_teardown_sdata(sdata);
}
static void ieee80211_uninit(struct net_device *dev)
{
ieee80211_teardown_sdata(IEEE80211_DEV_TO_SUB_IF(dev));
}
static u16 ieee80211_netdev_select_queue(struct net_device *dev,
struct sk_buff *skb,
struct net_device *sb_dev)
{
return ieee80211_select_queue(IEEE80211_DEV_TO_SUB_IF(dev), skb);
}
static void
ieee80211_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
dev_fetch_sw_netstats(stats, dev->tstats);
}
static const struct net_device_ops ieee80211_dataif_ops = {
.ndo_open = ieee80211_open,
.ndo_stop = ieee80211_stop,
.ndo_uninit = ieee80211_uninit,
.ndo_start_xmit = ieee80211_subif_start_xmit,
.ndo_set_rx_mode = ieee80211_set_multicast_list,
.ndo_set_mac_address = ieee80211_change_mac,
.ndo_select_queue = ieee80211_netdev_select_queue,
.ndo_get_stats64 = ieee80211_get_stats64,
};
static u16 ieee80211_monitor_select_queue(struct net_device *dev,
struct sk_buff *skb,
struct net_device *sb_dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr;
int len_rthdr;
if (local->hw.queues < IEEE80211_NUM_ACS)
return 0;
/* reset flags and info before parsing radiotap header */
memset(info, 0, sizeof(*info));
if (!ieee80211_parse_tx_radiotap(skb, dev))
return 0; /* doesn't matter, frame will be dropped */
len_rthdr = ieee80211_get_radiotap_len(skb->data);
hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
if (skb->len < len_rthdr + 2 ||
skb->len < len_rthdr + ieee80211_hdrlen(hdr->frame_control))
return 0; /* doesn't matter, frame will be dropped */
return ieee80211_select_queue_80211(sdata, skb, hdr);
}
static const struct net_device_ops ieee80211_monitorif_ops = {
.ndo_open = ieee80211_open,
.ndo_stop = ieee80211_stop,
.ndo_uninit = ieee80211_uninit,
.ndo_start_xmit = ieee80211_monitor_start_xmit,
.ndo_set_rx_mode = ieee80211_set_multicast_list,
.ndo_set_mac_address = ieee80211_change_mac,
.ndo_select_queue = ieee80211_monitor_select_queue,
.ndo_get_stats64 = ieee80211_get_stats64,
};
static const struct net_device_ops ieee80211_dataif_8023_ops = {
.ndo_open = ieee80211_open,
.ndo_stop = ieee80211_stop,
.ndo_uninit = ieee80211_uninit,
.ndo_start_xmit = ieee80211_subif_start_xmit_8023,
.ndo_set_rx_mode = ieee80211_set_multicast_list,
.ndo_set_mac_address = ieee80211_change_mac,
.ndo_select_queue = ieee80211_netdev_select_queue,
.ndo_get_stats64 = ieee80211_get_stats64,
};
static bool ieee80211_iftype_supports_hdr_offload(enum nl80211_iftype iftype)
{
switch (iftype) {
/* P2P GO and client are mapped to AP/STATION types */
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_STATION:
return true;
default:
return false;
}
}
static bool ieee80211_set_sdata_offload_flags(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
u32 flags;
flags = sdata->vif.offload_flags;
if (ieee80211_hw_check(&local->hw, SUPPORTS_TX_ENCAP_OFFLOAD) &&
ieee80211_iftype_supports_hdr_offload(sdata->vif.type)) {
flags |= IEEE80211_OFFLOAD_ENCAP_ENABLED;
if (!ieee80211_hw_check(&local->hw, SUPPORTS_TX_FRAG) &&
local->hw.wiphy->frag_threshold != (u32)-1)
flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED;
if (local->monitors)
flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED;
} else {
flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED;
}
if (ieee80211_hw_check(&local->hw, SUPPORTS_RX_DECAP_OFFLOAD) &&
ieee80211_iftype_supports_hdr_offload(sdata->vif.type)) {
flags |= IEEE80211_OFFLOAD_DECAP_ENABLED;
if (local->monitors &&
!ieee80211_hw_check(&local->hw, SUPPORTS_CONC_MON_RX_DECAP))
flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED;
} else {
flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED;
}
if (sdata->vif.offload_flags == flags)
return false;
sdata->vif.offload_flags = flags;
ieee80211_check_fast_rx_iface(sdata);
return true;
}
static void ieee80211_set_vif_encap_ops(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_sub_if_data *bss = sdata;
bool enabled;
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
if (!sdata->bss)
return;
bss = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap);
}
if (!ieee80211_hw_check(&local->hw, SUPPORTS_TX_ENCAP_OFFLOAD) ||
!ieee80211_iftype_supports_hdr_offload(bss->vif.type))
return;
enabled = bss->vif.offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED;
if (sdata->wdev.use_4addr &&
!(bss->vif.offload_flags & IEEE80211_OFFLOAD_ENCAP_4ADDR))
enabled = false;
sdata->dev->netdev_ops = enabled ? &ieee80211_dataif_8023_ops :
&ieee80211_dataif_ops;
}
static void ieee80211_recalc_sdata_offload(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_sub_if_data *vsdata;
if (ieee80211_set_sdata_offload_flags(sdata)) {
drv_update_vif_offload(local, sdata);
ieee80211_set_vif_encap_ops(sdata);
}
list_for_each_entry(vsdata, &local->interfaces, list) {
if (vsdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
vsdata->bss != &sdata->u.ap)
continue;
ieee80211_set_vif_encap_ops(vsdata);
mac80211: avoid deadlock revealed by lockdep sdata->u.ap.request_smps_work can’t be flushed synchronously under wdev_lock(wdev) since ieee80211_request_smps_ap_work itself locks the same lock. While at it, reset the driver_smps_mode when the ap is stopped to its default: OFF. This solves: ====================================================== [ INFO: possible circular locking dependency detected ] 3.12.0-ipeer+ #2 Tainted: G O ------------------------------------------------------- rmmod/2867 is trying to acquire lock: ((&sdata->u.ap.request_smps_work)){+.+...}, at: [<c105b8d0>] flush_work+0x0/0x90 but task is already holding lock: (&wdev->mtx){+.+.+.}, at: [<f9b32626>] cfg80211_stop_ap+0x26/0x230 [cfg80211] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&wdev->mtx){+.+.+.}: [<c10aefa9>] lock_acquire+0x79/0xe0 [<c1607a1a>] mutex_lock_nested+0x4a/0x360 [<fb06288b>] ieee80211_request_smps_ap_work+0x2b/0x50 [mac80211] [<c105cdd8>] process_one_work+0x198/0x450 [<c105d469>] worker_thread+0xf9/0x320 [<c10669ff>] kthread+0x9f/0xb0 [<c1613397>] ret_from_kernel_thread+0x1b/0x28 -> #0 ((&sdata->u.ap.request_smps_work)){+.+...}: [<c10ae9df>] __lock_acquire+0x183f/0x1910 [<c10aefa9>] lock_acquire+0x79/0xe0 [<c105b917>] flush_work+0x47/0x90 [<c105d867>] __cancel_work_timer+0x67/0xe0 [<c105d90f>] cancel_work_sync+0xf/0x20 [<fb0765cc>] ieee80211_stop_ap+0x8c/0x340 [mac80211] [<f9b3268c>] cfg80211_stop_ap+0x8c/0x230 [cfg80211] [<f9b0d8f9>] cfg80211_leave+0x79/0x100 [cfg80211] [<f9b0da72>] cfg80211_netdev_notifier_call+0xf2/0x4f0 [cfg80211] [<c160f2c9>] notifier_call_chain+0x59/0x130 [<c106c6de>] __raw_notifier_call_chain+0x1e/0x30 [<c106c70f>] raw_notifier_call_chain+0x1f/0x30 [<c14f8213>] call_netdevice_notifiers_info+0x33/0x70 [<c14f8263>] call_netdevice_notifiers+0x13/0x20 [<c14f82a4>] __dev_close_many+0x34/0xb0 [<c14f83fe>] dev_close_many+0x6e/0xc0 [<c14f9c77>] rollback_registered_many+0xa7/0x1f0 [<c14f9dd4>] unregister_netdevice_many+0x14/0x60 [<fb06f4d9>] ieee80211_remove_interfaces+0xe9/0x170 [mac80211] [<fb055116>] ieee80211_unregister_hw+0x56/0x110 [mac80211] [<fa3e9396>] iwl_op_mode_mvm_stop+0x26/0xe0 [iwlmvm] [<f9b9d8ca>] _iwl_op_mode_stop+0x3a/0x70 [iwlwifi] [<f9b9d96f>] iwl_opmode_deregister+0x6f/0x90 [iwlwifi] [<fa405179>] __exit_compat+0xd/0x19 [iwlmvm] [<c10b8bf9>] SyS_delete_module+0x179/0x2b0 [<c1613421>] sysenter_do_call+0x12/0x32 Fixes: 687da132234f ("mac80211: implement SMPS for AP") Cc: <stable@vger.kernel.org> [3.13] Reported-by: Ilan Peer <ilan.peer@intel.com> Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2014-01-23 20:28:16 +08:00
}
}
void ieee80211_recalc_offload(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
if (!ieee80211_hw_check(&local->hw, SUPPORTS_TX_ENCAP_OFFLOAD))
return;
mutex_lock(&local->iflist_mtx);
list_for_each_entry(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
ieee80211_recalc_sdata_offload(sdata);
}
mutex_unlock(&local->iflist_mtx);
}
void ieee80211_adjust_monitor_flags(struct ieee80211_sub_if_data *sdata,
const int offset)
{
struct ieee80211_local *local = sdata->local;
u32 flags = sdata->u.mntr.flags;
#define ADJUST(_f, _s) do { \
if (flags & MONITOR_FLAG_##_f) \
local->fif_##_s += offset; \
} while (0)
ADJUST(FCSFAIL, fcsfail);
ADJUST(PLCPFAIL, plcpfail);
ADJUST(CONTROL, control);
ADJUST(CONTROL, pspoll);
ADJUST(OTHER_BSS, other_bss);
#undef ADJUST
}
static void ieee80211_set_default_queues(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
int i;
for (i = 0; i < IEEE80211_NUM_ACS; i++) {
if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
sdata->vif.hw_queue[i] = IEEE80211_INVAL_HW_QUEUE;
else if (local->hw.queues >= IEEE80211_NUM_ACS)
sdata->vif.hw_queue[i] = i;
else
sdata->vif.hw_queue[i] = 0;
}
sdata->vif.cab_queue = IEEE80211_INVAL_HW_QUEUE;
}
int ieee80211_add_virtual_monitor(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
int ret;
if (!ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF))
return 0;
ASSERT_RTNL();
if (local->monitor_sdata)
return 0;
sdata = kzalloc(sizeof(*sdata) + local->hw.vif_data_size, GFP_KERNEL);
if (!sdata)
return -ENOMEM;
/* set up data */
sdata->local = local;
sdata->vif.type = NL80211_IFTYPE_MONITOR;
snprintf(sdata->name, IFNAMSIZ, "%s-monitor",
wiphy_name(local->hw.wiphy));
sdata->wdev.iftype = NL80211_IFTYPE_MONITOR;
sdata->encrypt_headroom = IEEE80211_ENCRYPT_HEADROOM;
ieee80211_set_default_queues(sdata);
ret = drv_add_interface(local, sdata);
if (WARN_ON(ret)) {
/* ok .. stupid driver, it asked for this! */
kfree(sdata);
return ret;
}
set_bit(SDATA_STATE_RUNNING, &sdata->state);
ret = ieee80211_check_queues(sdata, NL80211_IFTYPE_MONITOR);
if (ret) {
kfree(sdata);
return ret;
}
mutex_lock(&local->iflist_mtx);
rcu_assign_pointer(local->monitor_sdata, sdata);
mutex_unlock(&local->iflist_mtx);
mutex_lock(&local->mtx);
ret = ieee80211_vif_use_channel(sdata, &local->monitor_chandef,
IEEE80211_CHANCTX_EXCLUSIVE);
mutex_unlock(&local->mtx);
if (ret) {
mutex_lock(&local->iflist_mtx);
RCU_INIT_POINTER(local->monitor_sdata, NULL);
mutex_unlock(&local->iflist_mtx);
synchronize_net();
drv_remove_interface(local, sdata);
kfree(sdata);
return ret;
}
skb_queue_head_init(&sdata->skb_queue);
INIT_WORK(&sdata->work, ieee80211_iface_work);
return 0;
}
void ieee80211_del_virtual_monitor(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
if (!ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF))
return;
ASSERT_RTNL();
mutex_lock(&local->iflist_mtx);
sdata = rcu_dereference_protected(local->monitor_sdata,
lockdep_is_held(&local->iflist_mtx));
if (!sdata) {
mutex_unlock(&local->iflist_mtx);
return;
}
RCU_INIT_POINTER(local->monitor_sdata, NULL);
mutex_unlock(&local->iflist_mtx);
synchronize_net();
mutex_lock(&local->mtx);
ieee80211_vif_release_channel(sdata);
mutex_unlock(&local->mtx);
drv_remove_interface(local, sdata);
kfree(sdata);
}
/*
* NOTE: Be very careful when changing this function, it must NOT return
* an error on interface type changes that have been pre-checked, so most
* checks should be in ieee80211_check_concurrent_iface.
*/
int ieee80211_do_open(struct wireless_dev *wdev, bool coming_up)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
struct net_device *dev = wdev->netdev;
struct ieee80211_local *local = sdata->local;
u32 changed = 0;
int res;
u32 hw_reconf_flags = 0;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN: {
struct ieee80211_sub_if_data *master;
if (!sdata->bss)
return -ENOLINK;
mutex_lock(&local->mtx);
list_add(&sdata->u.vlan.list, &sdata->bss->vlans);
mutex_unlock(&local->mtx);
master = container_of(sdata->bss,
struct ieee80211_sub_if_data, u.ap);
sdata->control_port_protocol =
master->control_port_protocol;
sdata->control_port_no_encrypt =
master->control_port_no_encrypt;
sdata->control_port_over_nl80211 =
master->control_port_over_nl80211;
sdata->control_port_no_preauth =
master->control_port_no_preauth;
sdata->vif.cab_queue = master->vif.cab_queue;
memcpy(sdata->vif.hw_queue, master->vif.hw_queue,
sizeof(sdata->vif.hw_queue));
sdata->vif.bss_conf.chandef = master->vif.bss_conf.chandef;
mutex_lock(&local->key_mtx);
sdata->crypto_tx_tailroom_needed_cnt +=
master->crypto_tx_tailroom_needed_cnt;
mutex_unlock(&local->key_mtx);
break;
}
case NL80211_IFTYPE_AP:
sdata->bss = &sdata->u.ap;
break;
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_P2P_DEVICE:
case NL80211_IFTYPE_OCB:
case NL80211_IFTYPE_NAN:
/* no special treatment */
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_WDS:
/* cannot happen */
WARN_ON(1);
break;
}
if (local->open_count == 0) {
res = drv_start(local);
if (res)
goto err_del_bss;
/* we're brought up, everything changes */
hw_reconf_flags = ~0;
ieee80211_led_radio(local, true);
ieee80211_mod_tpt_led_trig(local,
IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
}
/*
* Copy the hopefully now-present MAC address to
* this interface, if it has the special null one.
*/
if (dev && is_zero_ether_addr(dev->dev_addr)) {
memcpy(dev->dev_addr,
local->hw.wiphy->perm_addr,
ETH_ALEN);
memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
if (!is_valid_ether_addr(dev->dev_addr)) {
res = -EADDRNOTAVAIL;
goto err_stop;
}
}
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP_VLAN:
/* no need to tell driver, but set carrier and chanctx */
if (rtnl_dereference(sdata->bss->beacon)) {
ieee80211_vif_vlan_copy_chanctx(sdata);
netif_carrier_on(dev);
ieee80211_set_vif_encap_ops(sdata);
} else {
netif_carrier_off(dev);
}
break;
case NL80211_IFTYPE_MONITOR:
if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) {
local->cooked_mntrs++;
break;
}
if (sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) {
res = drv_add_interface(local, sdata);
if (res)
goto err_stop;
} else if (local->monitors == 0 && local->open_count == 0) {
res = ieee80211_add_virtual_monitor(local);
if (res)
goto err_stop;
}
/* must be before the call to ieee80211_configure_filter */
local->monitors++;
if (local->monitors == 1) {
local->hw.conf.flags |= IEEE80211_CONF_MONITOR;
hw_reconf_flags |= IEEE80211_CONF_CHANGE_MONITOR;
}
ieee80211_adjust_monitor_flags(sdata, 1);
ieee80211_configure_filter(local);
ieee80211_recalc_offload(local);
mutex_lock(&local->mtx);
ieee80211_recalc_idle(local);
mutex_unlock(&local->mtx);
netif_carrier_on(dev);
break;
default:
if (coming_up) {
ieee80211_del_virtual_monitor(local);
ieee80211_set_sdata_offload_flags(sdata);
res = drv_add_interface(local, sdata);
if (res)
goto err_stop;
ieee80211_set_vif_encap_ops(sdata);
res = ieee80211_check_queues(sdata,
ieee80211_vif_type_p2p(&sdata->vif));
if (res)
goto err_del_interface;
}
if (sdata->vif.type == NL80211_IFTYPE_AP) {
local->fif_pspoll++;
local->fif_probe_req++;
ieee80211_configure_filter(local);
} else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
local->fif_probe_req++;
}
if (sdata->vif.probe_req_reg)
drv_config_iface_filter(local, sdata,
FIF_PROBE_REQ,
FIF_PROBE_REQ);
[MAC80211]: rework key handling This moves all the key handling code out from ieee80211_ioctl.c into key.c and also does the following changes including documentation updates in mac80211.h: 1) Turn off hardware acceleration for keys when the interface is down. This is necessary because otherwise monitor interfaces could be decrypting frames for other interfaces that are down at the moment. Also, it should go some way towards better suspend/resume support, in any case the routines used here could be used for that as well. Additionally, this makes the driver interface nicer, keys for a specific local MAC address are only ever present while an interface with that MAC address is enabled. 2) Change driver set_key() callback interface to allow only return values of -ENOSPC, -EOPNOTSUPP and 0, warn on all other return values. This allows debugging the stack when a driver notices it's handed a key while it is down. 3) Invert the flag meaning to KEY_FLAG_UPLOADED_TO_HARDWARE. 4) Remove REMOVE_ALL_KEYS command as it isn't used nor do we want to use it, we'll use DISABLE_KEY for each key. It is hard to use REMOVE_ALL_KEYS because we can handle multiple virtual interfaces with different key configuration, so we'd have to keep track of a lot of state for this and that isn't worth it. 5) Warn when disabling a key fails, it musn't. 6) Remove IEEE80211_HW_NO_TKIP_WMM_HWACCEL in favour of per-key IEEE80211_KEY_FLAG_WMM_STA to let driver sort it out itself. 7) Tell driver that a (non-WEP) key is used only for transmission by using an all-zeroes station MAC address when configuring. 8) Change the set_key() callback to have access to the local MAC address the key is being added for. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Acked-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-29 05:01:55 +08:00
if (sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
sdata->vif.type != NL80211_IFTYPE_NAN)
changed |= ieee80211_reset_erp_info(sdata);
ieee80211_bss_info_change_notify(sdata, changed);
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_OCB:
netif_carrier_off(dev);
break;
case NL80211_IFTYPE_P2P_DEVICE:
case NL80211_IFTYPE_NAN:
break;
default:
/* not reached */
WARN_ON(1);
}
/*
* Set default queue parameters so drivers don't
* need to initialise the hardware if the hardware
* doesn't start up with sane defaults.
* Enable QoS for anything but station interfaces.
*/
ieee80211_set_wmm_default(sdata, true,
sdata->vif.type != NL80211_IFTYPE_STATION);
}
set_bit(SDATA_STATE_RUNNING, &sdata->state);
switch (sdata->vif.type) {
case NL80211_IFTYPE_P2P_DEVICE:
rcu_assign_pointer(local->p2p_sdata, sdata);
break;
case NL80211_IFTYPE_MONITOR:
if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
break;
list_add_tail_rcu(&sdata->u.mntr.list, &local->mon_list);
break;
default:
break;
}
/*
* set_multicast_list will be invoked by the networking core
* which will check whether any increments here were done in
* error and sync them down to the hardware as filter flags.
*/
if (sdata->flags & IEEE80211_SDATA_ALLMULTI)
atomic_inc(&local->iff_allmultis);
if (coming_up)
local->open_count++;
if (hw_reconf_flags)
ieee80211_hw_config(local, hw_reconf_flags);
ieee80211_recalc_ps(local);
if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
local->ops->wake_tx_queue) {
/* XXX: for AP_VLAN, actually track AP queues */
if (dev)
netif_tx_start_all_queues(dev);
} else if (dev) {
unsigned long flags;
int n_acs = IEEE80211_NUM_ACS;
int ac;
if (local->hw.queues < IEEE80211_NUM_ACS)
n_acs = 1;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
if (sdata->vif.cab_queue == IEEE80211_INVAL_HW_QUEUE ||
(local->queue_stop_reasons[sdata->vif.cab_queue] == 0 &&
skb_queue_empty(&local->pending[sdata->vif.cab_queue]))) {
for (ac = 0; ac < n_acs; ac++) {
int ac_queue = sdata->vif.hw_queue[ac];
if (local->queue_stop_reasons[ac_queue] == 0 &&
skb_queue_empty(&local->pending[ac_queue]))
netif_start_subqueue(dev, ac);
}
}
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
return 0;
err_del_interface:
drv_remove_interface(local, sdata);
err_stop:
if (!local->open_count)
drv_stop(local);
err_del_bss:
sdata->bss = NULL;
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
mutex_lock(&local->mtx);
list_del(&sdata->u.vlan.list);
mutex_unlock(&local->mtx);
}
/* might already be clear but that doesn't matter */
clear_bit(SDATA_STATE_RUNNING, &sdata->state);
return res;
}
static void ieee80211_if_free(struct net_device *dev)
{
free_percpu(dev->tstats);
}
static void ieee80211_if_setup(struct net_device *dev)
{
ether_setup(dev);
dev->priv_flags &= ~IFF_TX_SKB_SHARING;
dev->netdev_ops = &ieee80211_dataif_ops;
net: Fix inconsistent teardown and release of private netdev state. Network devices can allocate reasources and private memory using netdev_ops->ndo_init(). However, the release of these resources can occur in one of two different places. Either netdev_ops->ndo_uninit() or netdev->destructor(). The decision of which operation frees the resources depends upon whether it is necessary for all netdev refs to be released before it is safe to perform the freeing. netdev_ops->ndo_uninit() presumably can occur right after the NETDEV_UNREGISTER notifier completes and the unicast and multicast address lists are flushed. netdev->destructor(), on the other hand, does not run until the netdev references all go away. Further complicating the situation is that netdev->destructor() almost universally does also a free_netdev(). This creates a problem for the logic in register_netdevice(). Because all callers of register_netdevice() manage the freeing of the netdev, and invoke free_netdev(dev) if register_netdevice() fails. If netdev_ops->ndo_init() succeeds, but something else fails inside of register_netdevice(), it does call ndo_ops->ndo_uninit(). But it is not able to invoke netdev->destructor(). This is because netdev->destructor() will do a free_netdev() and then the caller of register_netdevice() will do the same. However, this means that the resources that would normally be released by netdev->destructor() will not be. Over the years drivers have added local hacks to deal with this, by invoking their destructor parts by hand when register_netdevice() fails. Many drivers do not try to deal with this, and instead we have leaks. Let's close this hole by formalizing the distinction between what private things need to be freed up by netdev->destructor() and whether the driver needs unregister_netdevice() to perform the free_netdev(). netdev->priv_destructor() performs all actions to free up the private resources that used to be freed by netdev->destructor(), except for free_netdev(). netdev->needs_free_netdev is a boolean that indicates whether free_netdev() should be done at the end of unregister_netdevice(). Now, register_netdevice() can sanely release all resources after ndo_ops->ndo_init() succeeds, by invoking both ndo_ops->ndo_uninit() and netdev->priv_destructor(). And at the end of unregister_netdevice(), we invoke netdev->priv_destructor() and optionally call free_netdev(). Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-09 00:52:56 +08:00
dev->needs_free_netdev = true;
dev->priv_destructor = ieee80211_if_free;
}
static void ieee80211_if_setup_no_queue(struct net_device *dev)
{
ieee80211_if_setup(dev);
dev->priv_flags |= IFF_NO_QUEUE;
}
static void ieee80211_iface_process_skb(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb)
{
struct ieee80211_mgmt *mgmt = (void *)skb->data;
if (ieee80211_is_action(mgmt->frame_control) &&
mgmt->u.action.category == WLAN_CATEGORY_BACK) {
struct sta_info *sta;
int len = skb->len;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mgmt->sa);
if (sta) {
switch (mgmt->u.action.u.addba_req.action_code) {
case WLAN_ACTION_ADDBA_REQ:
ieee80211_process_addba_request(local, sta,
mgmt, len);
break;
case WLAN_ACTION_ADDBA_RESP:
ieee80211_process_addba_resp(local, sta,
mgmt, len);
break;
case WLAN_ACTION_DELBA:
ieee80211_process_delba(sdata, sta,
mgmt, len);
break;
default:
WARN_ON(1);
break;
}
}
mutex_unlock(&local->sta_mtx);
} else if (ieee80211_is_action(mgmt->frame_control) &&
mgmt->u.action.category == WLAN_CATEGORY_VHT) {
switch (mgmt->u.action.u.vht_group_notif.action_code) {
case WLAN_VHT_ACTION_OPMODE_NOTIF: {
struct ieee80211_rx_status *status;
enum nl80211_band band;
struct sta_info *sta;
u8 opmode;
status = IEEE80211_SKB_RXCB(skb);
band = status->band;
opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mgmt->sa);
if (sta)
ieee80211_vht_handle_opmode(sdata, sta, opmode,
band);
mutex_unlock(&local->sta_mtx);
break;
}
case WLAN_VHT_ACTION_GROUPID_MGMT:
ieee80211_process_mu_groups(sdata, mgmt);
break;
default:
WARN_ON(1);
break;
}
} else if (ieee80211_is_ext(mgmt->frame_control)) {
if (sdata->vif.type == NL80211_IFTYPE_STATION)
ieee80211_sta_rx_queued_ext(sdata, skb);
else
WARN_ON(1);
} else if (ieee80211_is_data_qos(mgmt->frame_control)) {
struct ieee80211_hdr *hdr = (void *)mgmt;
struct sta_info *sta;
/*
* So the frame isn't mgmt, but frame_control
* is at the right place anyway, of course, so
* the if statement is correct.
*
* Warn if we have other data frame types here,
* they must not get here.
*/
WARN_ON(hdr->frame_control &
cpu_to_le16(IEEE80211_STYPE_NULLFUNC));
WARN_ON(!(hdr->seq_ctrl &
cpu_to_le16(IEEE80211_SCTL_FRAG)));
/*
* This was a fragment of a frame, received while
* a block-ack session was active. That cannot be
* right, so terminate the session.
*/
mutex_lock(&local->sta_mtx);
sta = sta_info_get_bss(sdata, mgmt->sa);
if (sta) {
u16 tid = ieee80211_get_tid(hdr);
__ieee80211_stop_rx_ba_session(
sta, tid, WLAN_BACK_RECIPIENT,
WLAN_REASON_QSTA_REQUIRE_SETUP,
true);
}
mutex_unlock(&local->sta_mtx);
} else switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
ieee80211_sta_rx_queued_mgmt(sdata, skb);
break;
case NL80211_IFTYPE_ADHOC:
ieee80211_ibss_rx_queued_mgmt(sdata, skb);
break;
case NL80211_IFTYPE_MESH_POINT:
if (!ieee80211_vif_is_mesh(&sdata->vif))
break;
ieee80211_mesh_rx_queued_mgmt(sdata, skb);
break;
default:
WARN(1, "frame for unexpected interface type");
break;
}
}
static void ieee80211_iface_work(struct work_struct *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data, work);
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
if (!ieee80211_sdata_running(sdata))
return;
if (test_bit(SCAN_SW_SCANNING, &local->scanning))
return;
if (!ieee80211_can_run_worker(local))
return;
/* first process frames */
while ((skb = skb_dequeue(&sdata->skb_queue))) {
kcov_remote_start_common(skb_get_kcov_handle(skb));
if (skb->protocol == cpu_to_be16(ETH_P_TDLS))
ieee80211_process_tdls_channel_switch(sdata, skb);
else
ieee80211_iface_process_skb(local, sdata, skb);
kfree_skb(skb);
kcov_remote_stop();
}
/* then other type-dependent work */
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
ieee80211_sta_work(sdata);
break;
case NL80211_IFTYPE_ADHOC:
ieee80211_ibss_work(sdata);
break;
case NL80211_IFTYPE_MESH_POINT:
if (!ieee80211_vif_is_mesh(&sdata->vif))
break;
ieee80211_mesh_work(sdata);
break;
case NL80211_IFTYPE_OCB:
ieee80211_ocb_work(sdata);
break;
default:
break;
}
}
static void ieee80211_recalc_smps_work(struct work_struct *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data, recalc_smps);
ieee80211_recalc_smps(sdata);
}
/*
* Helper function to initialise an interface to a specific type.
*/
static void ieee80211_setup_sdata(struct ieee80211_sub_if_data *sdata,
enum nl80211_iftype type)
{
static const u8 bssid_wildcard[ETH_ALEN] = {0xff, 0xff, 0xff,
0xff, 0xff, 0xff};
/* clear type-dependent union */
memset(&sdata->u, 0, sizeof(sdata->u));
/* and set some type-dependent values */
sdata->vif.type = type;
sdata->vif.p2p = false;
sdata->wdev.iftype = type;
sdata->control_port_protocol = cpu_to_be16(ETH_P_PAE);
sdata->control_port_no_encrypt = false;
sdata->control_port_over_nl80211 = false;
sdata->control_port_no_preauth = false;
sdata->encrypt_headroom = IEEE80211_ENCRYPT_HEADROOM;
sdata->vif.bss_conf.idle = true;
sdata->vif.bss_conf.txpower = INT_MIN; /* unset */
sdata->noack_map = 0;
/* only monitor/p2p-device differ */
if (sdata->dev) {
sdata->dev->netdev_ops = &ieee80211_dataif_ops;
sdata->dev->type = ARPHRD_ETHER;
}
skb_queue_head_init(&sdata->skb_queue);
INIT_WORK(&sdata->work, ieee80211_iface_work);
INIT_WORK(&sdata->recalc_smps, ieee80211_recalc_smps_work);
INIT_WORK(&sdata->csa_finalize_work, ieee80211_csa_finalize_work);
INIT_LIST_HEAD(&sdata->assigned_chanctx_list);
INIT_LIST_HEAD(&sdata->reserved_chanctx_list);
switch (type) {
case NL80211_IFTYPE_P2P_GO:
type = NL80211_IFTYPE_AP;
sdata->vif.type = type;
sdata->vif.p2p = true;
fallthrough;
case NL80211_IFTYPE_AP:
skb_queue_head_init(&sdata->u.ap.ps.bc_buf);
INIT_LIST_HEAD(&sdata->u.ap.vlans);
sdata->vif.bss_conf.bssid = sdata->vif.addr;
break;
case NL80211_IFTYPE_P2P_CLIENT:
type = NL80211_IFTYPE_STATION;
sdata->vif.type = type;
sdata->vif.p2p = true;
fallthrough;
case NL80211_IFTYPE_STATION:
sdata->vif.bss_conf.bssid = sdata->u.mgd.bssid;
ieee80211_sta_setup_sdata(sdata);
break;
case NL80211_IFTYPE_OCB:
sdata->vif.bss_conf.bssid = bssid_wildcard;
ieee80211_ocb_setup_sdata(sdata);
break;
case NL80211_IFTYPE_ADHOC:
sdata->vif.bss_conf.bssid = sdata->u.ibss.bssid;
ieee80211_ibss_setup_sdata(sdata);
break;
case NL80211_IFTYPE_MESH_POINT:
if (ieee80211_vif_is_mesh(&sdata->vif))
ieee80211_mesh_init_sdata(sdata);
break;
case NL80211_IFTYPE_MONITOR:
sdata->dev->type = ARPHRD_IEEE80211_RADIOTAP;
sdata->dev->netdev_ops = &ieee80211_monitorif_ops;
sdata->u.mntr.flags = MONITOR_FLAG_CONTROL |
MONITOR_FLAG_OTHER_BSS;
break;
case NL80211_IFTYPE_NAN:
idr_init(&sdata->u.nan.function_inst_ids);
spin_lock_init(&sdata->u.nan.func_lock);
sdata->vif.bss_conf.bssid = sdata->vif.addr;
break;
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_DEVICE:
sdata->vif.bss_conf.bssid = sdata->vif.addr;
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NL80211_IFTYPE_WDS:
case NUM_NL80211_IFTYPES:
WARN_ON(1);
break;
}
ieee80211_debugfs_add_netdev(sdata);
}
static int ieee80211_runtime_change_iftype(struct ieee80211_sub_if_data *sdata,
enum nl80211_iftype type)
{
struct ieee80211_local *local = sdata->local;
int ret, err;
enum nl80211_iftype internal_type = type;
bool p2p = false;
ASSERT_RTNL();
if (!local->ops->change_interface)
return -EBUSY;
switch (sdata->vif.type) {
case NL80211_IFTYPE_AP:
if (!list_empty(&sdata->u.ap.vlans))
return -EBUSY;
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_OCB:
/*
* Could maybe also all others here?
* Just not sure how that interacts
* with the RX/config path e.g. for
* mesh.
*/
break;
default:
return -EBUSY;
}
switch (type) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_OCB:
/*
* Could probably support everything
* but here.
*/
break;
case NL80211_IFTYPE_P2P_CLIENT:
p2p = true;
internal_type = NL80211_IFTYPE_STATION;
break;
case NL80211_IFTYPE_P2P_GO:
p2p = true;
internal_type = NL80211_IFTYPE_AP;
break;
default:
return -EBUSY;
}
ret = ieee80211_check_concurrent_iface(sdata, internal_type);
if (ret)
return ret;
ieee80211_stop_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_IFTYPE_CHANGE);
synchronize_net();
ieee80211_do_stop(sdata, false);
ieee80211_teardown_sdata(sdata);
ieee80211_set_sdata_offload_flags(sdata);
ret = drv_change_interface(local, sdata, internal_type, p2p);
if (ret)
type = ieee80211_vif_type_p2p(&sdata->vif);
/*
* Ignore return value here, there's not much we can do since
* the driver changed the interface type internally already.
* The warnings will hopefully make driver authors fix it :-)
*/
ieee80211_check_queues(sdata, type);
ieee80211_setup_sdata(sdata, type);
ieee80211_set_vif_encap_ops(sdata);
err = ieee80211_do_open(&sdata->wdev, false);
WARN(err, "type change: do_open returned %d", err);
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_IFTYPE_CHANGE);
return ret;
}
int ieee80211_if_change_type(struct ieee80211_sub_if_data *sdata,
enum nl80211_iftype type)
{
int ret;
ASSERT_RTNL();
if (type == ieee80211_vif_type_p2p(&sdata->vif))
return 0;
if (ieee80211_sdata_running(sdata)) {
ret = ieee80211_runtime_change_iftype(sdata, type);
if (ret)
return ret;
} else {
/* Purge and reset type-dependent state. */
ieee80211_teardown_sdata(sdata);
ieee80211_setup_sdata(sdata, type);
}
/* reset some values that shouldn't be kept across type changes */
if (type == NL80211_IFTYPE_STATION)
sdata->u.mgd.use_4addr = false;
return 0;
}
static void ieee80211_assign_perm_addr(struct ieee80211_local *local,
u8 *perm_addr, enum nl80211_iftype type)
{
struct ieee80211_sub_if_data *sdata;
u64 mask, start, addr, val, inc;
u8 *m;
u8 tmp_addr[ETH_ALEN];
int i;
/* default ... something at least */
memcpy(perm_addr, local->hw.wiphy->perm_addr, ETH_ALEN);
if (is_zero_ether_addr(local->hw.wiphy->addr_mask) &&
local->hw.wiphy->n_addresses <= 1)
return;
mutex_lock(&local->iflist_mtx);
switch (type) {
case NL80211_IFTYPE_MONITOR:
/* doesn't matter */
break;
case NL80211_IFTYPE_AP_VLAN:
/* match up with an AP interface */
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_AP)
continue;
memcpy(perm_addr, sdata->vif.addr, ETH_ALEN);
break;
}
/* keep default if no AP interface present */
break;
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
if (ieee80211_hw_check(&local->hw, P2P_DEV_ADDR_FOR_INTF)) {
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE)
continue;
if (!ieee80211_sdata_running(sdata))
continue;
memcpy(perm_addr, sdata->vif.addr, ETH_ALEN);
goto out_unlock;
}
}
fallthrough;
default:
/* assign a new address if possible -- try n_addresses first */
for (i = 0; i < local->hw.wiphy->n_addresses; i++) {
bool used = false;
list_for_each_entry(sdata, &local->interfaces, list) {
if (ether_addr_equal(local->hw.wiphy->addresses[i].addr,
sdata->vif.addr)) {
used = true;
break;
}
}
if (!used) {
memcpy(perm_addr,
local->hw.wiphy->addresses[i].addr,
ETH_ALEN);
break;
}
}
/* try mask if available */
if (is_zero_ether_addr(local->hw.wiphy->addr_mask))
break;
m = local->hw.wiphy->addr_mask;
mask = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) |
((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) |
((u64)m[4] << 1*8) | ((u64)m[5] << 0*8);
if (__ffs64(mask) + hweight64(mask) != fls64(mask)) {
/* not a contiguous mask ... not handled now! */
pr_info("not contiguous\n");
break;
}
/*
* Pick address of existing interface in case user changed
* MAC address manually, default to perm_addr.
*/
m = local->hw.wiphy->perm_addr;
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type == NL80211_IFTYPE_MONITOR)
continue;
m = sdata->vif.addr;
break;
}
start = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) |
((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) |
((u64)m[4] << 1*8) | ((u64)m[5] << 0*8);
inc = 1ULL<<__ffs64(mask);
val = (start & mask);
addr = (start & ~mask) | (val & mask);
do {
bool used = false;
tmp_addr[5] = addr >> 0*8;
tmp_addr[4] = addr >> 1*8;
tmp_addr[3] = addr >> 2*8;
tmp_addr[2] = addr >> 3*8;
tmp_addr[1] = addr >> 4*8;
tmp_addr[0] = addr >> 5*8;
val += inc;
list_for_each_entry(sdata, &local->interfaces, list) {
if (ether_addr_equal(tmp_addr, sdata->vif.addr)) {
used = true;
break;
}
}
if (!used) {
memcpy(perm_addr, tmp_addr, ETH_ALEN);
break;
}
addr = (start & ~mask) | (val & mask);
} while (addr != start);
break;
}
out_unlock:
mutex_unlock(&local->iflist_mtx);
}
int ieee80211_if_add(struct ieee80211_local *local, const char *name,
unsigned char name_assign_type,
struct wireless_dev **new_wdev, enum nl80211_iftype type,
struct vif_params *params)
{
struct net_device *ndev = NULL;
struct ieee80211_sub_if_data *sdata = NULL;
struct txq_info *txqi;
void (*if_setup)(struct net_device *dev);
int ret, i;
int txqs = 1;
ASSERT_RTNL();
if (type == NL80211_IFTYPE_P2P_DEVICE || type == NL80211_IFTYPE_NAN) {
struct wireless_dev *wdev;
sdata = kzalloc(sizeof(*sdata) + local->hw.vif_data_size,
GFP_KERNEL);
if (!sdata)
return -ENOMEM;
wdev = &sdata->wdev;
sdata->dev = NULL;
strlcpy(sdata->name, name, IFNAMSIZ);
ieee80211_assign_perm_addr(local, wdev->address, type);
memcpy(sdata->vif.addr, wdev->address, ETH_ALEN);
} else {
int size = ALIGN(sizeof(*sdata) + local->hw.vif_data_size,
sizeof(void *));
int txq_size = 0;
if (local->ops->wake_tx_queue &&
type != NL80211_IFTYPE_AP_VLAN &&
(type != NL80211_IFTYPE_MONITOR ||
(params->flags & MONITOR_FLAG_ACTIVE)))
txq_size += sizeof(struct txq_info) +
local->hw.txq_data_size;
if (local->ops->wake_tx_queue) {
if_setup = ieee80211_if_setup_no_queue;
} else {
if_setup = ieee80211_if_setup;
if (local->hw.queues >= IEEE80211_NUM_ACS)
txqs = IEEE80211_NUM_ACS;
}
ndev = alloc_netdev_mqs(size + txq_size,
name, name_assign_type,
if_setup, txqs, 1);
if (!ndev)
return -ENOMEM;
if (!local->ops->wake_tx_queue && local->hw.wiphy->tx_queue_len)
ndev->tx_queue_len = local->hw.wiphy->tx_queue_len;
dev_net_set(ndev, wiphy_net(local->hw.wiphy));
ndev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
if (!ndev->tstats) {
free_netdev(ndev);
return -ENOMEM;
}
ndev->needed_headroom = local->tx_headroom +
4*6 /* four MAC addresses */
+ 2 + 2 + 2 + 2 /* ctl, dur, seq, qos */
+ 6 /* mesh */
+ 8 /* rfc1042/bridge tunnel */
- ETH_HLEN /* ethernet hard_header_len */
+ IEEE80211_ENCRYPT_HEADROOM;
ndev->needed_tailroom = IEEE80211_ENCRYPT_TAILROOM;
ret = dev_alloc_name(ndev, ndev->name);
if (ret < 0) {
ieee80211_if_free(ndev);
free_netdev(ndev);
return ret;
}
ieee80211_assign_perm_addr(local, ndev->perm_addr, type);
if (is_valid_ether_addr(params->macaddr))
memcpy(ndev->dev_addr, params->macaddr, ETH_ALEN);
else
memcpy(ndev->dev_addr, ndev->perm_addr, ETH_ALEN);
SET_NETDEV_DEV(ndev, wiphy_dev(local->hw.wiphy));
/* don't use IEEE80211_DEV_TO_SUB_IF -- it checks too much */
sdata = netdev_priv(ndev);
ndev->ieee80211_ptr = &sdata->wdev;
memcpy(sdata->vif.addr, ndev->dev_addr, ETH_ALEN);
memcpy(sdata->name, ndev->name, IFNAMSIZ);
if (txq_size) {
txqi = netdev_priv(ndev) + size;
ieee80211_txq_init(sdata, NULL, txqi, 0);
}
sdata->dev = ndev;
}
/* initialise type-independent data */
sdata->wdev.wiphy = local->hw.wiphy;
sdata->local = local;
ieee80211_init_frag_cache(&sdata->frags);
INIT_LIST_HEAD(&sdata->key_list);
INIT_DELAYED_WORK(&sdata->dfs_cac_timer_work,
ieee80211_dfs_cac_timer_work);
INIT_DELAYED_WORK(&sdata->dec_tailroom_needed_wk,
ieee80211_delayed_tailroom_dec);
for (i = 0; i < NUM_NL80211_BANDS; i++) {
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[i];
sdata->rc_rateidx_mask[i] =
sband ? (1 << sband->n_bitrates) - 1 : 0;
if (sband) {
__le16 cap;
u16 *vht_rate_mask;
memcpy(sdata->rc_rateidx_mcs_mask[i],
sband->ht_cap.mcs.rx_mask,
sizeof(sdata->rc_rateidx_mcs_mask[i]));
cap = sband->vht_cap.vht_mcs.rx_mcs_map;
vht_rate_mask = sdata->rc_rateidx_vht_mcs_mask[i];
ieee80211_get_vht_mask_from_cap(cap, vht_rate_mask);
} else {
memset(sdata->rc_rateidx_mcs_mask[i], 0,
sizeof(sdata->rc_rateidx_mcs_mask[i]));
memset(sdata->rc_rateidx_vht_mcs_mask[i], 0,
sizeof(sdata->rc_rateidx_vht_mcs_mask[i]));
}
}
ieee80211_set_default_queues(sdata);
sdata->ap_power_level = IEEE80211_UNSET_POWER_LEVEL;
sdata->user_power_level = local->user_power_level;
sdata->encrypt_headroom = IEEE80211_ENCRYPT_HEADROOM;
/* setup type-dependent data */
ieee80211_setup_sdata(sdata, type);
if (ndev) {
ndev->ieee80211_ptr->use_4addr = params->use_4addr;
if (type == NL80211_IFTYPE_STATION)
sdata->u.mgd.use_4addr = params->use_4addr;
ndev->features |= local->hw.netdev_features;
ndev->hw_features |= ndev->features &
MAC80211_SUPPORTED_FEATURES_TX;
netdev_set_default_ethtool_ops(ndev, &ieee80211_ethtool_ops);
/* MTU range: 256 - 2304 */
ndev->min_mtu = 256;
ndev->max_mtu = local->hw.max_mtu;
ret = cfg80211_register_netdevice(ndev);
if (ret) {
net: Fix inconsistent teardown and release of private netdev state. Network devices can allocate reasources and private memory using netdev_ops->ndo_init(). However, the release of these resources can occur in one of two different places. Either netdev_ops->ndo_uninit() or netdev->destructor(). The decision of which operation frees the resources depends upon whether it is necessary for all netdev refs to be released before it is safe to perform the freeing. netdev_ops->ndo_uninit() presumably can occur right after the NETDEV_UNREGISTER notifier completes and the unicast and multicast address lists are flushed. netdev->destructor(), on the other hand, does not run until the netdev references all go away. Further complicating the situation is that netdev->destructor() almost universally does also a free_netdev(). This creates a problem for the logic in register_netdevice(). Because all callers of register_netdevice() manage the freeing of the netdev, and invoke free_netdev(dev) if register_netdevice() fails. If netdev_ops->ndo_init() succeeds, but something else fails inside of register_netdevice(), it does call ndo_ops->ndo_uninit(). But it is not able to invoke netdev->destructor(). This is because netdev->destructor() will do a free_netdev() and then the caller of register_netdevice() will do the same. However, this means that the resources that would normally be released by netdev->destructor() will not be. Over the years drivers have added local hacks to deal with this, by invoking their destructor parts by hand when register_netdevice() fails. Many drivers do not try to deal with this, and instead we have leaks. Let's close this hole by formalizing the distinction between what private things need to be freed up by netdev->destructor() and whether the driver needs unregister_netdevice() to perform the free_netdev(). netdev->priv_destructor() performs all actions to free up the private resources that used to be freed by netdev->destructor(), except for free_netdev(). netdev->needs_free_netdev is a boolean that indicates whether free_netdev() should be done at the end of unregister_netdevice(). Now, register_netdevice() can sanely release all resources after ndo_ops->ndo_init() succeeds, by invoking both ndo_ops->ndo_uninit() and netdev->priv_destructor(). And at the end of unregister_netdevice(), we invoke netdev->priv_destructor() and optionally call free_netdev(). Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-09 00:52:56 +08:00
free_netdev(ndev);
return ret;
}
}
mutex_lock(&local->iflist_mtx);
list_add_tail_rcu(&sdata->list, &local->interfaces);
mutex_unlock(&local->iflist_mtx);
if (new_wdev)
*new_wdev = &sdata->wdev;
return 0;
}
void ieee80211_if_remove(struct ieee80211_sub_if_data *sdata)
{
ASSERT_RTNL();
[MAC80211]: rework key handling This moves all the key handling code out from ieee80211_ioctl.c into key.c and also does the following changes including documentation updates in mac80211.h: 1) Turn off hardware acceleration for keys when the interface is down. This is necessary because otherwise monitor interfaces could be decrypting frames for other interfaces that are down at the moment. Also, it should go some way towards better suspend/resume support, in any case the routines used here could be used for that as well. Additionally, this makes the driver interface nicer, keys for a specific local MAC address are only ever present while an interface with that MAC address is enabled. 2) Change driver set_key() callback interface to allow only return values of -ENOSPC, -EOPNOTSUPP and 0, warn on all other return values. This allows debugging the stack when a driver notices it's handed a key while it is down. 3) Invert the flag meaning to KEY_FLAG_UPLOADED_TO_HARDWARE. 4) Remove REMOVE_ALL_KEYS command as it isn't used nor do we want to use it, we'll use DISABLE_KEY for each key. It is hard to use REMOVE_ALL_KEYS because we can handle multiple virtual interfaces with different key configuration, so we'd have to keep track of a lot of state for this and that isn't worth it. 5) Warn when disabling a key fails, it musn't. 6) Remove IEEE80211_HW_NO_TKIP_WMM_HWACCEL in favour of per-key IEEE80211_KEY_FLAG_WMM_STA to let driver sort it out itself. 7) Tell driver that a (non-WEP) key is used only for transmission by using an all-zeroes station MAC address when configuring. 8) Change the set_key() callback to have access to the local MAC address the key is being added for. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Acked-by: Michael Wu <flamingice@sourmilk.net> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-29 05:01:55 +08:00
mutex_lock(&sdata->local->iflist_mtx);
list_del_rcu(&sdata->list);
mutex_unlock(&sdata->local->iflist_mtx);
if (sdata->vif.txq)
ieee80211_txq_purge(sdata->local, to_txq_info(sdata->vif.txq));
synchronize_rcu();
cfg80211_unregister_wdev(&sdata->wdev);
if (!sdata->dev) {
ieee80211_teardown_sdata(sdata);
kfree(sdata);
}
}
void ieee80211_sdata_stop(struct ieee80211_sub_if_data *sdata)
{
if (WARN_ON_ONCE(!test_bit(SDATA_STATE_RUNNING, &sdata->state)))
return;
ieee80211_do_stop(sdata, true);
}
void ieee80211_remove_interfaces(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata, *tmp;
LIST_HEAD(unreg_list);
LIST_HEAD(wdev_list);
ASSERT_RTNL();
/* Before destroying the interfaces, make sure they're all stopped so
* that the hardware is stopped. Otherwise, the driver might still be
* iterating the interfaces during the shutdown, e.g. from a worker
* or from RX processing or similar, and if it does so (using atomic
* iteration) while we're manipulating the list, the iteration will
* crash.
*
* After this, the hardware should be stopped and the driver should
* have stopped all of its activities, so that we can do RCU-unaware
* manipulations of the interface list below.
*/
cfg80211_shutdown_all_interfaces(local->hw.wiphy);
WARN(local->open_count, "%s: open count remains %d\n",
wiphy_name(local->hw.wiphy), local->open_count);
ieee80211_txq_teardown_flows(local);
mutex_lock(&local->iflist_mtx);
list_for_each_entry_safe(sdata, tmp, &local->interfaces, list) {
list_del(&sdata->list);
if (sdata->dev)
unregister_netdevice_queue(sdata->dev, &unreg_list);
else
list_add(&sdata->list, &wdev_list);
}
mutex_unlock(&local->iflist_mtx);
unregister_netdevice_many(&unreg_list);
wiphy_lock(local->hw.wiphy);
list_for_each_entry_safe(sdata, tmp, &wdev_list, list) {
list_del(&sdata->list);
cfg80211_unregister_wdev(&sdata->wdev);
kfree(sdata);
}
wiphy_unlock(local->hw.wiphy);
}
mac80211: tell driver when idle When we aren't doing anything in mac80211, we can turn off much of the hardware, depending on the driver/hw. Not doing anything, aka being idle, means: * no monitor interfaces * no AP/mesh/wds interfaces * any station interfaces are in DISABLED state * any IBSS interfaces aren't trying to be in a network * we aren't trying to scan By creating a new function that verifies these conditions and calling it at strategic points where the states of those conditions change, we can easily make mac80211 tell the driver when we are idle to save power. Additionally, this fixes a small quirk where a recalculated powersave state is passed to the driver even if the hardware is about to stopped completely. This patch intentionally doesn't touch radio_enabled because that is currently implemented to be a soft rfkill which is inappropriate here when we need to be able to wake up with low latency. One thing I'm not entirely sure about is this: phy0: device no longer idle - in use wlan0: direct probe to AP 00:11:24:91:07:4d try 1 wlan0 direct probe responded wlan0: authenticate with AP 00:11:24:91:07:4d wlan0: authenticated > phy0: device now idle > phy0: device no longer idle - in use wlan0: associate with AP 00:11:24:91:07:4d wlan0: RX AssocResp from 00:11:24:91:07:4d (capab=0x401 status=0 aid=1) wlan0: associated Is it appropriate to go into idle state for a short time when we have just authenticated, but not associated yet? This happens only with the userspace SME, because we cannot really know how long it will wait before asking us to associate. Would going idle after a short timeout be more appropriate? We may need to revisit this, depending on what happens. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-04-29 18:26:17 +08:00
static int netdev_notify(struct notifier_block *nb,
unsigned long state, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct ieee80211_sub_if_data *sdata;
if (state != NETDEV_CHANGENAME)
return NOTIFY_DONE;
if (!dev->ieee80211_ptr || !dev->ieee80211_ptr->wiphy)
return NOTIFY_DONE;
if (dev->ieee80211_ptr->wiphy->privid != mac80211_wiphy_privid)
return NOTIFY_DONE;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
memcpy(sdata->name, dev->name, IFNAMSIZ);
ieee80211_debugfs_rename_netdev(sdata);
return NOTIFY_OK;
}
static struct notifier_block mac80211_netdev_notifier = {
.notifier_call = netdev_notify,
};
int ieee80211_iface_init(void)
{
return register_netdevice_notifier(&mac80211_netdev_notifier);
}
void ieee80211_iface_exit(void)
{
unregister_netdevice_notifier(&mac80211_netdev_notifier);
}
void ieee80211_vif_inc_num_mcast(struct ieee80211_sub_if_data *sdata)
{
if (sdata->vif.type == NL80211_IFTYPE_AP)
atomic_inc(&sdata->u.ap.num_mcast_sta);
else if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
atomic_inc(&sdata->u.vlan.num_mcast_sta);
}
void ieee80211_vif_dec_num_mcast(struct ieee80211_sub_if_data *sdata)
{
if (sdata->vif.type == NL80211_IFTYPE_AP)
atomic_dec(&sdata->u.ap.num_mcast_sta);
else if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
atomic_dec(&sdata->u.vlan.num_mcast_sta);
}