linux/drivers/spi/spi-fsl-espi.c

932 lines
22 KiB
C
Raw Normal View History

spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
/*
* Freescale eSPI controller driver.
*
* Copyright 2010 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/delay.h>
#include <linux/err.h>
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
#include <linux/fsl_devices.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
#include <linux/mm.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/pm_runtime.h>
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
#include <sysdev/fsl_soc.h>
#include "spi-fsl-lib.h"
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
/* eSPI Controller registers */
struct fsl_espi_reg {
__be32 mode; /* 0x000 - eSPI mode register */
__be32 event; /* 0x004 - eSPI event register */
__be32 mask; /* 0x008 - eSPI mask register */
__be32 command; /* 0x00c - eSPI command register */
__be32 transmit; /* 0x010 - eSPI transmit FIFO access register*/
__be32 receive; /* 0x014 - eSPI receive FIFO access register*/
u8 res[8]; /* 0x018 - 0x01c reserved */
__be32 csmode[4]; /* 0x020 - 0x02c eSPI cs mode register */
};
struct fsl_espi_transfer {
const void *tx_buf;
void *rx_buf;
unsigned len;
unsigned n_tx;
unsigned n_rx;
unsigned actual_length;
int status;
};
/* eSPI Controller mode register definitions */
#define SPMODE_ENABLE (1 << 31)
#define SPMODE_LOOP (1 << 30)
#define SPMODE_TXTHR(x) ((x) << 8)
#define SPMODE_RXTHR(x) ((x) << 0)
/* eSPI Controller CS mode register definitions */
#define CSMODE_CI_INACTIVEHIGH (1 << 31)
#define CSMODE_CP_BEGIN_EDGECLK (1 << 30)
#define CSMODE_REV (1 << 29)
#define CSMODE_DIV16 (1 << 28)
#define CSMODE_PM(x) ((x) << 24)
#define CSMODE_POL_1 (1 << 20)
#define CSMODE_LEN(x) ((x) << 16)
#define CSMODE_BEF(x) ((x) << 12)
#define CSMODE_AFT(x) ((x) << 8)
#define CSMODE_CG(x) ((x) << 3)
/* Default mode/csmode for eSPI controller */
#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
| CSMODE_AFT(0) | CSMODE_CG(1))
/* SPIE register values */
#define SPIE_NE 0x00000200 /* Not empty */
#define SPIE_NF 0x00000100 /* Not full */
/* SPIM register values */
#define SPIM_NE 0x00000200 /* Not empty */
#define SPIM_NF 0x00000100 /* Not full */
#define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
#define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
/* SPCOM register values */
#define SPCOM_CS(x) ((x) << 30)
#define SPCOM_TRANLEN(x) ((x) << 0)
#define SPCOM_TRANLEN_MAX 0x10000 /* Max transaction length */
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
#define AUTOSUSPEND_TIMEOUT 2000
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
static void fsl_espi_change_mode(struct spi_device *spi)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
struct spi_mpc8xxx_cs *cs = spi->controller_state;
struct fsl_espi_reg *reg_base = mspi->reg_base;
__be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
__be32 __iomem *espi_mode = &reg_base->mode;
u32 tmp;
unsigned long flags;
/* Turn off IRQs locally to minimize time that SPI is disabled. */
local_irq_save(flags);
/* Turn off SPI unit prior changing mode */
tmp = mpc8xxx_spi_read_reg(espi_mode);
mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
mpc8xxx_spi_write_reg(mode, cs->hw_mode);
mpc8xxx_spi_write_reg(espi_mode, tmp);
local_irq_restore(flags);
}
static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
{
u32 data;
u16 data_h;
u16 data_l;
const u32 *tx = mpc8xxx_spi->tx;
if (!tx)
return 0;
data = *tx++ << mpc8xxx_spi->tx_shift;
data_l = data & 0xffff;
data_h = (data >> 16) & 0xffff;
swab16s(&data_l);
swab16s(&data_h);
data = data_h | data_l;
mpc8xxx_spi->tx = tx;
return data;
}
static int fsl_espi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
int bits_per_word = 0;
u8 pm;
u32 hz = 0;
struct spi_mpc8xxx_cs *cs = spi->controller_state;
if (t) {
bits_per_word = t->bits_per_word;
hz = t->speed_hz;
}
/* spi_transfer level calls that work per-word */
if (!bits_per_word)
bits_per_word = spi->bits_per_word;
if (!hz)
hz = spi->max_speed_hz;
cs->rx_shift = 0;
cs->tx_shift = 0;
cs->get_rx = mpc8xxx_spi_rx_buf_u32;
cs->get_tx = mpc8xxx_spi_tx_buf_u32;
if (bits_per_word <= 8) {
cs->rx_shift = 8 - bits_per_word;
} else {
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
cs->rx_shift = 16 - bits_per_word;
if (spi->mode & SPI_LSB_FIRST)
cs->get_tx = fsl_espi_tx_buf_lsb;
}
mpc8xxx_spi->rx_shift = cs->rx_shift;
mpc8xxx_spi->tx_shift = cs->tx_shift;
mpc8xxx_spi->get_rx = cs->get_rx;
mpc8xxx_spi->get_tx = cs->get_tx;
bits_per_word = bits_per_word - 1;
/* mask out bits we are going to set */
cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
cs->hw_mode |= CSMODE_LEN(bits_per_word);
if ((mpc8xxx_spi->spibrg / hz) > 64) {
cs->hw_mode |= CSMODE_DIV16;
pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
"Will use %d Hz instead.\n", dev_name(&spi->dev),
hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
if (pm > 33)
pm = 33;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
} else {
pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
}
if (pm)
pm--;
if (pm < 2)
pm = 2;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
cs->hw_mode |= CSMODE_PM(pm);
fsl_espi_change_mode(spi);
return 0;
}
static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
unsigned int len)
{
u32 word;
struct fsl_espi_reg *reg_base = mspi->reg_base;
mspi->count = len;
/* enable rx ints */
mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
/* transmit word */
word = mspi->get_tx(mspi);
mpc8xxx_spi_write_reg(&reg_base->transmit, word);
return 0;
}
static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
unsigned int len = t->len;
int ret;
mpc8xxx_spi->len = t->len;
len = roundup(len, 4) / 4;
mpc8xxx_spi->tx = t->tx_buf;
mpc8xxx_spi->rx = t->rx_buf;
reinit_completion(&mpc8xxx_spi->done);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
if (t->len > SPCOM_TRANLEN_MAX) {
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
" beyond the SPCOM[TRANLEN] field\n", t->len);
return -EINVAL;
}
mpc8xxx_spi_write_reg(&reg_base->command,
(SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
if (ret)
return ret;
/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
ret = wait_for_completion_timeout(&mpc8xxx_spi->done, 2 * HZ);
if (ret == 0)
dev_err(mpc8xxx_spi->dev,
"Transaction hanging up (left %d bytes)\n",
mpc8xxx_spi->count);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
/* disable rx ints */
mpc8xxx_spi_write_reg(&reg_base->mask, 0);
return mpc8xxx_spi->count;
}
static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
{
if (cmd) {
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
cmd[1] = (u8)(addr >> 16);
cmd[2] = (u8)(addr >> 8);
cmd[3] = (u8)(addr >> 0);
}
}
static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
{
if (cmd)
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
return 0;
}
static void fsl_espi_do_trans(struct spi_message *m,
struct fsl_espi_transfer *tr)
{
struct spi_device *spi = m->spi;
struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
struct fsl_espi_transfer *espi_trans = tr;
struct spi_message message;
struct spi_transfer *t, *first, trans;
int status = 0;
spi_message_init(&message);
memset(&trans, 0, sizeof(trans));
first = list_first_entry(&m->transfers, struct spi_transfer,
transfer_list);
list_for_each_entry(t, &m->transfers, transfer_list) {
if ((first->bits_per_word != t->bits_per_word) ||
(first->speed_hz != t->speed_hz)) {
espi_trans->status = -EINVAL;
dev_err(mspi->dev,
"bits_per_word/speed_hz should be same for the same SPI transfer\n");
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
return;
}
trans.speed_hz = t->speed_hz;
trans.bits_per_word = t->bits_per_word;
trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
}
trans.len = espi_trans->len;
trans.tx_buf = espi_trans->tx_buf;
trans.rx_buf = espi_trans->rx_buf;
spi_message_add_tail(&trans, &message);
list_for_each_entry(t, &message.transfers, transfer_list) {
if (t->bits_per_word || t->speed_hz) {
status = -EINVAL;
status = fsl_espi_setup_transfer(spi, t);
if (status < 0)
break;
}
if (t->len)
status = fsl_espi_bufs(spi, t);
if (status) {
status = -EMSGSIZE;
break;
}
if (t->delay_usecs)
udelay(t->delay_usecs);
}
espi_trans->status = status;
fsl_espi_setup_transfer(spi, NULL);
}
static void fsl_espi_cmd_trans(struct spi_message *m,
struct fsl_espi_transfer *trans, u8 *rx_buff)
{
struct spi_transfer *t;
u8 *local_buf;
int i = 0;
struct fsl_espi_transfer *espi_trans = trans;
local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
if (!local_buf) {
espi_trans->status = -ENOMEM;
return;
}
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->tx_buf) {
memcpy(local_buf + i, t->tx_buf, t->len);
i += t->len;
}
}
espi_trans->tx_buf = local_buf;
espi_trans->rx_buf = local_buf;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
fsl_espi_do_trans(m, espi_trans);
espi_trans->actual_length = espi_trans->len;
kfree(local_buf);
}
static void fsl_espi_rw_trans(struct spi_message *m,
struct fsl_espi_transfer *trans, u8 *rx_buff)
{
struct fsl_espi_transfer *espi_trans = trans;
unsigned int total_len = espi_trans->len;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
struct spi_transfer *t;
u8 *local_buf;
u8 *rx_buf = rx_buff;
unsigned int trans_len;
unsigned int addr;
unsigned int tx_only;
unsigned int rx_pos = 0;
unsigned int pos;
int i, loop;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
if (!local_buf) {
espi_trans->status = -ENOMEM;
return;
}
for (pos = 0, loop = 0; pos < total_len; pos += trans_len, loop++) {
trans_len = total_len - pos;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
i = 0;
tx_only = 0;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->tx_buf) {
memcpy(local_buf + i, t->tx_buf, t->len);
i += t->len;
if (!t->rx_buf)
tx_only += t->len;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
}
}
/* Add additional TX bytes to compensate SPCOM_TRANLEN_MAX */
if (loop > 0)
trans_len += tx_only;
if (trans_len > SPCOM_TRANLEN_MAX)
trans_len = SPCOM_TRANLEN_MAX;
/* Update device offset */
if (pos > 0) {
addr = fsl_espi_cmd2addr(local_buf);
addr += rx_pos;
fsl_espi_addr2cmd(addr, local_buf);
}
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
espi_trans->len = trans_len;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
espi_trans->tx_buf = local_buf;
espi_trans->rx_buf = local_buf;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
fsl_espi_do_trans(m, espi_trans);
/* If there is at least one RX byte then copy it to rx_buf */
if (tx_only < SPCOM_TRANLEN_MAX)
memcpy(rx_buf + rx_pos, espi_trans->rx_buf + tx_only,
trans_len - tx_only);
rx_pos += trans_len - tx_only;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (loop > 0)
espi_trans->actual_length += espi_trans->len - tx_only;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
else
espi_trans->actual_length += espi_trans->len;
}
kfree(local_buf);
}
static int fsl_espi_do_one_msg(struct spi_master *master,
struct spi_message *m)
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
{
struct spi_transfer *t;
u8 *rx_buf = NULL;
unsigned int n_tx = 0;
unsigned int n_rx = 0;
unsigned int xfer_len = 0;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
struct fsl_espi_transfer espi_trans;
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->tx_buf)
n_tx += t->len;
if (t->rx_buf) {
n_rx += t->len;
rx_buf = t->rx_buf;
}
if ((t->tx_buf) || (t->rx_buf))
xfer_len += t->len;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
}
espi_trans.n_tx = n_tx;
espi_trans.n_rx = n_rx;
espi_trans.len = xfer_len;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
espi_trans.actual_length = 0;
espi_trans.status = 0;
if (!rx_buf)
fsl_espi_cmd_trans(m, &espi_trans, NULL);
else
fsl_espi_rw_trans(m, &espi_trans, rx_buf);
m->actual_length = espi_trans.actual_length;
m->status = espi_trans.status;
spi_finalize_current_message(master);
return 0;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
}
static int fsl_espi_setup(struct spi_device *spi)
{
struct mpc8xxx_spi *mpc8xxx_spi;
struct fsl_espi_reg *reg_base;
int retval;
u32 hw_mode;
u32 loop_mode;
spi: fsl: Don't use devm_kzalloc in master->setup callback device_add() expects that any memory allocated via devm_* API is only done in the device's probe function. Fix below boot warning: [ 3.092348] WARNING: at drivers/base/dd.c:286 [ 3.096637] Modules linked in: [ 3.099697] CPU: 0 PID: 25 Comm: kworker/u2:1 Tainted: G W 3.16.1-s3k-drv-999-svn5771_knld-999 #158 [ 3.109610] Workqueue: deferwq deferred_probe_work_func [ 3.114736] task: c787f020 ti: c790c000 task.ti: c790c000 [ 3.120062] NIP: c01df158 LR: c01df144 CTR: 00000000 [ 3.124983] REGS: c790db30 TRAP: 0700 Tainted: G W (3.16.1-s3k-drv-999-svn5771_knld-999) [ 3.134162] MSR: 00029032 <EE,ME,IR,DR,RI> CR: 22002082 XER: 20000000 [ 3.140703] [ 3.140703] GPR00: 00000001 c790dbe0 c787f020 00000044 00000054 00000308 c056da0e 20737069 [ 3.140703] GPR08: 33323736 000ebfe0 00000308 000ebfdf 22002082 00000000 c046c5a0 c046c608 [ 3.140703] GPR16: c046c614 c046c620 c046c62c c046c638 c046c648 c046c654 c046c68c c046c6c4 [ 3.140703] GPR24: 00000000 00000000 00000003 c0401aa0 c0596638 c059662c c054e7a8 c7996800 [ 3.170102] NIP [c01df158] driver_probe_device+0xf8/0x334 [ 3.175431] LR [c01df144] driver_probe_device+0xe4/0x334 [ 3.180633] Call Trace: [ 3.183093] [c790dbe0] [c01df144] driver_probe_device+0xe4/0x334 (unreliable) [ 3.190147] [c790dc10] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.195741] [c790dc40] [c01df5fc] device_attach+0xcc/0xf8 [ 3.201076] [c790dc60] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.206666] [c790dc80] [c01db9f8] device_add+0x270/0x564 [ 3.211923] [c790dcc0] [c0219e84] spi_add_device+0xc0/0x190 [ 3.217427] [c790dce0] [c021a79c] spi_register_master+0x720/0x834 [ 3.223455] [c790dd40] [c021cb48] of_fsl_spi_probe+0x55c/0x614 [ 3.229234] [c790dda0] [c01e0d2c] platform_drv_probe+0x30/0x74 [ 3.234987] [c790ddb0] [c01df18c] driver_probe_device+0x12c/0x334 [ 3.241008] [c790dde0] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.246602] [c790de10] [c01df5fc] device_attach+0xcc/0xf8 [ 3.251937] [c790de30] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.257536] [c790de50] [c01de9d8] deferred_probe_work_func+0x98/0xe0 [ 3.263816] [c790de70] [c00305b8] process_one_work+0x18c/0x440 [ 3.269577] [c790dea0] [c0030a00] worker_thread+0x194/0x67c [ 3.275105] [c790def0] [c0039198] kthread+0xd0/0xe4 [ 3.279911] [c790df40] [c000c6d0] ret_from_kernel_thread+0x5c/0x64 [ 3.285970] Instruction dump: [ 3.288900] 80de0000 419e01d0 3b7b0038 3c60c046 7f65db78 38635264 48211b99 813f00a0 [ 3.296559] 381f00a0 7d290278 3169ffff 7c0b4910 <0f000000> 93df0044 7fe3fb78 4bfffd4d Reported-by: leroy christophe <christophe.leroy@c-s.fr> Signed-off-by: Axel Lin <axel.lin@ingics.com> Tested-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Mark Brown <broonie@kernel.org> Cc: stable@vger.kernel.org
2014-08-31 12:44:09 +08:00
struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (!spi->max_speed_hz)
return -EINVAL;
if (!cs) {
spi: fsl: Don't use devm_kzalloc in master->setup callback device_add() expects that any memory allocated via devm_* API is only done in the device's probe function. Fix below boot warning: [ 3.092348] WARNING: at drivers/base/dd.c:286 [ 3.096637] Modules linked in: [ 3.099697] CPU: 0 PID: 25 Comm: kworker/u2:1 Tainted: G W 3.16.1-s3k-drv-999-svn5771_knld-999 #158 [ 3.109610] Workqueue: deferwq deferred_probe_work_func [ 3.114736] task: c787f020 ti: c790c000 task.ti: c790c000 [ 3.120062] NIP: c01df158 LR: c01df144 CTR: 00000000 [ 3.124983] REGS: c790db30 TRAP: 0700 Tainted: G W (3.16.1-s3k-drv-999-svn5771_knld-999) [ 3.134162] MSR: 00029032 <EE,ME,IR,DR,RI> CR: 22002082 XER: 20000000 [ 3.140703] [ 3.140703] GPR00: 00000001 c790dbe0 c787f020 00000044 00000054 00000308 c056da0e 20737069 [ 3.140703] GPR08: 33323736 000ebfe0 00000308 000ebfdf 22002082 00000000 c046c5a0 c046c608 [ 3.140703] GPR16: c046c614 c046c620 c046c62c c046c638 c046c648 c046c654 c046c68c c046c6c4 [ 3.140703] GPR24: 00000000 00000000 00000003 c0401aa0 c0596638 c059662c c054e7a8 c7996800 [ 3.170102] NIP [c01df158] driver_probe_device+0xf8/0x334 [ 3.175431] LR [c01df144] driver_probe_device+0xe4/0x334 [ 3.180633] Call Trace: [ 3.183093] [c790dbe0] [c01df144] driver_probe_device+0xe4/0x334 (unreliable) [ 3.190147] [c790dc10] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.195741] [c790dc40] [c01df5fc] device_attach+0xcc/0xf8 [ 3.201076] [c790dc60] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.206666] [c790dc80] [c01db9f8] device_add+0x270/0x564 [ 3.211923] [c790dcc0] [c0219e84] spi_add_device+0xc0/0x190 [ 3.217427] [c790dce0] [c021a79c] spi_register_master+0x720/0x834 [ 3.223455] [c790dd40] [c021cb48] of_fsl_spi_probe+0x55c/0x614 [ 3.229234] [c790dda0] [c01e0d2c] platform_drv_probe+0x30/0x74 [ 3.234987] [c790ddb0] [c01df18c] driver_probe_device+0x12c/0x334 [ 3.241008] [c790dde0] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.246602] [c790de10] [c01df5fc] device_attach+0xcc/0xf8 [ 3.251937] [c790de30] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.257536] [c790de50] [c01de9d8] deferred_probe_work_func+0x98/0xe0 [ 3.263816] [c790de70] [c00305b8] process_one_work+0x18c/0x440 [ 3.269577] [c790dea0] [c0030a00] worker_thread+0x194/0x67c [ 3.275105] [c790def0] [c0039198] kthread+0xd0/0xe4 [ 3.279911] [c790df40] [c000c6d0] ret_from_kernel_thread+0x5c/0x64 [ 3.285970] Instruction dump: [ 3.288900] 80de0000 419e01d0 3b7b0038 3c60c046 7f65db78 38635264 48211b99 813f00a0 [ 3.296559] 381f00a0 7d290278 3169ffff 7c0b4910 <0f000000> 93df0044 7fe3fb78 4bfffd4d Reported-by: leroy christophe <christophe.leroy@c-s.fr> Signed-off-by: Axel Lin <axel.lin@ingics.com> Tested-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Mark Brown <broonie@kernel.org> Cc: stable@vger.kernel.org
2014-08-31 12:44:09 +08:00
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (!cs)
return -ENOMEM;
spi: fsl: Don't use devm_kzalloc in master->setup callback device_add() expects that any memory allocated via devm_* API is only done in the device's probe function. Fix below boot warning: [ 3.092348] WARNING: at drivers/base/dd.c:286 [ 3.096637] Modules linked in: [ 3.099697] CPU: 0 PID: 25 Comm: kworker/u2:1 Tainted: G W 3.16.1-s3k-drv-999-svn5771_knld-999 #158 [ 3.109610] Workqueue: deferwq deferred_probe_work_func [ 3.114736] task: c787f020 ti: c790c000 task.ti: c790c000 [ 3.120062] NIP: c01df158 LR: c01df144 CTR: 00000000 [ 3.124983] REGS: c790db30 TRAP: 0700 Tainted: G W (3.16.1-s3k-drv-999-svn5771_knld-999) [ 3.134162] MSR: 00029032 <EE,ME,IR,DR,RI> CR: 22002082 XER: 20000000 [ 3.140703] [ 3.140703] GPR00: 00000001 c790dbe0 c787f020 00000044 00000054 00000308 c056da0e 20737069 [ 3.140703] GPR08: 33323736 000ebfe0 00000308 000ebfdf 22002082 00000000 c046c5a0 c046c608 [ 3.140703] GPR16: c046c614 c046c620 c046c62c c046c638 c046c648 c046c654 c046c68c c046c6c4 [ 3.140703] GPR24: 00000000 00000000 00000003 c0401aa0 c0596638 c059662c c054e7a8 c7996800 [ 3.170102] NIP [c01df158] driver_probe_device+0xf8/0x334 [ 3.175431] LR [c01df144] driver_probe_device+0xe4/0x334 [ 3.180633] Call Trace: [ 3.183093] [c790dbe0] [c01df144] driver_probe_device+0xe4/0x334 (unreliable) [ 3.190147] [c790dc10] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.195741] [c790dc40] [c01df5fc] device_attach+0xcc/0xf8 [ 3.201076] [c790dc60] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.206666] [c790dc80] [c01db9f8] device_add+0x270/0x564 [ 3.211923] [c790dcc0] [c0219e84] spi_add_device+0xc0/0x190 [ 3.217427] [c790dce0] [c021a79c] spi_register_master+0x720/0x834 [ 3.223455] [c790dd40] [c021cb48] of_fsl_spi_probe+0x55c/0x614 [ 3.229234] [c790dda0] [c01e0d2c] platform_drv_probe+0x30/0x74 [ 3.234987] [c790ddb0] [c01df18c] driver_probe_device+0x12c/0x334 [ 3.241008] [c790dde0] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.246602] [c790de10] [c01df5fc] device_attach+0xcc/0xf8 [ 3.251937] [c790de30] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.257536] [c790de50] [c01de9d8] deferred_probe_work_func+0x98/0xe0 [ 3.263816] [c790de70] [c00305b8] process_one_work+0x18c/0x440 [ 3.269577] [c790dea0] [c0030a00] worker_thread+0x194/0x67c [ 3.275105] [c790def0] [c0039198] kthread+0xd0/0xe4 [ 3.279911] [c790df40] [c000c6d0] ret_from_kernel_thread+0x5c/0x64 [ 3.285970] Instruction dump: [ 3.288900] 80de0000 419e01d0 3b7b0038 3c60c046 7f65db78 38635264 48211b99 813f00a0 [ 3.296559] 381f00a0 7d290278 3169ffff 7c0b4910 <0f000000> 93df0044 7fe3fb78 4bfffd4d Reported-by: leroy christophe <christophe.leroy@c-s.fr> Signed-off-by: Axel Lin <axel.lin@ingics.com> Tested-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Mark Brown <broonie@kernel.org> Cc: stable@vger.kernel.org
2014-08-31 12:44:09 +08:00
spi_set_ctldata(spi, cs);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
}
mpc8xxx_spi = spi_master_get_devdata(spi->master);
reg_base = mpc8xxx_spi->reg_base;
pm_runtime_get_sync(mpc8xxx_spi->dev);
hw_mode = cs->hw_mode; /* Save original settings */
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
cs->hw_mode = mpc8xxx_spi_read_reg(
&reg_base->csmode[spi->chip_select]);
/* mask out bits we are going to set */
cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
| CSMODE_REV);
if (spi->mode & SPI_CPHA)
cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
if (spi->mode & SPI_CPOL)
cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
if (!(spi->mode & SPI_LSB_FIRST))
cs->hw_mode |= CSMODE_REV;
/* Handle the loop mode */
loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
loop_mode &= ~SPMODE_LOOP;
if (spi->mode & SPI_LOOP)
loop_mode |= SPMODE_LOOP;
mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
retval = fsl_espi_setup_transfer(spi, NULL);
pm_runtime_mark_last_busy(mpc8xxx_spi->dev);
pm_runtime_put_autosuspend(mpc8xxx_spi->dev);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (retval < 0) {
cs->hw_mode = hw_mode; /* Restore settings */
return retval;
}
return 0;
}
spi: fsl: Don't use devm_kzalloc in master->setup callback device_add() expects that any memory allocated via devm_* API is only done in the device's probe function. Fix below boot warning: [ 3.092348] WARNING: at drivers/base/dd.c:286 [ 3.096637] Modules linked in: [ 3.099697] CPU: 0 PID: 25 Comm: kworker/u2:1 Tainted: G W 3.16.1-s3k-drv-999-svn5771_knld-999 #158 [ 3.109610] Workqueue: deferwq deferred_probe_work_func [ 3.114736] task: c787f020 ti: c790c000 task.ti: c790c000 [ 3.120062] NIP: c01df158 LR: c01df144 CTR: 00000000 [ 3.124983] REGS: c790db30 TRAP: 0700 Tainted: G W (3.16.1-s3k-drv-999-svn5771_knld-999) [ 3.134162] MSR: 00029032 <EE,ME,IR,DR,RI> CR: 22002082 XER: 20000000 [ 3.140703] [ 3.140703] GPR00: 00000001 c790dbe0 c787f020 00000044 00000054 00000308 c056da0e 20737069 [ 3.140703] GPR08: 33323736 000ebfe0 00000308 000ebfdf 22002082 00000000 c046c5a0 c046c608 [ 3.140703] GPR16: c046c614 c046c620 c046c62c c046c638 c046c648 c046c654 c046c68c c046c6c4 [ 3.140703] GPR24: 00000000 00000000 00000003 c0401aa0 c0596638 c059662c c054e7a8 c7996800 [ 3.170102] NIP [c01df158] driver_probe_device+0xf8/0x334 [ 3.175431] LR [c01df144] driver_probe_device+0xe4/0x334 [ 3.180633] Call Trace: [ 3.183093] [c790dbe0] [c01df144] driver_probe_device+0xe4/0x334 (unreliable) [ 3.190147] [c790dc10] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.195741] [c790dc40] [c01df5fc] device_attach+0xcc/0xf8 [ 3.201076] [c790dc60] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.206666] [c790dc80] [c01db9f8] device_add+0x270/0x564 [ 3.211923] [c790dcc0] [c0219e84] spi_add_device+0xc0/0x190 [ 3.217427] [c790dce0] [c021a79c] spi_register_master+0x720/0x834 [ 3.223455] [c790dd40] [c021cb48] of_fsl_spi_probe+0x55c/0x614 [ 3.229234] [c790dda0] [c01e0d2c] platform_drv_probe+0x30/0x74 [ 3.234987] [c790ddb0] [c01df18c] driver_probe_device+0x12c/0x334 [ 3.241008] [c790dde0] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.246602] [c790de10] [c01df5fc] device_attach+0xcc/0xf8 [ 3.251937] [c790de30] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.257536] [c790de50] [c01de9d8] deferred_probe_work_func+0x98/0xe0 [ 3.263816] [c790de70] [c00305b8] process_one_work+0x18c/0x440 [ 3.269577] [c790dea0] [c0030a00] worker_thread+0x194/0x67c [ 3.275105] [c790def0] [c0039198] kthread+0xd0/0xe4 [ 3.279911] [c790df40] [c000c6d0] ret_from_kernel_thread+0x5c/0x64 [ 3.285970] Instruction dump: [ 3.288900] 80de0000 419e01d0 3b7b0038 3c60c046 7f65db78 38635264 48211b99 813f00a0 [ 3.296559] 381f00a0 7d290278 3169ffff 7c0b4910 <0f000000> 93df0044 7fe3fb78 4bfffd4d Reported-by: leroy christophe <christophe.leroy@c-s.fr> Signed-off-by: Axel Lin <axel.lin@ingics.com> Tested-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Mark Brown <broonie@kernel.org> Cc: stable@vger.kernel.org
2014-08-31 12:44:09 +08:00
static void fsl_espi_cleanup(struct spi_device *spi)
{
struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
kfree(cs);
spi_set_ctldata(spi, NULL);
}
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
{
struct fsl_espi_reg *reg_base = mspi->reg_base;
/* We need handle RX first */
if (events & SPIE_NE) {
u32 rx_data, tmp;
u8 rx_data_8;
int rx_nr_bytes = 4;
int ret;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
/* Spin until RX is done */
if (SPIE_RXCNT(events) < min(4, mspi->len)) {
ret = spin_event_timeout(
!(SPIE_RXCNT(events =
mpc8xxx_spi_read_reg(&reg_base->event)) <
min(4, mspi->len)),
10000, 0); /* 10 msec */
if (!ret)
dev_err(mspi->dev,
"tired waiting for SPIE_RXCNT\n");
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
}
if (mspi->len >= 4) {
rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
} else if (mspi->len <= 0) {
dev_err(mspi->dev,
"unexpected RX(SPIE_NE) interrupt occurred,\n"
"(local rxlen %d bytes, reg rxlen %d bytes)\n",
min(4, mspi->len), SPIE_RXCNT(events));
rx_nr_bytes = 0;
} else {
rx_nr_bytes = mspi->len;
tmp = mspi->len;
rx_data = 0;
while (tmp--) {
rx_data_8 = in_8((u8 *)&reg_base->receive);
rx_data |= (rx_data_8 << (tmp * 8));
}
rx_data <<= (4 - mspi->len) * 8;
}
mspi->len -= rx_nr_bytes;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (mspi->rx)
mspi->get_rx(rx_data, mspi);
}
if (!(events & SPIE_NF)) {
int ret;
/* spin until TX is done */
ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
&reg_base->event)) & SPIE_NF), 1000, 0);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (!ret) {
dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
/* Clear the SPIE bits */
mpc8xxx_spi_write_reg(&reg_base->event, events);
complete(&mspi->done);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
return;
}
}
/* Clear the events */
mpc8xxx_spi_write_reg(&reg_base->event, events);
mspi->count -= 1;
if (mspi->count) {
u32 word = mspi->get_tx(mspi);
mpc8xxx_spi_write_reg(&reg_base->transmit, word);
} else {
complete(&mspi->done);
}
}
static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
{
struct mpc8xxx_spi *mspi = context_data;
struct fsl_espi_reg *reg_base = mspi->reg_base;
irqreturn_t ret = IRQ_NONE;
u32 events;
/* Get interrupt events(tx/rx) */
events = mpc8xxx_spi_read_reg(&reg_base->event);
if (events)
ret = IRQ_HANDLED;
dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
fsl_espi_cpu_irq(mspi, events);
return ret;
}
#ifdef CONFIG_PM
static int fsl_espi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
u32 regval;
regval = mpc8xxx_spi_read_reg(&reg_base->mode);
regval &= ~SPMODE_ENABLE;
mpc8xxx_spi_write_reg(&reg_base->mode, regval);
return 0;
}
static int fsl_espi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
u32 regval;
regval = mpc8xxx_spi_read_reg(&reg_base->mode);
regval |= SPMODE_ENABLE;
mpc8xxx_spi_write_reg(&reg_base->mode, regval);
return 0;
}
#endif
static size_t fsl_espi_max_transfer_size(struct spi_device *spi)
{
return SPCOM_TRANLEN_MAX;
}
static struct spi_master * fsl_espi_probe(struct device *dev,
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
struct resource *mem, unsigned int irq)
{
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
struct spi_master *master;
struct mpc8xxx_spi *mpc8xxx_spi;
struct fsl_espi_reg *reg_base;
struct device_node *nc;
const __be32 *prop;
u32 regval, csmode;
int i, len, ret = 0;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
if (!master) {
ret = -ENOMEM;
goto err;
}
dev_set_drvdata(dev, master);
mpc8xxx_spi_probe(dev, mem, irq);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
master->setup = fsl_espi_setup;
spi: fsl: Don't use devm_kzalloc in master->setup callback device_add() expects that any memory allocated via devm_* API is only done in the device's probe function. Fix below boot warning: [ 3.092348] WARNING: at drivers/base/dd.c:286 [ 3.096637] Modules linked in: [ 3.099697] CPU: 0 PID: 25 Comm: kworker/u2:1 Tainted: G W 3.16.1-s3k-drv-999-svn5771_knld-999 #158 [ 3.109610] Workqueue: deferwq deferred_probe_work_func [ 3.114736] task: c787f020 ti: c790c000 task.ti: c790c000 [ 3.120062] NIP: c01df158 LR: c01df144 CTR: 00000000 [ 3.124983] REGS: c790db30 TRAP: 0700 Tainted: G W (3.16.1-s3k-drv-999-svn5771_knld-999) [ 3.134162] MSR: 00029032 <EE,ME,IR,DR,RI> CR: 22002082 XER: 20000000 [ 3.140703] [ 3.140703] GPR00: 00000001 c790dbe0 c787f020 00000044 00000054 00000308 c056da0e 20737069 [ 3.140703] GPR08: 33323736 000ebfe0 00000308 000ebfdf 22002082 00000000 c046c5a0 c046c608 [ 3.140703] GPR16: c046c614 c046c620 c046c62c c046c638 c046c648 c046c654 c046c68c c046c6c4 [ 3.140703] GPR24: 00000000 00000000 00000003 c0401aa0 c0596638 c059662c c054e7a8 c7996800 [ 3.170102] NIP [c01df158] driver_probe_device+0xf8/0x334 [ 3.175431] LR [c01df144] driver_probe_device+0xe4/0x334 [ 3.180633] Call Trace: [ 3.183093] [c790dbe0] [c01df144] driver_probe_device+0xe4/0x334 (unreliable) [ 3.190147] [c790dc10] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.195741] [c790dc40] [c01df5fc] device_attach+0xcc/0xf8 [ 3.201076] [c790dc60] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.206666] [c790dc80] [c01db9f8] device_add+0x270/0x564 [ 3.211923] [c790dcc0] [c0219e84] spi_add_device+0xc0/0x190 [ 3.217427] [c790dce0] [c021a79c] spi_register_master+0x720/0x834 [ 3.223455] [c790dd40] [c021cb48] of_fsl_spi_probe+0x55c/0x614 [ 3.229234] [c790dda0] [c01e0d2c] platform_drv_probe+0x30/0x74 [ 3.234987] [c790ddb0] [c01df18c] driver_probe_device+0x12c/0x334 [ 3.241008] [c790dde0] [c01dd15c] bus_for_each_drv+0x7c/0xc0 [ 3.246602] [c790de10] [c01df5fc] device_attach+0xcc/0xf8 [ 3.251937] [c790de30] [c01dd6d4] bus_probe_device+0xb4/0xc4 [ 3.257536] [c790de50] [c01de9d8] deferred_probe_work_func+0x98/0xe0 [ 3.263816] [c790de70] [c00305b8] process_one_work+0x18c/0x440 [ 3.269577] [c790dea0] [c0030a00] worker_thread+0x194/0x67c [ 3.275105] [c790def0] [c0039198] kthread+0xd0/0xe4 [ 3.279911] [c790df40] [c000c6d0] ret_from_kernel_thread+0x5c/0x64 [ 3.285970] Instruction dump: [ 3.288900] 80de0000 419e01d0 3b7b0038 3c60c046 7f65db78 38635264 48211b99 813f00a0 [ 3.296559] 381f00a0 7d290278 3169ffff 7c0b4910 <0f000000> 93df0044 7fe3fb78 4bfffd4d Reported-by: leroy christophe <christophe.leroy@c-s.fr> Signed-off-by: Axel Lin <axel.lin@ingics.com> Tested-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Mark Brown <broonie@kernel.org> Cc: stable@vger.kernel.org
2014-08-31 12:44:09 +08:00
master->cleanup = fsl_espi_cleanup;
master->transfer_one_message = fsl_espi_do_one_msg;
master->auto_runtime_pm = true;
master->max_transfer_size = fsl_espi_max_transfer_size;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
mpc8xxx_spi = spi_master_get_devdata(master);
mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem);
if (IS_ERR(mpc8xxx_spi->reg_base)) {
ret = PTR_ERR(mpc8xxx_spi->reg_base);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
goto err_probe;
}
reg_base = mpc8xxx_spi->reg_base;
/* Register for SPI Interrupt */
ret = devm_request_irq(dev, mpc8xxx_spi->irq, fsl_espi_irq,
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
0, "fsl_espi", mpc8xxx_spi);
if (ret)
goto err_probe;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
mpc8xxx_spi->rx_shift = 16;
mpc8xxx_spi->tx_shift = 24;
}
/* SPI controller initializations */
mpc8xxx_spi_write_reg(&reg_base->mode, 0);
mpc8xxx_spi_write_reg(&reg_base->mask, 0);
mpc8xxx_spi_write_reg(&reg_base->command, 0);
mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
/* Init eSPI CS mode register */
for_each_available_child_of_node(master->dev.of_node, nc) {
/* get chip select */
prop = of_get_property(nc, "reg", &len);
if (!prop || len < sizeof(*prop))
continue;
i = be32_to_cpup(prop);
if (i < 0 || i >= pdata->max_chipselect)
continue;
csmode = CSMODE_INIT_VAL;
/* check if CSBEF is set in device tree */
prop = of_get_property(nc, "fsl,csbef", &len);
if (prop && len >= sizeof(*prop)) {
csmode &= ~(CSMODE_BEF(0xf));
csmode |= CSMODE_BEF(be32_to_cpup(prop));
}
/* check if CSAFT is set in device tree */
prop = of_get_property(nc, "fsl,csaft", &len);
if (prop && len >= sizeof(*prop)) {
csmode &= ~(CSMODE_AFT(0xf));
csmode |= CSMODE_AFT(be32_to_cpup(prop));
}
mpc8xxx_spi_write_reg(&reg_base->csmode[i], csmode);
dev_info(dev, "cs=%d, init_csmode=0x%x\n", i, csmode);
}
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
/* Enable SPI interface */
regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
mpc8xxx_spi_write_reg(&reg_base->mode, regval);
pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_get_sync(dev);
ret = devm_spi_register_master(dev, master);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (ret < 0)
goto err_pm;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
return master;
err_pm:
pm_runtime_put_noidle(dev);
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
err_probe:
spi_master_put(master);
err:
return ERR_PTR(ret);
}
static int of_fsl_espi_get_chipselects(struct device *dev)
{
struct device_node *np = dev->of_node;
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
const u32 *prop;
int len;
prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
if (!prop || len < sizeof(*prop)) {
dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
return -EINVAL;
}
pdata->max_chipselect = *prop;
pdata->cs_control = NULL;
return 0;
}
static int of_fsl_espi_probe(struct platform_device *ofdev)
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
{
struct device *dev = &ofdev->dev;
struct device_node *np = ofdev->dev.of_node;
struct spi_master *master;
struct resource mem;
unsigned int irq;
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
int ret = -ENOMEM;
ret = of_mpc8xxx_spi_probe(ofdev);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (ret)
return ret;
ret = of_fsl_espi_get_chipselects(dev);
if (ret)
goto err;
ret = of_address_to_resource(np, 0, &mem);
if (ret)
goto err;
irq = irq_of_parse_and_map(np, 0);
if (!irq) {
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
ret = -EINVAL;
goto err;
}
master = fsl_espi_probe(dev, &mem, irq);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
if (IS_ERR(master)) {
ret = PTR_ERR(master);
goto err;
}
return 0;
err:
return ret;
}
static int of_fsl_espi_remove(struct platform_device *dev)
{
pm_runtime_disable(&dev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int of_fsl_espi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
int ret;
ret = spi_master_suspend(master);
if (ret) {
dev_warn(dev, "cannot suspend master\n");
return ret;
}
ret = pm_runtime_force_suspend(dev);
if (ret < 0)
return ret;
return 0;
}
static int of_fsl_espi_resume(struct device *dev)
{
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi;
struct fsl_espi_reg *reg_base;
u32 regval;
int i, ret;
mpc8xxx_spi = spi_master_get_devdata(master);
reg_base = mpc8xxx_spi->reg_base;
/* SPI controller initializations */
mpc8xxx_spi_write_reg(&reg_base->mode, 0);
mpc8xxx_spi_write_reg(&reg_base->mask, 0);
mpc8xxx_spi_write_reg(&reg_base->command, 0);
mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
/* Init eSPI CS mode register */
for (i = 0; i < pdata->max_chipselect; i++)
mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
/* Enable SPI interface */
regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
mpc8xxx_spi_write_reg(&reg_base->mode, regval);
ret = pm_runtime_force_resume(dev);
if (ret < 0)
return ret;
return spi_master_resume(master);
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops espi_pm = {
SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
fsl_espi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
};
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
static const struct of_device_id of_fsl_espi_match[] = {
{ .compatible = "fsl,mpc8536-espi" },
{}
};
MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
static struct platform_driver fsl_espi_driver = {
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
.driver = {
.name = "fsl_espi",
.of_match_table = of_fsl_espi_match,
.pm = &espi_pm,
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
},
.probe = of_fsl_espi_probe,
.remove = of_fsl_espi_remove,
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
};
module_platform_driver(fsl_espi_driver);
spi/fsl_spi: add eSPI controller support Add eSPI controller support based on the library code spi_fsl_lib.c. The eSPI controller is newer controller 85xx/Pxxx devices supported. There're some differences comparing to the SPI controller: 1. Has different register map and different bit definition So leave the code operated the register to the driver code, not the common code. 2. Support 4 dedicated chip selects The software can't controll the chip selects directly, The SPCOM[CS] field is used to select which chip selects is used, and the SPCOM[TRANLEN] field is set to tell the controller how long the CS signal need to be asserted. So the driver doesn't need the chipselect related function when transfering data, just set corresponding register fields to controll the chipseclect. 3. Different Transmit/Receive FIFO access register behavior For SPI controller, the Tx/Rx FIFO access register can hold only one character regardless of the character length, but for eSPI controller, the register can hold 4 or 2 characters according to the character lengths. Access the Tx/Rx FIFO access register of the eSPI controller will shift out/in 4/2 characters one time. For SPI subsystem, the command and data are put into different transfers, so we need to combine all the transfers to one transfer in order to pass the transfer to eSPI controller. 4. The max transaction length limitation The max transaction length one time is limitted by the SPCOM[TRANSLEN] field which is 0xFFFF. When used mkfs.ext2 command to create ext2 filesystem on the flash, the read length will exceed the max value of the SPCOM[TRANSLEN] field. Signed-off-by: Mingkai Hu <Mingkai.hu@freescale.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2010-10-12 18:18:32 +08:00
MODULE_AUTHOR("Mingkai Hu");
MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
MODULE_LICENSE("GPL");