linux/arch/mips/kernel/unaligned.c

1556 lines
33 KiB
C
Raw Normal View History

/*
* Handle unaligned accesses by emulation.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
* Copyright (C) 1999 Silicon Graphics, Inc.
* Copyright (C) 2014 Imagination Technologies Ltd.
*
* This file contains exception handler for address error exception with the
* special capability to execute faulting instructions in software. The
* handler does not try to handle the case when the program counter points
* to an address not aligned to a word boundary.
*
* Putting data to unaligned addresses is a bad practice even on Intel where
* only the performance is affected. Much worse is that such code is non-
* portable. Due to several programs that die on MIPS due to alignment
* problems I decided to implement this handler anyway though I originally
* didn't intend to do this at all for user code.
*
* For now I enable fixing of address errors by default to make life easier.
* I however intend to disable this somewhen in the future when the alignment
* problems with user programs have been fixed. For programmers this is the
* right way to go.
*
* Fixing address errors is a per process option. The option is inherited
* across fork(2) and execve(2) calls. If you really want to use the
* option in your user programs - I discourage the use of the software
* emulation strongly - use the following code in your userland stuff:
*
* #include <sys/sysmips.h>
*
* ...
* sysmips(MIPS_FIXADE, x);
* ...
*
* The argument x is 0 for disabling software emulation, enabled otherwise.
*
* Below a little program to play around with this feature.
*
* #include <stdio.h>
* #include <sys/sysmips.h>
*
* struct foo {
* unsigned char bar[8];
* };
*
* main(int argc, char *argv[])
* {
* struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
* unsigned int *p = (unsigned int *) (x.bar + 3);
* int i;
*
* if (argc > 1)
* sysmips(MIPS_FIXADE, atoi(argv[1]));
*
* printf("*p = %08lx\n", *p);
*
* *p = 0xdeadface;
*
* for(i = 0; i <= 7; i++)
* printf("%02x ", x.bar[i]);
* printf("\n");
* }
*
* Coprocessor loads are not supported; I think this case is unimportant
* in the practice.
*
* TODO: Handle ndc (attempted store to doubleword in uncached memory)
* exception for the R6000.
* A store crossing a page boundary might be executed only partially.
* Undo the partial store in this case.
*/
#include <linux/context_tracking.h>
#include <linux/mm.h>
#include <linux/signal.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/debugfs.h>
#include <linux/perf_event.h>
#include <asm/asm.h>
#include <asm/branch.h>
#include <asm/byteorder.h>
#include <asm/cop2.h>
#include <asm/debug.h>
#include <asm/fpu.h>
#include <asm/fpu_emulator.h>
#include <asm/inst.h>
#include <asm/unaligned-emul.h>
MIPS: MemoryMapID (MMID) Support Introduce support for using MemoryMapIDs (MMIDs) as an alternative to Address Space IDs (ASIDs). The major difference between the two is that MMIDs are global - ie. an MMID uniquely identifies an address space across all coherent CPUs. In contrast ASIDs are non-global per-CPU IDs, wherein each address space is allocated a separate ASID for each CPU upon which it is used. This global namespace allows a new GINVT instruction be used to globally invalidate TLB entries associated with a particular MMID across all coherent CPUs in the system, removing the need for IPIs to invalidate entries with separate ASIDs on each CPU. The allocation scheme used here is largely borrowed from arm64 (see arch/arm64/mm/context.c). In essence we maintain a bitmap to track available MMIDs, and MMIDs in active use at the time of a rollover to a new MMID version are preserved in the new version. The allocation scheme requires efficient 64 bit atomics in order to perform reasonably, so this support depends upon CONFIG_GENERIC_ATOMIC64=n (ie. currently it will only be included in MIPS64 kernels). The first, and currently only, available CPU with support for MMIDs is the MIPS I6500. This CPU supports 16 bit MMIDs, and so for now we cap our MMIDs to 16 bits wide in order to prevent the bitmap growing to absurd sizes if any future CPU does implement 32 bit MMIDs as the architecture manuals suggest is recommended. When MMIDs are in use we also make use of GINVT instruction which is available due to the global nature of MMIDs. By executing a sequence of GINVT & SYNC 0x14 instructions we can avoid the overhead of an IPI to each remote CPU in many cases. One complication is that GINVT will invalidate wired entries (in all cases apart from type 0, which targets the entire TLB). In order to avoid GINVT invalidating any wired TLB entries we set up, we make sure to create those entries using a reserved MMID (0) that we never associate with any address space. Also of note is that KVM will require further work in order to support MMIDs & GINVT, since KVM is involved in allocating IDs for guests & in configuring the MMU. That work is not part of this patch, so for now when MMIDs are in use KVM is disabled. Signed-off-by: Paul Burton <paul.burton@mips.com> Cc: linux-mips@vger.kernel.org
2019-02-02 09:43:28 +08:00
#include <asm/mmu_context.h>
#include <linux/uaccess.h>
#include "access-helper.h"
enum {
UNALIGNED_ACTION_QUIET,
UNALIGNED_ACTION_SIGNAL,
UNALIGNED_ACTION_SHOW,
};
#ifdef CONFIG_DEBUG_FS
static u32 unaligned_instructions;
static u32 unaligned_action;
#else
#define unaligned_action UNALIGNED_ACTION_QUIET
#endif
extern void show_registers(struct pt_regs *regs);
static void emulate_load_store_insn(struct pt_regs *regs,
void __user *addr, unsigned int *pc)
{
unsigned long origpc, orig31, value;
union mips_instruction insn;
unsigned int res;
bool user = user_mode(regs);
origpc = (unsigned long)pc;
orig31 = regs->regs[31];
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
/*
* This load never faults.
*/
__get_inst32(&insn.word, pc, user);
switch (insn.i_format.opcode) {
/*
* These are instructions that a compiler doesn't generate. We
* can assume therefore that the code is MIPS-aware and
* really buggy. Emulating these instructions would break the
* semantics anyway.
*/
case ll_op:
case lld_op:
case sc_op:
case scd_op:
/*
* For these instructions the only way to create an address
* error is an attempted access to kernel/supervisor address
* space.
*/
case ldl_op:
case ldr_op:
case lwl_op:
case lwr_op:
case sdl_op:
case sdr_op:
case swl_op:
case swr_op:
case lb_op:
case lbu_op:
case sb_op:
goto sigbus;
/*
* The remaining opcodes are the ones that are really of
* interest.
*/
case spec3_op:
if (insn.dsp_format.func == lx_op) {
switch (insn.dsp_format.op) {
case lwx_op:
if (user && !access_ok(addr, 4))
goto sigbus;
LoadW(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.dsp_format.rd] = value;
break;
case lhx_op:
if (user && !access_ok(addr, 2))
goto sigbus;
LoadHW(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.dsp_format.rd] = value;
break;
default:
goto sigill;
}
}
#ifdef CONFIG_EVA
else {
/*
* we can land here only from kernel accessing user
* memory, so we need to "switch" the address limit to
* user space, so that address check can work properly.
*/
switch (insn.spec3_format.func) {
case lhe_op:
if (!access_ok(addr, 2))
goto sigbus;
LoadHWE(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.spec3_format.rt] = value;
break;
case lwe_op:
if (!access_ok(addr, 4))
goto sigbus;
LoadWE(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.spec3_format.rt] = value;
break;
case lhue_op:
if (!access_ok(addr, 2))
goto sigbus;
LoadHWUE(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.spec3_format.rt] = value;
break;
case she_op:
if (!access_ok(addr, 2))
goto sigbus;
compute_return_epc(regs);
value = regs->regs[insn.spec3_format.rt];
StoreHWE(addr, value, res);
if (res)
goto fault;
break;
case swe_op:
if (!access_ok(addr, 4))
goto sigbus;
compute_return_epc(regs);
value = regs->regs[insn.spec3_format.rt];
StoreWE(addr, value, res);
if (res)
goto fault;
break;
default:
goto sigill;
}
}
#endif
break;
case lh_op:
if (user && !access_ok(addr, 2))
goto sigbus;
if (IS_ENABLED(CONFIG_EVA) && user)
LoadHWE(addr, value, res);
else
LoadHW(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.i_format.rt] = value;
break;
case lw_op:
if (user && !access_ok(addr, 4))
goto sigbus;
if (IS_ENABLED(CONFIG_EVA) && user)
LoadWE(addr, value, res);
else
LoadW(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.i_format.rt] = value;
break;
case lhu_op:
if (user && !access_ok(addr, 2))
goto sigbus;
if (IS_ENABLED(CONFIG_EVA) && user)
LoadHWUE(addr, value, res);
else
LoadHWU(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.i_format.rt] = value;
break;
case lwu_op:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 4))
goto sigbus;
LoadWU(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.i_format.rt] = value;
break;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
case ld_op:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 8))
goto sigbus;
LoadDW(addr, value, res);
if (res)
goto fault;
compute_return_epc(regs);
regs->regs[insn.i_format.rt] = value;
break;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
case sh_op:
if (user && !access_ok(addr, 2))
goto sigbus;
compute_return_epc(regs);
value = regs->regs[insn.i_format.rt];
if (IS_ENABLED(CONFIG_EVA) && user)
StoreHWE(addr, value, res);
else
StoreHW(addr, value, res);
if (res)
goto fault;
break;
case sw_op:
if (user && !access_ok(addr, 4))
goto sigbus;
compute_return_epc(regs);
value = regs->regs[insn.i_format.rt];
if (IS_ENABLED(CONFIG_EVA) && user)
StoreWE(addr, value, res);
else
StoreW(addr, value, res);
if (res)
goto fault;
break;
case sd_op:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 8))
goto sigbus;
compute_return_epc(regs);
value = regs->regs[insn.i_format.rt];
StoreDW(addr, value, res);
if (res)
goto fault;
break;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
#ifdef CONFIG_MIPS_FP_SUPPORT
case lwc1_op:
case ldc1_op:
case swc1_op:
case sdc1_op:
case cop1x_op: {
void __user *fault_addr = NULL;
die_if_kernel("Unaligned FP access in kernel code", regs);
BUG_ON(!used_math());
res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
&fault_addr);
own_fpu(1); /* Restore FPU state. */
/* Signal if something went wrong. */
process_fpemu_return(res, fault_addr, 0);
if (res == 0)
break;
return;
}
#endif /* CONFIG_MIPS_FP_SUPPORT */
#ifdef CONFIG_CPU_HAS_MSA
case msa_op: {
unsigned int wd, preempted;
enum msa_2b_fmt df;
union fpureg *fpr;
MIPS: MSA unaligned memory access support The MSA architecture specification allows for hardware to not implement unaligned vector memory accesses in some or all cases. A typical example of this is the I6400 core which does not implement unaligned vector memory access when the memory crosses a page boundary. The architecture also requires that such memory accesses complete successfully as far as userland is concerned, so the kernel is required to emulate them. This patch implements support for emulating unaligned MSA ld & st instructions by copying between the user memory & the tasks FP context in struct thread_struct, updating hardware registers from there as appropriate in order to avoid saving & restoring the entire vector context for each unaligned memory access. Tested both using an I6400 CPU and with a QEMU build hacked to produce AdEL exceptions for unaligned vector memory accesses. [paul.burton@imgtec.com: - Remove #ifdef's - Move msa_op into enum major_op rather than #define - Replace msa_{to,from}_wd with {read,write}_msa_wr_{b,h,w,l} and the format-agnostic wrappers, removing the custom endian mangling for big endian systems. - Restructure the msa_op case in emulate_load_store_insn to share more code between the load & store cases. - Avoid the need for a temporary union fpureg on the stack by simply reusing the already suitably aligned context in struct thread_struct. - Use sizeof(*fpr) rather than hardcoding 16 as the size for user memory checks & copies. - Stop recalculating the address of the unaligned vector memory access and rely upon the value read from BadVAddr as we do for other unaligned memory access instructions. - Drop the now unused val8 & val16 fields in union fpureg. - Rewrite commit message. - General formatting cleanups.] Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Huacai Chen <chenhc@lemote.com> Cc: Maciej W. Rozycki <macro@linux-mips.org> Cc: linux-kernel@vger.kernel.org Cc: Jie Chen <chenj@lemote.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Patchwork: https://patchwork.linux-mips.org/patch/10573/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-06-22 19:21:00 +08:00
if (!cpu_has_msa)
goto sigill;
/*
* If we've reached this point then userland should have taken
* the MSA disabled exception & initialised vector context at
* some point in the past.
*/
BUG_ON(!thread_msa_context_live());
df = insn.msa_mi10_format.df;
wd = insn.msa_mi10_format.wd;
fpr = &current->thread.fpu.fpr[wd];
switch (insn.msa_mi10_format.func) {
case msa_ld_op:
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 10:57:57 +08:00
if (!access_ok(addr, sizeof(*fpr)))
MIPS: MSA unaligned memory access support The MSA architecture specification allows for hardware to not implement unaligned vector memory accesses in some or all cases. A typical example of this is the I6400 core which does not implement unaligned vector memory access when the memory crosses a page boundary. The architecture also requires that such memory accesses complete successfully as far as userland is concerned, so the kernel is required to emulate them. This patch implements support for emulating unaligned MSA ld & st instructions by copying between the user memory & the tasks FP context in struct thread_struct, updating hardware registers from there as appropriate in order to avoid saving & restoring the entire vector context for each unaligned memory access. Tested both using an I6400 CPU and with a QEMU build hacked to produce AdEL exceptions for unaligned vector memory accesses. [paul.burton@imgtec.com: - Remove #ifdef's - Move msa_op into enum major_op rather than #define - Replace msa_{to,from}_wd with {read,write}_msa_wr_{b,h,w,l} and the format-agnostic wrappers, removing the custom endian mangling for big endian systems. - Restructure the msa_op case in emulate_load_store_insn to share more code between the load & store cases. - Avoid the need for a temporary union fpureg on the stack by simply reusing the already suitably aligned context in struct thread_struct. - Use sizeof(*fpr) rather than hardcoding 16 as the size for user memory checks & copies. - Stop recalculating the address of the unaligned vector memory access and rely upon the value read from BadVAddr as we do for other unaligned memory access instructions. - Drop the now unused val8 & val16 fields in union fpureg. - Rewrite commit message. - General formatting cleanups.] Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Huacai Chen <chenhc@lemote.com> Cc: Maciej W. Rozycki <macro@linux-mips.org> Cc: linux-kernel@vger.kernel.org Cc: Jie Chen <chenj@lemote.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Patchwork: https://patchwork.linux-mips.org/patch/10573/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-06-22 19:21:00 +08:00
goto sigbus;
MIPS: Fix MSA ld unaligned failure cases Copying the content of an MSA vector from user memory may involve TLB faults & mapping in pages. This will fail when preemption is disabled due to an inability to acquire mmap_sem from do_page_fault, which meant such vector loads to unmapped pages would always fail to be emulated. Fix this by disabling preemption later only around the updating of vector register state. This change does however introduce a race between performing the load into thread context & the thread being preempted, saving its current live context & clobbering the loaded value. This should be a rare occureence, so optimise for the fast path by simply repeating the load if we are preempted. Additionally if the copy failed then the failure path was taken with preemption left disabled, leading to the kernel typically encountering further issues around sleeping whilst atomic. The change to where preemption is disabled avoids this issue. Fixes: e4aa1f153add "MIPS: MSA unaligned memory access support" Reported-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Paul Burton <paul.burton@imgtec.com> Reviewed-by: James Hogan <james.hogan@imgtec.com> Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Maciej W. Rozycki <macro@linux-mips.org> Cc: James Cowgill <James.Cowgill@imgtec.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Cc: stable <stable@vger.kernel.org> # v4.3 Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/12345/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-02-03 11:35:49 +08:00
do {
/*
* If we have live MSA context keep track of
* whether we get preempted in order to avoid
* the register context we load being clobbered
* by the live context as it's saved during
* preemption. If we don't have live context
* then it can't be saved to clobber the value
* we load.
*/
preempted = test_thread_flag(TIF_USEDMSA);
res = __copy_from_user_inatomic(fpr, addr,
sizeof(*fpr));
if (res)
goto fault;
/*
* Update the hardware register if it is in use
* by the task in this quantum, in order to
* avoid having to save & restore the whole
* vector context.
*/
preempt_disable();
if (test_thread_flag(TIF_USEDMSA)) {
write_msa_wr(wd, fpr, df);
preempted = 0;
}
preempt_enable();
} while (preempted);
MIPS: MSA unaligned memory access support The MSA architecture specification allows for hardware to not implement unaligned vector memory accesses in some or all cases. A typical example of this is the I6400 core which does not implement unaligned vector memory access when the memory crosses a page boundary. The architecture also requires that such memory accesses complete successfully as far as userland is concerned, so the kernel is required to emulate them. This patch implements support for emulating unaligned MSA ld & st instructions by copying between the user memory & the tasks FP context in struct thread_struct, updating hardware registers from there as appropriate in order to avoid saving & restoring the entire vector context for each unaligned memory access. Tested both using an I6400 CPU and with a QEMU build hacked to produce AdEL exceptions for unaligned vector memory accesses. [paul.burton@imgtec.com: - Remove #ifdef's - Move msa_op into enum major_op rather than #define - Replace msa_{to,from}_wd with {read,write}_msa_wr_{b,h,w,l} and the format-agnostic wrappers, removing the custom endian mangling for big endian systems. - Restructure the msa_op case in emulate_load_store_insn to share more code between the load & store cases. - Avoid the need for a temporary union fpureg on the stack by simply reusing the already suitably aligned context in struct thread_struct. - Use sizeof(*fpr) rather than hardcoding 16 as the size for user memory checks & copies. - Stop recalculating the address of the unaligned vector memory access and rely upon the value read from BadVAddr as we do for other unaligned memory access instructions. - Drop the now unused val8 & val16 fields in union fpureg. - Rewrite commit message. - General formatting cleanups.] Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Huacai Chen <chenhc@lemote.com> Cc: Maciej W. Rozycki <macro@linux-mips.org> Cc: linux-kernel@vger.kernel.org Cc: Jie Chen <chenj@lemote.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Patchwork: https://patchwork.linux-mips.org/patch/10573/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-06-22 19:21:00 +08:00
break;
case msa_st_op:
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 10:57:57 +08:00
if (!access_ok(addr, sizeof(*fpr)))
MIPS: MSA unaligned memory access support The MSA architecture specification allows for hardware to not implement unaligned vector memory accesses in some or all cases. A typical example of this is the I6400 core which does not implement unaligned vector memory access when the memory crosses a page boundary. The architecture also requires that such memory accesses complete successfully as far as userland is concerned, so the kernel is required to emulate them. This patch implements support for emulating unaligned MSA ld & st instructions by copying between the user memory & the tasks FP context in struct thread_struct, updating hardware registers from there as appropriate in order to avoid saving & restoring the entire vector context for each unaligned memory access. Tested both using an I6400 CPU and with a QEMU build hacked to produce AdEL exceptions for unaligned vector memory accesses. [paul.burton@imgtec.com: - Remove #ifdef's - Move msa_op into enum major_op rather than #define - Replace msa_{to,from}_wd with {read,write}_msa_wr_{b,h,w,l} and the format-agnostic wrappers, removing the custom endian mangling for big endian systems. - Restructure the msa_op case in emulate_load_store_insn to share more code between the load & store cases. - Avoid the need for a temporary union fpureg on the stack by simply reusing the already suitably aligned context in struct thread_struct. - Use sizeof(*fpr) rather than hardcoding 16 as the size for user memory checks & copies. - Stop recalculating the address of the unaligned vector memory access and rely upon the value read from BadVAddr as we do for other unaligned memory access instructions. - Drop the now unused val8 & val16 fields in union fpureg. - Rewrite commit message. - General formatting cleanups.] Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Huacai Chen <chenhc@lemote.com> Cc: Maciej W. Rozycki <macro@linux-mips.org> Cc: linux-kernel@vger.kernel.org Cc: Jie Chen <chenj@lemote.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Patchwork: https://patchwork.linux-mips.org/patch/10573/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-06-22 19:21:00 +08:00
goto sigbus;
/*
* Update from the hardware register if it is in use by
* the task in this quantum, in order to avoid having to
* save & restore the whole vector context.
*/
preempt_disable();
if (test_thread_flag(TIF_USEDMSA))
read_msa_wr(wd, fpr, df);
preempt_enable();
res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
if (res)
goto fault;
break;
default:
goto sigbus;
}
compute_return_epc(regs);
break;
}
#endif /* CONFIG_CPU_HAS_MSA */
MIPS: MSA unaligned memory access support The MSA architecture specification allows for hardware to not implement unaligned vector memory accesses in some or all cases. A typical example of this is the I6400 core which does not implement unaligned vector memory access when the memory crosses a page boundary. The architecture also requires that such memory accesses complete successfully as far as userland is concerned, so the kernel is required to emulate them. This patch implements support for emulating unaligned MSA ld & st instructions by copying between the user memory & the tasks FP context in struct thread_struct, updating hardware registers from there as appropriate in order to avoid saving & restoring the entire vector context for each unaligned memory access. Tested both using an I6400 CPU and with a QEMU build hacked to produce AdEL exceptions for unaligned vector memory accesses. [paul.burton@imgtec.com: - Remove #ifdef's - Move msa_op into enum major_op rather than #define - Replace msa_{to,from}_wd with {read,write}_msa_wr_{b,h,w,l} and the format-agnostic wrappers, removing the custom endian mangling for big endian systems. - Restructure the msa_op case in emulate_load_store_insn to share more code between the load & store cases. - Avoid the need for a temporary union fpureg on the stack by simply reusing the already suitably aligned context in struct thread_struct. - Use sizeof(*fpr) rather than hardcoding 16 as the size for user memory checks & copies. - Stop recalculating the address of the unaligned vector memory access and rely upon the value read from BadVAddr as we do for other unaligned memory access instructions. - Drop the now unused val8 & val16 fields in union fpureg. - Rewrite commit message. - General formatting cleanups.] Signed-off-by: Paul Burton <paul.burton@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Huacai Chen <chenhc@lemote.com> Cc: Maciej W. Rozycki <macro@linux-mips.org> Cc: linux-kernel@vger.kernel.org Cc: Jie Chen <chenj@lemote.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Patchwork: https://patchwork.linux-mips.org/patch/10573/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-06-22 19:21:00 +08:00
#ifndef CONFIG_CPU_MIPSR6
/*
* COP2 is available to implementor for application specific use.
* It's up to applications to register a notifier chain and do
* whatever they have to do, including possible sending of signals.
*
* This instruction has been reallocated in Release 6
*/
case lwc2_op:
cu2_notifier_call_chain(CU2_LWC2_OP, regs);
break;
case ldc2_op:
cu2_notifier_call_chain(CU2_LDC2_OP, regs);
break;
case swc2_op:
cu2_notifier_call_chain(CU2_SWC2_OP, regs);
break;
case sdc2_op:
cu2_notifier_call_chain(CU2_SDC2_OP, regs);
break;
#endif
default:
/*
* Pheeee... We encountered an yet unknown instruction or
* cache coherence problem. Die sucker, die ...
*/
goto sigill;
}
#ifdef CONFIG_DEBUG_FS
unaligned_instructions++;
#endif
return;
fault:
/* roll back jump/branch */
regs->cp0_epc = origpc;
regs->regs[31] = orig31;
/* Did we have an exception handler installed? */
if (fixup_exception(regs))
return;
die_if_kernel("Unhandled kernel unaligned access", regs);
force_sig(SIGSEGV);
return;
sigbus:
die_if_kernel("Unhandled kernel unaligned access", regs);
force_sig(SIGBUS);
return;
sigill:
die_if_kernel
("Unhandled kernel unaligned access or invalid instruction", regs);
force_sig(SIGILL);
}
/* Recode table from 16-bit register notation to 32-bit GPR. */
const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
static void emulate_load_store_microMIPS(struct pt_regs *regs,
void __user *addr)
{
unsigned long value;
unsigned int res;
int i;
unsigned int reg = 0, rvar;
unsigned long orig31;
u16 __user *pc16;
u16 halfword;
unsigned int word;
unsigned long origpc, contpc;
union mips_instruction insn;
struct mm_decoded_insn mminsn;
bool user = user_mode(regs);
origpc = regs->cp0_epc;
orig31 = regs->regs[31];
mminsn.micro_mips_mode = 1;
/*
* This load never faults.
*/
pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
__get_user(halfword, pc16);
pc16++;
contpc = regs->cp0_epc + 2;
word = ((unsigned int)halfword << 16);
mminsn.pc_inc = 2;
if (!mm_insn_16bit(halfword)) {
__get_user(halfword, pc16);
pc16++;
contpc = regs->cp0_epc + 4;
mminsn.pc_inc = 4;
word |= halfword;
}
mminsn.insn = word;
if (get_user(halfword, pc16))
goto fault;
mminsn.next_pc_inc = 2;
word = ((unsigned int)halfword << 16);
if (!mm_insn_16bit(halfword)) {
pc16++;
if (get_user(halfword, pc16))
goto fault;
mminsn.next_pc_inc = 4;
word |= halfword;
}
mminsn.next_insn = word;
insn = (union mips_instruction)(mminsn.insn);
if (mm_isBranchInstr(regs, mminsn, &contpc))
insn = (union mips_instruction)(mminsn.next_insn);
/* Parse instruction to find what to do */
switch (insn.mm_i_format.opcode) {
case mm_pool32a_op:
switch (insn.mm_x_format.func) {
case mm_lwxs_op:
reg = insn.mm_x_format.rd;
goto loadW;
}
goto sigbus;
case mm_pool32b_op:
switch (insn.mm_m_format.func) {
case mm_lwp_func:
reg = insn.mm_m_format.rd;
if (reg == 31)
goto sigbus;
if (user && !access_ok(addr, 8))
goto sigbus;
LoadW(addr, value, res);
if (res)
goto fault;
regs->regs[reg] = value;
addr += 4;
LoadW(addr, value, res);
if (res)
goto fault;
regs->regs[reg + 1] = value;
goto success;
case mm_swp_func:
reg = insn.mm_m_format.rd;
if (reg == 31)
goto sigbus;
if (user && !access_ok(addr, 8))
goto sigbus;
value = regs->regs[reg];
StoreW(addr, value, res);
if (res)
goto fault;
addr += 4;
value = regs->regs[reg + 1];
StoreW(addr, value, res);
if (res)
goto fault;
goto success;
case mm_ldp_func:
#ifdef CONFIG_64BIT
reg = insn.mm_m_format.rd;
if (reg == 31)
goto sigbus;
if (user && !access_ok(addr, 16))
goto sigbus;
LoadDW(addr, value, res);
if (res)
goto fault;
regs->regs[reg] = value;
addr += 8;
LoadDW(addr, value, res);
if (res)
goto fault;
regs->regs[reg + 1] = value;
goto success;
#endif /* CONFIG_64BIT */
goto sigill;
case mm_sdp_func:
#ifdef CONFIG_64BIT
reg = insn.mm_m_format.rd;
if (reg == 31)
goto sigbus;
if (user && !access_ok(addr, 16))
goto sigbus;
value = regs->regs[reg];
StoreDW(addr, value, res);
if (res)
goto fault;
addr += 8;
value = regs->regs[reg + 1];
StoreDW(addr, value, res);
if (res)
goto fault;
goto success;
#endif /* CONFIG_64BIT */
goto sigill;
case mm_lwm32_func:
reg = insn.mm_m_format.rd;
rvar = reg & 0xf;
if ((rvar > 9) || !reg)
goto sigill;
if (reg & 0x10) {
if (user && !access_ok(addr, 4 * (rvar + 1)))
goto sigbus;
} else {
if (user && !access_ok(addr, 4 * rvar))
goto sigbus;
}
if (rvar == 9)
rvar = 8;
for (i = 16; rvar; rvar--, i++) {
LoadW(addr, value, res);
if (res)
goto fault;
addr += 4;
regs->regs[i] = value;
}
if ((reg & 0xf) == 9) {
LoadW(addr, value, res);
if (res)
goto fault;
addr += 4;
regs->regs[30] = value;
}
if (reg & 0x10) {
LoadW(addr, value, res);
if (res)
goto fault;
regs->regs[31] = value;
}
goto success;
case mm_swm32_func:
reg = insn.mm_m_format.rd;
rvar = reg & 0xf;
if ((rvar > 9) || !reg)
goto sigill;
if (reg & 0x10) {
if (user && !access_ok(addr, 4 * (rvar + 1)))
goto sigbus;
} else {
if (user && !access_ok(addr, 4 * rvar))
goto sigbus;
}
if (rvar == 9)
rvar = 8;
for (i = 16; rvar; rvar--, i++) {
value = regs->regs[i];
StoreW(addr, value, res);
if (res)
goto fault;
addr += 4;
}
if ((reg & 0xf) == 9) {
value = regs->regs[30];
StoreW(addr, value, res);
if (res)
goto fault;
addr += 4;
}
if (reg & 0x10) {
value = regs->regs[31];
StoreW(addr, value, res);
if (res)
goto fault;
}
goto success;
case mm_ldm_func:
#ifdef CONFIG_64BIT
reg = insn.mm_m_format.rd;
rvar = reg & 0xf;
if ((rvar > 9) || !reg)
goto sigill;
if (reg & 0x10) {
if (user && !access_ok(addr, 8 * (rvar + 1)))
goto sigbus;
} else {
if (user && !access_ok(addr, 8 * rvar))
goto sigbus;
}
if (rvar == 9)
rvar = 8;
for (i = 16; rvar; rvar--, i++) {
LoadDW(addr, value, res);
if (res)
goto fault;
addr += 4;
regs->regs[i] = value;
}
if ((reg & 0xf) == 9) {
LoadDW(addr, value, res);
if (res)
goto fault;
addr += 8;
regs->regs[30] = value;
}
if (reg & 0x10) {
LoadDW(addr, value, res);
if (res)
goto fault;
regs->regs[31] = value;
}
goto success;
#endif /* CONFIG_64BIT */
goto sigill;
case mm_sdm_func:
#ifdef CONFIG_64BIT
reg = insn.mm_m_format.rd;
rvar = reg & 0xf;
if ((rvar > 9) || !reg)
goto sigill;
if (reg & 0x10) {
if (user && !access_ok(addr, 8 * (rvar + 1)))
goto sigbus;
} else {
if (user && !access_ok(addr, 8 * rvar))
goto sigbus;
}
if (rvar == 9)
rvar = 8;
for (i = 16; rvar; rvar--, i++) {
value = regs->regs[i];
StoreDW(addr, value, res);
if (res)
goto fault;
addr += 8;
}
if ((reg & 0xf) == 9) {
value = regs->regs[30];
StoreDW(addr, value, res);
if (res)
goto fault;
addr += 8;
}
if (reg & 0x10) {
value = regs->regs[31];
StoreDW(addr, value, res);
if (res)
goto fault;
}
goto success;
#endif /* CONFIG_64BIT */
goto sigill;
/* LWC2, SWC2, LDC2, SDC2 are not serviced */
}
goto sigbus;
case mm_pool32c_op:
switch (insn.mm_m_format.func) {
case mm_lwu_func:
reg = insn.mm_m_format.rd;
goto loadWU;
}
/* LL,SC,LLD,SCD are not serviced */
goto sigbus;
#ifdef CONFIG_MIPS_FP_SUPPORT
case mm_pool32f_op:
switch (insn.mm_x_format.func) {
case mm_lwxc1_func:
case mm_swxc1_func:
case mm_ldxc1_func:
case mm_sdxc1_func:
goto fpu_emul;
}
goto sigbus;
case mm_ldc132_op:
case mm_sdc132_op:
case mm_lwc132_op:
case mm_swc132_op: {
void __user *fault_addr = NULL;
fpu_emul:
/* roll back jump/branch */
regs->cp0_epc = origpc;
regs->regs[31] = orig31;
die_if_kernel("Unaligned FP access in kernel code", regs);
BUG_ON(!used_math());
BUG_ON(!is_fpu_owner());
res = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
&fault_addr);
own_fpu(1); /* restore FPU state */
/* If something went wrong, signal */
process_fpemu_return(res, fault_addr, 0);
if (res == 0)
goto success;
return;
}
#endif /* CONFIG_MIPS_FP_SUPPORT */
case mm_lh32_op:
reg = insn.mm_i_format.rt;
goto loadHW;
case mm_lhu32_op:
reg = insn.mm_i_format.rt;
goto loadHWU;
case mm_lw32_op:
reg = insn.mm_i_format.rt;
goto loadW;
case mm_sh32_op:
reg = insn.mm_i_format.rt;
goto storeHW;
case mm_sw32_op:
reg = insn.mm_i_format.rt;
goto storeW;
case mm_ld32_op:
reg = insn.mm_i_format.rt;
goto loadDW;
case mm_sd32_op:
reg = insn.mm_i_format.rt;
goto storeDW;
case mm_pool16c_op:
switch (insn.mm16_m_format.func) {
case mm_lwm16_op:
reg = insn.mm16_m_format.rlist;
rvar = reg + 1;
if (user && !access_ok(addr, 4 * rvar))
goto sigbus;
for (i = 16; rvar; rvar--, i++) {
LoadW(addr, value, res);
if (res)
goto fault;
addr += 4;
regs->regs[i] = value;
}
LoadW(addr, value, res);
if (res)
goto fault;
regs->regs[31] = value;
goto success;
case mm_swm16_op:
reg = insn.mm16_m_format.rlist;
rvar = reg + 1;
if (user && !access_ok(addr, 4 * rvar))
goto sigbus;
for (i = 16; rvar; rvar--, i++) {
value = regs->regs[i];
StoreW(addr, value, res);
if (res)
goto fault;
addr += 4;
}
value = regs->regs[31];
StoreW(addr, value, res);
if (res)
goto fault;
goto success;
}
goto sigbus;
case mm_lhu16_op:
reg = reg16to32[insn.mm16_rb_format.rt];
goto loadHWU;
case mm_lw16_op:
reg = reg16to32[insn.mm16_rb_format.rt];
goto loadW;
case mm_sh16_op:
reg = reg16to32st[insn.mm16_rb_format.rt];
goto storeHW;
case mm_sw16_op:
reg = reg16to32st[insn.mm16_rb_format.rt];
goto storeW;
case mm_lwsp16_op:
reg = insn.mm16_r5_format.rt;
goto loadW;
case mm_swsp16_op:
reg = insn.mm16_r5_format.rt;
goto storeW;
case mm_lwgp16_op:
reg = reg16to32[insn.mm16_r3_format.rt];
goto loadW;
default:
goto sigill;
}
loadHW:
if (user && !access_ok(addr, 2))
goto sigbus;
LoadHW(addr, value, res);
if (res)
goto fault;
regs->regs[reg] = value;
goto success;
loadHWU:
if (user && !access_ok(addr, 2))
goto sigbus;
LoadHWU(addr, value, res);
if (res)
goto fault;
regs->regs[reg] = value;
goto success;
loadW:
if (user && !access_ok(addr, 4))
goto sigbus;
LoadW(addr, value, res);
if (res)
goto fault;
regs->regs[reg] = value;
goto success;
loadWU:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 4))
goto sigbus;
LoadWU(addr, value, res);
if (res)
goto fault;
regs->regs[reg] = value;
goto success;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
loadDW:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 8))
goto sigbus;
LoadDW(addr, value, res);
if (res)
goto fault;
regs->regs[reg] = value;
goto success;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
storeHW:
if (user && !access_ok(addr, 2))
goto sigbus;
value = regs->regs[reg];
StoreHW(addr, value, res);
if (res)
goto fault;
goto success;
storeW:
if (user && !access_ok(addr, 4))
goto sigbus;
value = regs->regs[reg];
StoreW(addr, value, res);
if (res)
goto fault;
goto success;
storeDW:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 8))
goto sigbus;
value = regs->regs[reg];
StoreDW(addr, value, res);
if (res)
goto fault;
goto success;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
success:
regs->cp0_epc = contpc; /* advance or branch */
#ifdef CONFIG_DEBUG_FS
unaligned_instructions++;
#endif
return;
fault:
/* roll back jump/branch */
regs->cp0_epc = origpc;
regs->regs[31] = orig31;
/* Did we have an exception handler installed? */
if (fixup_exception(regs))
return;
die_if_kernel("Unhandled kernel unaligned access", regs);
force_sig(SIGSEGV);
return;
sigbus:
die_if_kernel("Unhandled kernel unaligned access", regs);
force_sig(SIGBUS);
return;
sigill:
die_if_kernel
("Unhandled kernel unaligned access or invalid instruction", regs);
force_sig(SIGILL);
}
static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
{
unsigned long value;
unsigned int res;
int reg;
unsigned long orig31;
u16 __user *pc16;
unsigned long origpc;
union mips16e_instruction mips16inst, oldinst;
MIPS: MIPS16e2: Subdecode extended LWSP/SWSP instructions Implement extended LWSP/SWSP instruction subdecoding for the purpose of unaligned GP-relative memory access emulation. With the introduction of the MIPS16e2 ASE[1] the previously must-be-zero 3-bit field at bits 7..5 of the extended encodings of the instructions selected with the LWSP and SWSP major opcodes has become a `sel' field, acting as an opcode extension for additional operations. In both cases the `sel' value of 0 has retained the original operation, that is: LW rx, offset(sp) and: SW rx, offset(sp) for LWSP and SWSP respectively. In hardware predating the MIPS16e2 ASE other values may or may not have been decoded, architecturally yielding unpredictable results, and in our unaligned memory access emulation we have treated the 3-bit field as a don't-care, that is effectively making all the possible encodings of the field alias to the architecturally defined encoding of 0. For the non-zero values of the `sel' field the MIPS16e2 ASE has in particular defined these GP-relative operations: LW rx, offset(gp) # sel = 1 LH rx, offset(gp) # sel = 2 LHU rx, offset(gp) # sel = 4 and SW rx, offset(gp) # sel = 1 SH rx, offset(gp) # sel = 2 for LWSP and SWSP respectively, which will trap with an Address Error exception if the effective address calculated is not naturally-aligned for the operation requested. These operations have been selected for unaligned access emulation, for consistency with the corresponding regular MIPS and microMIPS operations. For other non-zero values of the `sel' field the MIPS16e2 ASE has defined further operations, which however either never trap with an Address Error exception, such as LWL or GP-relative SB, or are not supposed to be emulated, such as LL or SC. These operations have been selected to exclude from unaligned access emulation, should an Address Error exception ever happen with them. Subdecode the `sel' field in unaligned access emulation then for the extended encodings of the instructions selected with the LWSP and SWSP major opcodes, whenever support for the MIPS16e2 ASE has been detected in hardware, and either emulate the operation requested or send SIGBUS to the originating process, according to the selection described above. For hardware implementing the MIPS16 ASE, however lacking MIPS16e2 ASE support retain the original interpretation of the `sel' field. The effects of this change are illustrated with the following user program: $ cat mips16e2-test.c #include <inttypes.h> #include <stdio.h> int main(void) { int64_t scratch[16] = { 0 }; int32_t *tmp0, *tmp1, *tmp2; int i; scratch[0] = 0xc8c7c6c5c4c3c2c1; scratch[1] = 0xd0cfcecdcccbcac9; asm volatile( "move %0, $sp\n\t" "move %1, $gp\n\t" "move $sp, %4\n\t" "addiu %2, %4, 8\n\t" "move $gp, %2\n\t" "lw %2, 2($sp)\n\t" "sw %2, 16(%4)\n\t" "lw %2, 2($gp)\n\t" "sw %2, 24(%4)\n\t" "lw %2, 1($sp)\n\t" "sw %2, 32(%4)\n\t" "lh %2, 1($gp)\n\t" "sw %2, 40(%4)\n\t" "lw %2, 3($sp)\n\t" "sw %2, 48(%4)\n\t" "lhu %2, 3($gp)\n\t" "sw %2, 56(%4)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 66($sp)\n\t" "lw %2, 8(%4)\n\t" "sw %2, 82($gp)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 97($sp)\n\t" "lw %2, 8(%4)\n\t" "sh %2, 113($gp)\n\t" "move $gp, %1\n\t" "move $sp, %0" : "=&d" (tmp0), "=&d" (tmp1), "=&d" (tmp2), "=m" (scratch) : "d" (scratch)); for (i = 0; i < sizeof(scratch) / sizeof(*scratch); i += 2) printf("%016" PRIx64 "\t%016" PRIx64 "\n", scratch[i], scratch[i + 1]); return 0; } $ to be compiled with: $ gcc -mips16 -mips32r2 -Wa,-mmips16e2 -o mips16e2-test mips16e2-test.c $ With 74Kf hardware, which does not implement the MIPS16e2 ASE, this program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000c6c5c4c3 00000000c5c4c3c2 00000000c5c4c3c2 00000000c7c6c5c4 00000000c7c6c5c4 0000c4c3c2c10000 0000000000000000 0000cccbcac90000 0000000000000000 000000c4c3c2c100 0000000000000000 000000cccbcac900 0000000000000000 $ regardless of whether the change has been applied or not. With the change not applied and interAptive MR2 hardware[2], which does implement the MIPS16e2 ASE, it produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000cdcccbca 00000000c7c6c5c4 00000000cfcecdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 000000cccbcac900 $ which shows that for GP-relative operations the correct trapping address calculated from $gp has been obtained from the CP0 BadVAddr register and so has data from the source operand, however masking and extension has not been applied for halfword operations. With the change applied and interAptive MR2 hardware the program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000ffffcbca 00000000c7c6c5c4 000000000000cdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 0000000000cac900 $ as expected. References: [1] "MIPS32 Architecture for Programmers: MIPS16e2 Application-Specific Extension Technical Reference Manual", Imagination Technologies Ltd., Document Number: MD01172, Revision 01.00, April 26, 2016 [2] "MIPS32 interAptiv Multiprocessing System Software User's Manual", Imagination Technologies Ltd., Document Number: MD00904, Revision 02.01, June 15, 2016, Chapter 24 "MIPS16e Application-Specific Extension to the MIPS32 Instruction Set", pp. 871-883 Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Reviewed-by: James Hogan <james.hogan@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/16095/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-05-23 20:38:19 +08:00
unsigned int opcode;
int extended = 0;
bool user = user_mode(regs);
origpc = regs->cp0_epc;
orig31 = regs->regs[31];
pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
/*
* This load never faults.
*/
__get_user(mips16inst.full, pc16);
oldinst = mips16inst;
/* skip EXTEND instruction */
if (mips16inst.ri.opcode == MIPS16e_extend_op) {
MIPS: MIPS16e2: Subdecode extended LWSP/SWSP instructions Implement extended LWSP/SWSP instruction subdecoding for the purpose of unaligned GP-relative memory access emulation. With the introduction of the MIPS16e2 ASE[1] the previously must-be-zero 3-bit field at bits 7..5 of the extended encodings of the instructions selected with the LWSP and SWSP major opcodes has become a `sel' field, acting as an opcode extension for additional operations. In both cases the `sel' value of 0 has retained the original operation, that is: LW rx, offset(sp) and: SW rx, offset(sp) for LWSP and SWSP respectively. In hardware predating the MIPS16e2 ASE other values may or may not have been decoded, architecturally yielding unpredictable results, and in our unaligned memory access emulation we have treated the 3-bit field as a don't-care, that is effectively making all the possible encodings of the field alias to the architecturally defined encoding of 0. For the non-zero values of the `sel' field the MIPS16e2 ASE has in particular defined these GP-relative operations: LW rx, offset(gp) # sel = 1 LH rx, offset(gp) # sel = 2 LHU rx, offset(gp) # sel = 4 and SW rx, offset(gp) # sel = 1 SH rx, offset(gp) # sel = 2 for LWSP and SWSP respectively, which will trap with an Address Error exception if the effective address calculated is not naturally-aligned for the operation requested. These operations have been selected for unaligned access emulation, for consistency with the corresponding regular MIPS and microMIPS operations. For other non-zero values of the `sel' field the MIPS16e2 ASE has defined further operations, which however either never trap with an Address Error exception, such as LWL or GP-relative SB, or are not supposed to be emulated, such as LL or SC. These operations have been selected to exclude from unaligned access emulation, should an Address Error exception ever happen with them. Subdecode the `sel' field in unaligned access emulation then for the extended encodings of the instructions selected with the LWSP and SWSP major opcodes, whenever support for the MIPS16e2 ASE has been detected in hardware, and either emulate the operation requested or send SIGBUS to the originating process, according to the selection described above. For hardware implementing the MIPS16 ASE, however lacking MIPS16e2 ASE support retain the original interpretation of the `sel' field. The effects of this change are illustrated with the following user program: $ cat mips16e2-test.c #include <inttypes.h> #include <stdio.h> int main(void) { int64_t scratch[16] = { 0 }; int32_t *tmp0, *tmp1, *tmp2; int i; scratch[0] = 0xc8c7c6c5c4c3c2c1; scratch[1] = 0xd0cfcecdcccbcac9; asm volatile( "move %0, $sp\n\t" "move %1, $gp\n\t" "move $sp, %4\n\t" "addiu %2, %4, 8\n\t" "move $gp, %2\n\t" "lw %2, 2($sp)\n\t" "sw %2, 16(%4)\n\t" "lw %2, 2($gp)\n\t" "sw %2, 24(%4)\n\t" "lw %2, 1($sp)\n\t" "sw %2, 32(%4)\n\t" "lh %2, 1($gp)\n\t" "sw %2, 40(%4)\n\t" "lw %2, 3($sp)\n\t" "sw %2, 48(%4)\n\t" "lhu %2, 3($gp)\n\t" "sw %2, 56(%4)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 66($sp)\n\t" "lw %2, 8(%4)\n\t" "sw %2, 82($gp)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 97($sp)\n\t" "lw %2, 8(%4)\n\t" "sh %2, 113($gp)\n\t" "move $gp, %1\n\t" "move $sp, %0" : "=&d" (tmp0), "=&d" (tmp1), "=&d" (tmp2), "=m" (scratch) : "d" (scratch)); for (i = 0; i < sizeof(scratch) / sizeof(*scratch); i += 2) printf("%016" PRIx64 "\t%016" PRIx64 "\n", scratch[i], scratch[i + 1]); return 0; } $ to be compiled with: $ gcc -mips16 -mips32r2 -Wa,-mmips16e2 -o mips16e2-test mips16e2-test.c $ With 74Kf hardware, which does not implement the MIPS16e2 ASE, this program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000c6c5c4c3 00000000c5c4c3c2 00000000c5c4c3c2 00000000c7c6c5c4 00000000c7c6c5c4 0000c4c3c2c10000 0000000000000000 0000cccbcac90000 0000000000000000 000000c4c3c2c100 0000000000000000 000000cccbcac900 0000000000000000 $ regardless of whether the change has been applied or not. With the change not applied and interAptive MR2 hardware[2], which does implement the MIPS16e2 ASE, it produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000cdcccbca 00000000c7c6c5c4 00000000cfcecdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 000000cccbcac900 $ which shows that for GP-relative operations the correct trapping address calculated from $gp has been obtained from the CP0 BadVAddr register and so has data from the source operand, however masking and extension has not been applied for halfword operations. With the change applied and interAptive MR2 hardware the program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000ffffcbca 00000000c7c6c5c4 000000000000cdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 0000000000cac900 $ as expected. References: [1] "MIPS32 Architecture for Programmers: MIPS16e2 Application-Specific Extension Technical Reference Manual", Imagination Technologies Ltd., Document Number: MD01172, Revision 01.00, April 26, 2016 [2] "MIPS32 interAptiv Multiprocessing System Software User's Manual", Imagination Technologies Ltd., Document Number: MD00904, Revision 02.01, June 15, 2016, Chapter 24 "MIPS16e Application-Specific Extension to the MIPS32 Instruction Set", pp. 871-883 Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Reviewed-by: James Hogan <james.hogan@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/16095/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-05-23 20:38:19 +08:00
extended = 1;
pc16++;
__get_user(mips16inst.full, pc16);
} else if (delay_slot(regs)) {
/* skip jump instructions */
/* JAL/JALX are 32 bits but have OPCODE in first short int */
if (mips16inst.ri.opcode == MIPS16e_jal_op)
pc16++;
pc16++;
if (get_user(mips16inst.full, pc16))
goto sigbus;
}
MIPS: MIPS16e2: Subdecode extended LWSP/SWSP instructions Implement extended LWSP/SWSP instruction subdecoding for the purpose of unaligned GP-relative memory access emulation. With the introduction of the MIPS16e2 ASE[1] the previously must-be-zero 3-bit field at bits 7..5 of the extended encodings of the instructions selected with the LWSP and SWSP major opcodes has become a `sel' field, acting as an opcode extension for additional operations. In both cases the `sel' value of 0 has retained the original operation, that is: LW rx, offset(sp) and: SW rx, offset(sp) for LWSP and SWSP respectively. In hardware predating the MIPS16e2 ASE other values may or may not have been decoded, architecturally yielding unpredictable results, and in our unaligned memory access emulation we have treated the 3-bit field as a don't-care, that is effectively making all the possible encodings of the field alias to the architecturally defined encoding of 0. For the non-zero values of the `sel' field the MIPS16e2 ASE has in particular defined these GP-relative operations: LW rx, offset(gp) # sel = 1 LH rx, offset(gp) # sel = 2 LHU rx, offset(gp) # sel = 4 and SW rx, offset(gp) # sel = 1 SH rx, offset(gp) # sel = 2 for LWSP and SWSP respectively, which will trap with an Address Error exception if the effective address calculated is not naturally-aligned for the operation requested. These operations have been selected for unaligned access emulation, for consistency with the corresponding regular MIPS and microMIPS operations. For other non-zero values of the `sel' field the MIPS16e2 ASE has defined further operations, which however either never trap with an Address Error exception, such as LWL or GP-relative SB, or are not supposed to be emulated, such as LL or SC. These operations have been selected to exclude from unaligned access emulation, should an Address Error exception ever happen with them. Subdecode the `sel' field in unaligned access emulation then for the extended encodings of the instructions selected with the LWSP and SWSP major opcodes, whenever support for the MIPS16e2 ASE has been detected in hardware, and either emulate the operation requested or send SIGBUS to the originating process, according to the selection described above. For hardware implementing the MIPS16 ASE, however lacking MIPS16e2 ASE support retain the original interpretation of the `sel' field. The effects of this change are illustrated with the following user program: $ cat mips16e2-test.c #include <inttypes.h> #include <stdio.h> int main(void) { int64_t scratch[16] = { 0 }; int32_t *tmp0, *tmp1, *tmp2; int i; scratch[0] = 0xc8c7c6c5c4c3c2c1; scratch[1] = 0xd0cfcecdcccbcac9; asm volatile( "move %0, $sp\n\t" "move %1, $gp\n\t" "move $sp, %4\n\t" "addiu %2, %4, 8\n\t" "move $gp, %2\n\t" "lw %2, 2($sp)\n\t" "sw %2, 16(%4)\n\t" "lw %2, 2($gp)\n\t" "sw %2, 24(%4)\n\t" "lw %2, 1($sp)\n\t" "sw %2, 32(%4)\n\t" "lh %2, 1($gp)\n\t" "sw %2, 40(%4)\n\t" "lw %2, 3($sp)\n\t" "sw %2, 48(%4)\n\t" "lhu %2, 3($gp)\n\t" "sw %2, 56(%4)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 66($sp)\n\t" "lw %2, 8(%4)\n\t" "sw %2, 82($gp)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 97($sp)\n\t" "lw %2, 8(%4)\n\t" "sh %2, 113($gp)\n\t" "move $gp, %1\n\t" "move $sp, %0" : "=&d" (tmp0), "=&d" (tmp1), "=&d" (tmp2), "=m" (scratch) : "d" (scratch)); for (i = 0; i < sizeof(scratch) / sizeof(*scratch); i += 2) printf("%016" PRIx64 "\t%016" PRIx64 "\n", scratch[i], scratch[i + 1]); return 0; } $ to be compiled with: $ gcc -mips16 -mips32r2 -Wa,-mmips16e2 -o mips16e2-test mips16e2-test.c $ With 74Kf hardware, which does not implement the MIPS16e2 ASE, this program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000c6c5c4c3 00000000c5c4c3c2 00000000c5c4c3c2 00000000c7c6c5c4 00000000c7c6c5c4 0000c4c3c2c10000 0000000000000000 0000cccbcac90000 0000000000000000 000000c4c3c2c100 0000000000000000 000000cccbcac900 0000000000000000 $ regardless of whether the change has been applied or not. With the change not applied and interAptive MR2 hardware[2], which does implement the MIPS16e2 ASE, it produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000cdcccbca 00000000c7c6c5c4 00000000cfcecdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 000000cccbcac900 $ which shows that for GP-relative operations the correct trapping address calculated from $gp has been obtained from the CP0 BadVAddr register and so has data from the source operand, however masking and extension has not been applied for halfword operations. With the change applied and interAptive MR2 hardware the program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000ffffcbca 00000000c7c6c5c4 000000000000cdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 0000000000cac900 $ as expected. References: [1] "MIPS32 Architecture for Programmers: MIPS16e2 Application-Specific Extension Technical Reference Manual", Imagination Technologies Ltd., Document Number: MD01172, Revision 01.00, April 26, 2016 [2] "MIPS32 interAptiv Multiprocessing System Software User's Manual", Imagination Technologies Ltd., Document Number: MD00904, Revision 02.01, June 15, 2016, Chapter 24 "MIPS16e Application-Specific Extension to the MIPS32 Instruction Set", pp. 871-883 Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Reviewed-by: James Hogan <james.hogan@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/16095/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-05-23 20:38:19 +08:00
opcode = mips16inst.ri.opcode;
switch (opcode) {
case MIPS16e_i64_op: /* I64 or RI64 instruction */
switch (mips16inst.i64.func) { /* I64/RI64 func field check */
case MIPS16e_ldpc_func:
case MIPS16e_ldsp_func:
reg = reg16to32[mips16inst.ri64.ry];
goto loadDW;
case MIPS16e_sdsp_func:
reg = reg16to32[mips16inst.ri64.ry];
goto writeDW;
case MIPS16e_sdrasp_func:
reg = 29; /* GPRSP */
goto writeDW;
}
goto sigbus;
case MIPS16e_swsp_op:
MIPS: MIPS16e2: Subdecode extended LWSP/SWSP instructions Implement extended LWSP/SWSP instruction subdecoding for the purpose of unaligned GP-relative memory access emulation. With the introduction of the MIPS16e2 ASE[1] the previously must-be-zero 3-bit field at bits 7..5 of the extended encodings of the instructions selected with the LWSP and SWSP major opcodes has become a `sel' field, acting as an opcode extension for additional operations. In both cases the `sel' value of 0 has retained the original operation, that is: LW rx, offset(sp) and: SW rx, offset(sp) for LWSP and SWSP respectively. In hardware predating the MIPS16e2 ASE other values may or may not have been decoded, architecturally yielding unpredictable results, and in our unaligned memory access emulation we have treated the 3-bit field as a don't-care, that is effectively making all the possible encodings of the field alias to the architecturally defined encoding of 0. For the non-zero values of the `sel' field the MIPS16e2 ASE has in particular defined these GP-relative operations: LW rx, offset(gp) # sel = 1 LH rx, offset(gp) # sel = 2 LHU rx, offset(gp) # sel = 4 and SW rx, offset(gp) # sel = 1 SH rx, offset(gp) # sel = 2 for LWSP and SWSP respectively, which will trap with an Address Error exception if the effective address calculated is not naturally-aligned for the operation requested. These operations have been selected for unaligned access emulation, for consistency with the corresponding regular MIPS and microMIPS operations. For other non-zero values of the `sel' field the MIPS16e2 ASE has defined further operations, which however either never trap with an Address Error exception, such as LWL or GP-relative SB, or are not supposed to be emulated, such as LL or SC. These operations have been selected to exclude from unaligned access emulation, should an Address Error exception ever happen with them. Subdecode the `sel' field in unaligned access emulation then for the extended encodings of the instructions selected with the LWSP and SWSP major opcodes, whenever support for the MIPS16e2 ASE has been detected in hardware, and either emulate the operation requested or send SIGBUS to the originating process, according to the selection described above. For hardware implementing the MIPS16 ASE, however lacking MIPS16e2 ASE support retain the original interpretation of the `sel' field. The effects of this change are illustrated with the following user program: $ cat mips16e2-test.c #include <inttypes.h> #include <stdio.h> int main(void) { int64_t scratch[16] = { 0 }; int32_t *tmp0, *tmp1, *tmp2; int i; scratch[0] = 0xc8c7c6c5c4c3c2c1; scratch[1] = 0xd0cfcecdcccbcac9; asm volatile( "move %0, $sp\n\t" "move %1, $gp\n\t" "move $sp, %4\n\t" "addiu %2, %4, 8\n\t" "move $gp, %2\n\t" "lw %2, 2($sp)\n\t" "sw %2, 16(%4)\n\t" "lw %2, 2($gp)\n\t" "sw %2, 24(%4)\n\t" "lw %2, 1($sp)\n\t" "sw %2, 32(%4)\n\t" "lh %2, 1($gp)\n\t" "sw %2, 40(%4)\n\t" "lw %2, 3($sp)\n\t" "sw %2, 48(%4)\n\t" "lhu %2, 3($gp)\n\t" "sw %2, 56(%4)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 66($sp)\n\t" "lw %2, 8(%4)\n\t" "sw %2, 82($gp)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 97($sp)\n\t" "lw %2, 8(%4)\n\t" "sh %2, 113($gp)\n\t" "move $gp, %1\n\t" "move $sp, %0" : "=&d" (tmp0), "=&d" (tmp1), "=&d" (tmp2), "=m" (scratch) : "d" (scratch)); for (i = 0; i < sizeof(scratch) / sizeof(*scratch); i += 2) printf("%016" PRIx64 "\t%016" PRIx64 "\n", scratch[i], scratch[i + 1]); return 0; } $ to be compiled with: $ gcc -mips16 -mips32r2 -Wa,-mmips16e2 -o mips16e2-test mips16e2-test.c $ With 74Kf hardware, which does not implement the MIPS16e2 ASE, this program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000c6c5c4c3 00000000c5c4c3c2 00000000c5c4c3c2 00000000c7c6c5c4 00000000c7c6c5c4 0000c4c3c2c10000 0000000000000000 0000cccbcac90000 0000000000000000 000000c4c3c2c100 0000000000000000 000000cccbcac900 0000000000000000 $ regardless of whether the change has been applied or not. With the change not applied and interAptive MR2 hardware[2], which does implement the MIPS16e2 ASE, it produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000cdcccbca 00000000c7c6c5c4 00000000cfcecdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 000000cccbcac900 $ which shows that for GP-relative operations the correct trapping address calculated from $gp has been obtained from the CP0 BadVAddr register and so has data from the source operand, however masking and extension has not been applied for halfword operations. With the change applied and interAptive MR2 hardware the program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000ffffcbca 00000000c7c6c5c4 000000000000cdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 0000000000cac900 $ as expected. References: [1] "MIPS32 Architecture for Programmers: MIPS16e2 Application-Specific Extension Technical Reference Manual", Imagination Technologies Ltd., Document Number: MD01172, Revision 01.00, April 26, 2016 [2] "MIPS32 interAptiv Multiprocessing System Software User's Manual", Imagination Technologies Ltd., Document Number: MD00904, Revision 02.01, June 15, 2016, Chapter 24 "MIPS16e Application-Specific Extension to the MIPS32 Instruction Set", pp. 871-883 Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Reviewed-by: James Hogan <james.hogan@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/16095/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-05-23 20:38:19 +08:00
reg = reg16to32[mips16inst.ri.rx];
if (extended && cpu_has_mips16e2)
switch (mips16inst.ri.imm >> 5) {
case 0: /* SWSP */
case 1: /* SWGP */
break;
case 2: /* SHGP */
opcode = MIPS16e_sh_op;
break;
default:
goto sigbus;
}
break;
case MIPS16e_lwpc_op:
MIPS: MIPS16e2: Subdecode extended LWSP/SWSP instructions Implement extended LWSP/SWSP instruction subdecoding for the purpose of unaligned GP-relative memory access emulation. With the introduction of the MIPS16e2 ASE[1] the previously must-be-zero 3-bit field at bits 7..5 of the extended encodings of the instructions selected with the LWSP and SWSP major opcodes has become a `sel' field, acting as an opcode extension for additional operations. In both cases the `sel' value of 0 has retained the original operation, that is: LW rx, offset(sp) and: SW rx, offset(sp) for LWSP and SWSP respectively. In hardware predating the MIPS16e2 ASE other values may or may not have been decoded, architecturally yielding unpredictable results, and in our unaligned memory access emulation we have treated the 3-bit field as a don't-care, that is effectively making all the possible encodings of the field alias to the architecturally defined encoding of 0. For the non-zero values of the `sel' field the MIPS16e2 ASE has in particular defined these GP-relative operations: LW rx, offset(gp) # sel = 1 LH rx, offset(gp) # sel = 2 LHU rx, offset(gp) # sel = 4 and SW rx, offset(gp) # sel = 1 SH rx, offset(gp) # sel = 2 for LWSP and SWSP respectively, which will trap with an Address Error exception if the effective address calculated is not naturally-aligned for the operation requested. These operations have been selected for unaligned access emulation, for consistency with the corresponding regular MIPS and microMIPS operations. For other non-zero values of the `sel' field the MIPS16e2 ASE has defined further operations, which however either never trap with an Address Error exception, such as LWL or GP-relative SB, or are not supposed to be emulated, such as LL or SC. These operations have been selected to exclude from unaligned access emulation, should an Address Error exception ever happen with them. Subdecode the `sel' field in unaligned access emulation then for the extended encodings of the instructions selected with the LWSP and SWSP major opcodes, whenever support for the MIPS16e2 ASE has been detected in hardware, and either emulate the operation requested or send SIGBUS to the originating process, according to the selection described above. For hardware implementing the MIPS16 ASE, however lacking MIPS16e2 ASE support retain the original interpretation of the `sel' field. The effects of this change are illustrated with the following user program: $ cat mips16e2-test.c #include <inttypes.h> #include <stdio.h> int main(void) { int64_t scratch[16] = { 0 }; int32_t *tmp0, *tmp1, *tmp2; int i; scratch[0] = 0xc8c7c6c5c4c3c2c1; scratch[1] = 0xd0cfcecdcccbcac9; asm volatile( "move %0, $sp\n\t" "move %1, $gp\n\t" "move $sp, %4\n\t" "addiu %2, %4, 8\n\t" "move $gp, %2\n\t" "lw %2, 2($sp)\n\t" "sw %2, 16(%4)\n\t" "lw %2, 2($gp)\n\t" "sw %2, 24(%4)\n\t" "lw %2, 1($sp)\n\t" "sw %2, 32(%4)\n\t" "lh %2, 1($gp)\n\t" "sw %2, 40(%4)\n\t" "lw %2, 3($sp)\n\t" "sw %2, 48(%4)\n\t" "lhu %2, 3($gp)\n\t" "sw %2, 56(%4)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 66($sp)\n\t" "lw %2, 8(%4)\n\t" "sw %2, 82($gp)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 97($sp)\n\t" "lw %2, 8(%4)\n\t" "sh %2, 113($gp)\n\t" "move $gp, %1\n\t" "move $sp, %0" : "=&d" (tmp0), "=&d" (tmp1), "=&d" (tmp2), "=m" (scratch) : "d" (scratch)); for (i = 0; i < sizeof(scratch) / sizeof(*scratch); i += 2) printf("%016" PRIx64 "\t%016" PRIx64 "\n", scratch[i], scratch[i + 1]); return 0; } $ to be compiled with: $ gcc -mips16 -mips32r2 -Wa,-mmips16e2 -o mips16e2-test mips16e2-test.c $ With 74Kf hardware, which does not implement the MIPS16e2 ASE, this program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000c6c5c4c3 00000000c5c4c3c2 00000000c5c4c3c2 00000000c7c6c5c4 00000000c7c6c5c4 0000c4c3c2c10000 0000000000000000 0000cccbcac90000 0000000000000000 000000c4c3c2c100 0000000000000000 000000cccbcac900 0000000000000000 $ regardless of whether the change has been applied or not. With the change not applied and interAptive MR2 hardware[2], which does implement the MIPS16e2 ASE, it produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000cdcccbca 00000000c7c6c5c4 00000000cfcecdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 000000cccbcac900 $ which shows that for GP-relative operations the correct trapping address calculated from $gp has been obtained from the CP0 BadVAddr register and so has data from the source operand, however masking and extension has not been applied for halfword operations. With the change applied and interAptive MR2 hardware the program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000ffffcbca 00000000c7c6c5c4 000000000000cdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 0000000000cac900 $ as expected. References: [1] "MIPS32 Architecture for Programmers: MIPS16e2 Application-Specific Extension Technical Reference Manual", Imagination Technologies Ltd., Document Number: MD01172, Revision 01.00, April 26, 2016 [2] "MIPS32 interAptiv Multiprocessing System Software User's Manual", Imagination Technologies Ltd., Document Number: MD00904, Revision 02.01, June 15, 2016, Chapter 24 "MIPS16e Application-Specific Extension to the MIPS32 Instruction Set", pp. 871-883 Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Reviewed-by: James Hogan <james.hogan@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/16095/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-05-23 20:38:19 +08:00
reg = reg16to32[mips16inst.ri.rx];
break;
case MIPS16e_lwsp_op:
reg = reg16to32[mips16inst.ri.rx];
MIPS: MIPS16e2: Subdecode extended LWSP/SWSP instructions Implement extended LWSP/SWSP instruction subdecoding for the purpose of unaligned GP-relative memory access emulation. With the introduction of the MIPS16e2 ASE[1] the previously must-be-zero 3-bit field at bits 7..5 of the extended encodings of the instructions selected with the LWSP and SWSP major opcodes has become a `sel' field, acting as an opcode extension for additional operations. In both cases the `sel' value of 0 has retained the original operation, that is: LW rx, offset(sp) and: SW rx, offset(sp) for LWSP and SWSP respectively. In hardware predating the MIPS16e2 ASE other values may or may not have been decoded, architecturally yielding unpredictable results, and in our unaligned memory access emulation we have treated the 3-bit field as a don't-care, that is effectively making all the possible encodings of the field alias to the architecturally defined encoding of 0. For the non-zero values of the `sel' field the MIPS16e2 ASE has in particular defined these GP-relative operations: LW rx, offset(gp) # sel = 1 LH rx, offset(gp) # sel = 2 LHU rx, offset(gp) # sel = 4 and SW rx, offset(gp) # sel = 1 SH rx, offset(gp) # sel = 2 for LWSP and SWSP respectively, which will trap with an Address Error exception if the effective address calculated is not naturally-aligned for the operation requested. These operations have been selected for unaligned access emulation, for consistency with the corresponding regular MIPS and microMIPS operations. For other non-zero values of the `sel' field the MIPS16e2 ASE has defined further operations, which however either never trap with an Address Error exception, such as LWL or GP-relative SB, or are not supposed to be emulated, such as LL or SC. These operations have been selected to exclude from unaligned access emulation, should an Address Error exception ever happen with them. Subdecode the `sel' field in unaligned access emulation then for the extended encodings of the instructions selected with the LWSP and SWSP major opcodes, whenever support for the MIPS16e2 ASE has been detected in hardware, and either emulate the operation requested or send SIGBUS to the originating process, according to the selection described above. For hardware implementing the MIPS16 ASE, however lacking MIPS16e2 ASE support retain the original interpretation of the `sel' field. The effects of this change are illustrated with the following user program: $ cat mips16e2-test.c #include <inttypes.h> #include <stdio.h> int main(void) { int64_t scratch[16] = { 0 }; int32_t *tmp0, *tmp1, *tmp2; int i; scratch[0] = 0xc8c7c6c5c4c3c2c1; scratch[1] = 0xd0cfcecdcccbcac9; asm volatile( "move %0, $sp\n\t" "move %1, $gp\n\t" "move $sp, %4\n\t" "addiu %2, %4, 8\n\t" "move $gp, %2\n\t" "lw %2, 2($sp)\n\t" "sw %2, 16(%4)\n\t" "lw %2, 2($gp)\n\t" "sw %2, 24(%4)\n\t" "lw %2, 1($sp)\n\t" "sw %2, 32(%4)\n\t" "lh %2, 1($gp)\n\t" "sw %2, 40(%4)\n\t" "lw %2, 3($sp)\n\t" "sw %2, 48(%4)\n\t" "lhu %2, 3($gp)\n\t" "sw %2, 56(%4)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 66($sp)\n\t" "lw %2, 8(%4)\n\t" "sw %2, 82($gp)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 97($sp)\n\t" "lw %2, 8(%4)\n\t" "sh %2, 113($gp)\n\t" "move $gp, %1\n\t" "move $sp, %0" : "=&d" (tmp0), "=&d" (tmp1), "=&d" (tmp2), "=m" (scratch) : "d" (scratch)); for (i = 0; i < sizeof(scratch) / sizeof(*scratch); i += 2) printf("%016" PRIx64 "\t%016" PRIx64 "\n", scratch[i], scratch[i + 1]); return 0; } $ to be compiled with: $ gcc -mips16 -mips32r2 -Wa,-mmips16e2 -o mips16e2-test mips16e2-test.c $ With 74Kf hardware, which does not implement the MIPS16e2 ASE, this program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000c6c5c4c3 00000000c5c4c3c2 00000000c5c4c3c2 00000000c7c6c5c4 00000000c7c6c5c4 0000c4c3c2c10000 0000000000000000 0000cccbcac90000 0000000000000000 000000c4c3c2c100 0000000000000000 000000cccbcac900 0000000000000000 $ regardless of whether the change has been applied or not. With the change not applied and interAptive MR2 hardware[2], which does implement the MIPS16e2 ASE, it produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000cdcccbca 00000000c7c6c5c4 00000000cfcecdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 000000cccbcac900 $ which shows that for GP-relative operations the correct trapping address calculated from $gp has been obtained from the CP0 BadVAddr register and so has data from the source operand, however masking and extension has not been applied for halfword operations. With the change applied and interAptive MR2 hardware the program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000ffffcbca 00000000c7c6c5c4 000000000000cdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 0000000000cac900 $ as expected. References: [1] "MIPS32 Architecture for Programmers: MIPS16e2 Application-Specific Extension Technical Reference Manual", Imagination Technologies Ltd., Document Number: MD01172, Revision 01.00, April 26, 2016 [2] "MIPS32 interAptiv Multiprocessing System Software User's Manual", Imagination Technologies Ltd., Document Number: MD00904, Revision 02.01, June 15, 2016, Chapter 24 "MIPS16e Application-Specific Extension to the MIPS32 Instruction Set", pp. 871-883 Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Reviewed-by: James Hogan <james.hogan@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/16095/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-05-23 20:38:19 +08:00
if (extended && cpu_has_mips16e2)
switch (mips16inst.ri.imm >> 5) {
case 0: /* LWSP */
case 1: /* LWGP */
break;
case 2: /* LHGP */
opcode = MIPS16e_lh_op;
break;
case 4: /* LHUGP */
opcode = MIPS16e_lhu_op;
break;
default:
goto sigbus;
}
break;
case MIPS16e_i8_op:
if (mips16inst.i8.func != MIPS16e_swrasp_func)
goto sigbus;
reg = 29; /* GPRSP */
break;
default:
reg = reg16to32[mips16inst.rri.ry];
break;
}
MIPS: MIPS16e2: Subdecode extended LWSP/SWSP instructions Implement extended LWSP/SWSP instruction subdecoding for the purpose of unaligned GP-relative memory access emulation. With the introduction of the MIPS16e2 ASE[1] the previously must-be-zero 3-bit field at bits 7..5 of the extended encodings of the instructions selected with the LWSP and SWSP major opcodes has become a `sel' field, acting as an opcode extension for additional operations. In both cases the `sel' value of 0 has retained the original operation, that is: LW rx, offset(sp) and: SW rx, offset(sp) for LWSP and SWSP respectively. In hardware predating the MIPS16e2 ASE other values may or may not have been decoded, architecturally yielding unpredictable results, and in our unaligned memory access emulation we have treated the 3-bit field as a don't-care, that is effectively making all the possible encodings of the field alias to the architecturally defined encoding of 0. For the non-zero values of the `sel' field the MIPS16e2 ASE has in particular defined these GP-relative operations: LW rx, offset(gp) # sel = 1 LH rx, offset(gp) # sel = 2 LHU rx, offset(gp) # sel = 4 and SW rx, offset(gp) # sel = 1 SH rx, offset(gp) # sel = 2 for LWSP and SWSP respectively, which will trap with an Address Error exception if the effective address calculated is not naturally-aligned for the operation requested. These operations have been selected for unaligned access emulation, for consistency with the corresponding regular MIPS and microMIPS operations. For other non-zero values of the `sel' field the MIPS16e2 ASE has defined further operations, which however either never trap with an Address Error exception, such as LWL or GP-relative SB, or are not supposed to be emulated, such as LL or SC. These operations have been selected to exclude from unaligned access emulation, should an Address Error exception ever happen with them. Subdecode the `sel' field in unaligned access emulation then for the extended encodings of the instructions selected with the LWSP and SWSP major opcodes, whenever support for the MIPS16e2 ASE has been detected in hardware, and either emulate the operation requested or send SIGBUS to the originating process, according to the selection described above. For hardware implementing the MIPS16 ASE, however lacking MIPS16e2 ASE support retain the original interpretation of the `sel' field. The effects of this change are illustrated with the following user program: $ cat mips16e2-test.c #include <inttypes.h> #include <stdio.h> int main(void) { int64_t scratch[16] = { 0 }; int32_t *tmp0, *tmp1, *tmp2; int i; scratch[0] = 0xc8c7c6c5c4c3c2c1; scratch[1] = 0xd0cfcecdcccbcac9; asm volatile( "move %0, $sp\n\t" "move %1, $gp\n\t" "move $sp, %4\n\t" "addiu %2, %4, 8\n\t" "move $gp, %2\n\t" "lw %2, 2($sp)\n\t" "sw %2, 16(%4)\n\t" "lw %2, 2($gp)\n\t" "sw %2, 24(%4)\n\t" "lw %2, 1($sp)\n\t" "sw %2, 32(%4)\n\t" "lh %2, 1($gp)\n\t" "sw %2, 40(%4)\n\t" "lw %2, 3($sp)\n\t" "sw %2, 48(%4)\n\t" "lhu %2, 3($gp)\n\t" "sw %2, 56(%4)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 66($sp)\n\t" "lw %2, 8(%4)\n\t" "sw %2, 82($gp)\n\t" "lw %2, 0(%4)\n\t" "sw %2, 97($sp)\n\t" "lw %2, 8(%4)\n\t" "sh %2, 113($gp)\n\t" "move $gp, %1\n\t" "move $sp, %0" : "=&d" (tmp0), "=&d" (tmp1), "=&d" (tmp2), "=m" (scratch) : "d" (scratch)); for (i = 0; i < sizeof(scratch) / sizeof(*scratch); i += 2) printf("%016" PRIx64 "\t%016" PRIx64 "\n", scratch[i], scratch[i + 1]); return 0; } $ to be compiled with: $ gcc -mips16 -mips32r2 -Wa,-mmips16e2 -o mips16e2-test mips16e2-test.c $ With 74Kf hardware, which does not implement the MIPS16e2 ASE, this program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000c6c5c4c3 00000000c5c4c3c2 00000000c5c4c3c2 00000000c7c6c5c4 00000000c7c6c5c4 0000c4c3c2c10000 0000000000000000 0000cccbcac90000 0000000000000000 000000c4c3c2c100 0000000000000000 000000cccbcac900 0000000000000000 $ regardless of whether the change has been applied or not. With the change not applied and interAptive MR2 hardware[2], which does implement the MIPS16e2 ASE, it produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000cdcccbca 00000000c7c6c5c4 00000000cfcecdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 000000cccbcac900 $ which shows that for GP-relative operations the correct trapping address calculated from $gp has been obtained from the CP0 BadVAddr register and so has data from the source operand, however masking and extension has not been applied for halfword operations. With the change applied and interAptive MR2 hardware the program produces the following output: $ ./mips16e2-test c8c7c6c5c4c3c2c1 d0cfcecdcccbcac9 00000000c6c5c4c3 00000000cecdcccb 00000000c5c4c3c2 00000000ffffcbca 00000000c7c6c5c4 000000000000cdcc 0000c4c3c2c10000 0000000000000000 0000000000000000 0000cccbcac90000 000000c4c3c2c100 0000000000000000 0000000000000000 0000000000cac900 $ as expected. References: [1] "MIPS32 Architecture for Programmers: MIPS16e2 Application-Specific Extension Technical Reference Manual", Imagination Technologies Ltd., Document Number: MD01172, Revision 01.00, April 26, 2016 [2] "MIPS32 interAptiv Multiprocessing System Software User's Manual", Imagination Technologies Ltd., Document Number: MD00904, Revision 02.01, June 15, 2016, Chapter 24 "MIPS16e Application-Specific Extension to the MIPS32 Instruction Set", pp. 871-883 Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Reviewed-by: James Hogan <james.hogan@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/16095/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2017-05-23 20:38:19 +08:00
switch (opcode) {
case MIPS16e_lb_op:
case MIPS16e_lbu_op:
case MIPS16e_sb_op:
goto sigbus;
case MIPS16e_lh_op:
if (user && !access_ok(addr, 2))
goto sigbus;
LoadHW(addr, value, res);
if (res)
goto fault;
MIPS16e_compute_return_epc(regs, &oldinst);
regs->regs[reg] = value;
break;
case MIPS16e_lhu_op:
if (user && !access_ok(addr, 2))
goto sigbus;
LoadHWU(addr, value, res);
if (res)
goto fault;
MIPS16e_compute_return_epc(regs, &oldinst);
regs->regs[reg] = value;
break;
case MIPS16e_lw_op:
case MIPS16e_lwpc_op:
case MIPS16e_lwsp_op:
if (user && !access_ok(addr, 4))
goto sigbus;
LoadW(addr, value, res);
if (res)
goto fault;
MIPS16e_compute_return_epc(regs, &oldinst);
regs->regs[reg] = value;
break;
case MIPS16e_lwu_op:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 4))
goto sigbus;
LoadWU(addr, value, res);
if (res)
goto fault;
MIPS16e_compute_return_epc(regs, &oldinst);
regs->regs[reg] = value;
break;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
case MIPS16e_ld_op:
loadDW:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 8))
goto sigbus;
LoadDW(addr, value, res);
if (res)
goto fault;
MIPS16e_compute_return_epc(regs, &oldinst);
regs->regs[reg] = value;
break;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
case MIPS16e_sh_op:
if (user && !access_ok(addr, 2))
goto sigbus;
MIPS16e_compute_return_epc(regs, &oldinst);
value = regs->regs[reg];
StoreHW(addr, value, res);
if (res)
goto fault;
break;
case MIPS16e_sw_op:
case MIPS16e_swsp_op:
case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
if (user && !access_ok(addr, 4))
goto sigbus;
MIPS16e_compute_return_epc(regs, &oldinst);
value = regs->regs[reg];
StoreW(addr, value, res);
if (res)
goto fault;
break;
case MIPS16e_sd_op:
writeDW:
#ifdef CONFIG_64BIT
/*
* A 32-bit kernel might be running on a 64-bit processor. But
* if we're on a 32-bit processor and an i-cache incoherency
* or race makes us see a 64-bit instruction here the sdl/sdr
* would blow up, so for now we don't handle unaligned 64-bit
* instructions on 32-bit kernels.
*/
if (user && !access_ok(addr, 8))
goto sigbus;
MIPS16e_compute_return_epc(regs, &oldinst);
value = regs->regs[reg];
StoreDW(addr, value, res);
if (res)
goto fault;
break;
#endif /* CONFIG_64BIT */
/* Cannot handle 64-bit instructions in 32-bit kernel */
goto sigill;
default:
/*
* Pheeee... We encountered an yet unknown instruction or
* cache coherence problem. Die sucker, die ...
*/
goto sigill;
}
#ifdef CONFIG_DEBUG_FS
unaligned_instructions++;
#endif
return;
fault:
/* roll back jump/branch */
regs->cp0_epc = origpc;
regs->regs[31] = orig31;
/* Did we have an exception handler installed? */
if (fixup_exception(regs))
return;
die_if_kernel("Unhandled kernel unaligned access", regs);
force_sig(SIGSEGV);
return;
sigbus:
die_if_kernel("Unhandled kernel unaligned access", regs);
force_sig(SIGBUS);
return;
sigill:
die_if_kernel
("Unhandled kernel unaligned access or invalid instruction", regs);
force_sig(SIGILL);
}
asmlinkage void do_ade(struct pt_regs *regs)
{
enum ctx_state prev_state;
unsigned int *pc;
prev_state = exception_enter();
perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1, regs, regs->cp0_badvaddr);
/*
* Did we catch a fault trying to load an instruction?
*/
if (regs->cp0_badvaddr == regs->cp0_epc)
goto sigbus;
if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
goto sigbus;
if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
goto sigbus;
/*
* Do branch emulation only if we didn't forward the exception.
* This is all so but ugly ...
*/
/*
* Are we running in microMIPS mode?
*/
if (get_isa16_mode(regs->cp0_epc)) {
/*
* Did we catch a fault trying to load an instruction in
* 16-bit mode?
*/
if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
goto sigbus;
if (unaligned_action == UNALIGNED_ACTION_SHOW)
show_registers(regs);
if (cpu_has_mmips) {
emulate_load_store_microMIPS(regs,
(void __user *)regs->cp0_badvaddr);
return;
}
if (cpu_has_mips16) {
emulate_load_store_MIPS16e(regs,
(void __user *)regs->cp0_badvaddr);
return;
}
goto sigbus;
}
if (unaligned_action == UNALIGNED_ACTION_SHOW)
show_registers(regs);
pc = (unsigned int *)exception_epc(regs);
emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
return;
sigbus:
die_if_kernel("Kernel unaligned instruction access", regs);
force_sig(SIGBUS);
/*
* XXX On return from the signal handler we should advance the epc
*/
exception_exit(prev_state);
}
#ifdef CONFIG_DEBUG_FS
static int __init debugfs_unaligned(void)
{
debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
&unaligned_instructions);
debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
mips_debugfs_dir, &unaligned_action);
return 0;
}
arch_initcall(debugfs_unaligned);
#endif