2022-02-12 03:25:34 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
|
|
|
|
//! The `kernel` crate.
|
|
|
|
//!
|
|
|
|
//! This crate contains the kernel APIs that have been ported or wrapped for
|
|
|
|
//! usage by Rust code in the kernel and is shared by all of them.
|
|
|
|
//!
|
|
|
|
//! In other words, all the rest of the Rust code in the kernel (e.g. kernel
|
|
|
|
//! modules written in Rust) depends on [`core`], [`alloc`] and this crate.
|
|
|
|
//!
|
|
|
|
//! If you need a kernel C API that is not ported or wrapped yet here, then
|
|
|
|
//! do so first instead of bypassing this crate.
|
|
|
|
|
|
|
|
#![no_std]
|
2022-11-11 00:41:22 +08:00
|
|
|
#![feature(allocator_api)]
|
2022-12-28 14:03:42 +08:00
|
|
|
#![feature(coerce_unsized)]
|
2022-12-28 14:03:46 +08:00
|
|
|
#![feature(dispatch_from_dyn)]
|
2023-02-24 16:09:47 +08:00
|
|
|
#![feature(new_uninit)]
|
2022-12-28 14:03:41 +08:00
|
|
|
#![feature(receiver_trait)]
|
2022-12-28 14:03:42 +08:00
|
|
|
#![feature(unsize)]
|
2022-02-12 03:25:34 +08:00
|
|
|
|
|
|
|
// Ensure conditional compilation based on the kernel configuration works;
|
|
|
|
// otherwise we may silently break things like initcall handling.
|
|
|
|
#[cfg(not(CONFIG_RUST))]
|
|
|
|
compile_error!("Missing kernel configuration for conditional compilation");
|
|
|
|
|
rust: add pin-init API core
This API is used to facilitate safe pinned initialization of structs. It
replaces cumbersome `unsafe` manual initialization with elegant safe macro
invocations.
Due to the size of this change it has been split into six commits:
1. This commit introducing the basic public interface: traits and
functions to represent and create initializers.
2. Adds the `#[pin_data]`, `pin_init!`, `try_pin_init!`, `init!` and
`try_init!` macros along with their internal types.
3. Adds the `InPlaceInit` trait that allows using an initializer to create
an object inside of a `Box<T>` and other smart pointers.
4. Adds the `PinnedDrop` trait and adds macro support for it in
the `#[pin_data]` macro.
5. Adds the `stack_pin_init!` macro allowing to pin-initialize a struct on
the stack.
6. Adds the `Zeroable` trait and `init::zeroed` function to initialize
types that have `0x00` in all bytes as a valid bit pattern.
--
In this section the problem that the new pin-init API solves is outlined.
This message describes the entirety of the API, not just the parts
introduced in this commit. For a more granular explanation and additional
information on pinning and this issue, view [1].
Pinning is Rust's way of enforcing the address stability of a value. When a
value gets pinned it will be impossible for safe code to move it to another
location. This is done by wrapping pointers to said object with `Pin<P>`.
This wrapper prevents safe code from creating mutable references to the
object, preventing mutable access, which is needed to move the value.
`Pin<P>` provides `unsafe` functions to circumvent this and allow
modifications regardless. It is then the programmer's responsibility to
uphold the pinning guarantee.
Many kernel data structures require a stable address, because there are
foreign pointers to them which would get invalidated by moving the
structure. Since these data structures are usually embedded in structs to
use them, this pinning property propagates to the container struct.
Resulting in most structs in both Rust and C code needing to be pinned.
So if we want to have a `mutex` field in a Rust struct, this struct also
needs to be pinned, because a `mutex` contains a `list_head`. Additionally
initializing a `list_head` requires already having the final memory
location available, because it is initialized by pointing it to itself. But
this presents another challenge in Rust: values have to be initialized at
all times. There is the `MaybeUninit<T>` wrapper type, which allows
handling uninitialized memory, but this requires using the `unsafe` raw
pointers and a casting the type to the initialized variant.
This problem gets exacerbated when considering encapsulation and the normal
safety requirements of Rust code. The fields of the Rust `Mutex<T>` should
not be accessible to normal driver code. After all if anyone can modify
the fields, there is no way to ensure the invariants of the `Mutex<T>` are
upheld. But if the fields are inaccessible, then initialization of a
`Mutex<T>` needs to be somehow achieved via a function or a macro. Because
the `Mutex<T>` must be pinned in memory, the function cannot return it by
value. It also cannot allocate a `Box` to put the `Mutex<T>` into, because
that is an unnecessary allocation and indirection which would hurt
performance.
The solution in the rust tree (e.g. this commit: [2]) that is replaced by
this API is to split this function into two parts:
1. A `new` function that returns a partially initialized `Mutex<T>`,
2. An `init` function that requires the `Mutex<T>` to be pinned and that
fully initializes the `Mutex<T>`.
Both of these functions have to be marked `unsafe`, since a call to `new`
needs to be accompanied with a call to `init`, otherwise using the
`Mutex<T>` could result in UB. And because calling `init` twice also is not
safe. While `Mutex<T>` initialization cannot fail, other structs might
also have to allocate memory, which would result in conditional successful
initialization requiring even more manual accommodation work.
Combine this with the problem of pin-projections -- the way of accessing
fields of a pinned struct -- which also have an `unsafe` API, pinned
initialization is riddled with `unsafe` resulting in very poor ergonomics.
Not only that, but also having to call two functions possibly multiple
lines apart makes it very easy to forget it outright or during refactoring.
Here is an example of the current way of initializing a struct with two
synchronization primitives (see [3] for the full example):
struct SharedState {
state_changed: CondVar,
inner: Mutex<SharedStateInner>,
}
impl SharedState {
fn try_new() -> Result<Arc<Self>> {
let mut state = Pin::from(UniqueArc::try_new(Self {
// SAFETY: `condvar_init!` is called below.
state_changed: unsafe { CondVar::new() },
// SAFETY: `mutex_init!` is called below.
inner: unsafe {
Mutex::new(SharedStateInner { token_count: 0 })
},
})?);
// SAFETY: `state_changed` is pinned when `state` is.
let pinned = unsafe {
state.as_mut().map_unchecked_mut(|s| &mut s.state_changed)
};
kernel::condvar_init!(pinned, "SharedState::state_changed");
// SAFETY: `inner` is pinned when `state` is.
let pinned = unsafe {
state.as_mut().map_unchecked_mut(|s| &mut s.inner)
};
kernel::mutex_init!(pinned, "SharedState::inner");
Ok(state.into())
}
}
The pin-init API of this patch solves this issue by providing a
comprehensive solution comprised of macros and traits. Here is the example
from above using the pin-init API:
#[pin_data]
struct SharedState {
#[pin]
state_changed: CondVar,
#[pin]
inner: Mutex<SharedStateInner>,
}
impl SharedState {
fn new() -> impl PinInit<Self> {
pin_init!(Self {
state_changed <- new_condvar!("SharedState::state_changed"),
inner <- new_mutex!(
SharedStateInner { token_count: 0 },
"SharedState::inner",
),
})
}
}
Notably the way the macro is used here requires no `unsafe` and thus comes
with the usual Rust promise of safe code not introducing any memory
violations. Additionally it is now up to the caller of `new()` to decide
the memory location of the `SharedState`. They can choose at the moment
`Arc<T>`, `Box<T>` or the stack.
--
The API has the following architecture:
1. Initializer traits `PinInit<T, E>` and `Init<T, E>` that act like
closures.
2. Macros to create these initializer traits safely.
3. Functions to allow manually writing initializers.
The initializers (an `impl PinInit<T, E>`) receive a raw pointer pointing
to uninitialized memory and their job is to fully initialize a `T` at that
location. If initialization fails, they return an error (`E`) by value.
This way of initializing cannot be safely exposed to the user, since it
relies upon these properties outside of the control of the trait:
- the memory location (slot) needs to be valid memory,
- if initialization fails, the slot should not be read from,
- the value in the slot should be pinned, so it cannot move and the memory
cannot be deallocated until the value is dropped.
This is why using an initializer is facilitated by another trait that
ensures these requirements.
These initializers can be created manually by just supplying a closure that
fulfills the same safety requirements as `PinInit<T, E>`. But this is an
`unsafe` operation. To allow safe initializer creation, the `pin_init!` is
provided along with three other variants: `try_pin_init!`, `try_init!` and
`init!`. These take a modified struct initializer as a parameter and
generate a closure that initializes the fields in sequence.
The macros take great care in upholding the safety requirements:
- A shadowed struct type is used as the return type of the closure instead
of `()`. This is to prevent early returns, as these would prevent full
initialization.
- To ensure every field is only initialized once, a normal struct
initializer is placed in unreachable code. The type checker will emit
errors if a field is missing or specified multiple times.
- When initializing a field fails, the whole initializer will fail and
automatically drop fields that have been initialized earlier.
- Only the correct initializer type is allowed for unpinned fields. You
cannot use a `impl PinInit<T, E>` to initialize a structurally not pinned
field.
To ensure the last point, an additional macro `#[pin_data]` is needed. This
macro annotates the struct itself and the user specifies structurally
pinned and not pinned fields.
Because dropping a pinned struct is also not allowed to break the pinning
invariants, another macro attribute `#[pinned_drop]` is needed. This
macro is introduced in a following commit.
These two macros also have mechanisms to ensure the overall safety of the
API. Additionally, they utilize a combined proc-macro, declarative macro
design: first a proc-macro enables the outer attribute syntax `#[...]` and
does some important pre-parsing. Notably this prepares the generics such
that the declarative macro can handle them using token trees. Then the
actual parsing of the structure and the emission of code is handled by a
declarative macro.
For pin-projections the crates `pin-project` [4] and `pin-project-lite` [5]
had been considered, but were ultimately rejected:
- `pin-project` depends on `syn` [6] which is a very big dependency, around
50k lines of code.
- `pin-project-lite` is a more reasonable 5k lines of code, but contains a
very complex declarative macro to parse generics. On top of that it
would require modification that would need to be maintained
independently.
Link: https://rust-for-linux.com/the-safe-pinned-initialization-problem [1]
Link: https://github.com/Rust-for-Linux/linux/tree/0a04dc4ddd671efb87eef54dde0fb38e9074f4be [2]
Link: https://github.com/Rust-for-Linux/linux/blob/f509ede33fc10a07eba3da14aa00302bd4b5dddd/samples/rust/rust_miscdev.rs [3]
Link: https://crates.io/crates/pin-project [4]
Link: https://crates.io/crates/pin-project-lite [5]
Link: https://crates.io/crates/syn [6]
Co-developed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com>
Link: https://lore.kernel.org/r/20230408122429.1103522-7-y86-dev@protonmail.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-08 20:25:45 +08:00
|
|
|
// Allow proc-macros to refer to `::kernel` inside the `kernel` crate (this crate).
|
|
|
|
extern crate self as kernel;
|
|
|
|
|
2022-02-12 03:25:34 +08:00
|
|
|
#[cfg(not(test))]
|
|
|
|
#[cfg(not(testlib))]
|
|
|
|
mod allocator;
|
2022-11-11 00:41:38 +08:00
|
|
|
mod build_assert;
|
2022-02-12 03:25:34 +08:00
|
|
|
pub mod error;
|
rust: add pin-init API core
This API is used to facilitate safe pinned initialization of structs. It
replaces cumbersome `unsafe` manual initialization with elegant safe macro
invocations.
Due to the size of this change it has been split into six commits:
1. This commit introducing the basic public interface: traits and
functions to represent and create initializers.
2. Adds the `#[pin_data]`, `pin_init!`, `try_pin_init!`, `init!` and
`try_init!` macros along with their internal types.
3. Adds the `InPlaceInit` trait that allows using an initializer to create
an object inside of a `Box<T>` and other smart pointers.
4. Adds the `PinnedDrop` trait and adds macro support for it in
the `#[pin_data]` macro.
5. Adds the `stack_pin_init!` macro allowing to pin-initialize a struct on
the stack.
6. Adds the `Zeroable` trait and `init::zeroed` function to initialize
types that have `0x00` in all bytes as a valid bit pattern.
--
In this section the problem that the new pin-init API solves is outlined.
This message describes the entirety of the API, not just the parts
introduced in this commit. For a more granular explanation and additional
information on pinning and this issue, view [1].
Pinning is Rust's way of enforcing the address stability of a value. When a
value gets pinned it will be impossible for safe code to move it to another
location. This is done by wrapping pointers to said object with `Pin<P>`.
This wrapper prevents safe code from creating mutable references to the
object, preventing mutable access, which is needed to move the value.
`Pin<P>` provides `unsafe` functions to circumvent this and allow
modifications regardless. It is then the programmer's responsibility to
uphold the pinning guarantee.
Many kernel data structures require a stable address, because there are
foreign pointers to them which would get invalidated by moving the
structure. Since these data structures are usually embedded in structs to
use them, this pinning property propagates to the container struct.
Resulting in most structs in both Rust and C code needing to be pinned.
So if we want to have a `mutex` field in a Rust struct, this struct also
needs to be pinned, because a `mutex` contains a `list_head`. Additionally
initializing a `list_head` requires already having the final memory
location available, because it is initialized by pointing it to itself. But
this presents another challenge in Rust: values have to be initialized at
all times. There is the `MaybeUninit<T>` wrapper type, which allows
handling uninitialized memory, but this requires using the `unsafe` raw
pointers and a casting the type to the initialized variant.
This problem gets exacerbated when considering encapsulation and the normal
safety requirements of Rust code. The fields of the Rust `Mutex<T>` should
not be accessible to normal driver code. After all if anyone can modify
the fields, there is no way to ensure the invariants of the `Mutex<T>` are
upheld. But if the fields are inaccessible, then initialization of a
`Mutex<T>` needs to be somehow achieved via a function or a macro. Because
the `Mutex<T>` must be pinned in memory, the function cannot return it by
value. It also cannot allocate a `Box` to put the `Mutex<T>` into, because
that is an unnecessary allocation and indirection which would hurt
performance.
The solution in the rust tree (e.g. this commit: [2]) that is replaced by
this API is to split this function into two parts:
1. A `new` function that returns a partially initialized `Mutex<T>`,
2. An `init` function that requires the `Mutex<T>` to be pinned and that
fully initializes the `Mutex<T>`.
Both of these functions have to be marked `unsafe`, since a call to `new`
needs to be accompanied with a call to `init`, otherwise using the
`Mutex<T>` could result in UB. And because calling `init` twice also is not
safe. While `Mutex<T>` initialization cannot fail, other structs might
also have to allocate memory, which would result in conditional successful
initialization requiring even more manual accommodation work.
Combine this with the problem of pin-projections -- the way of accessing
fields of a pinned struct -- which also have an `unsafe` API, pinned
initialization is riddled with `unsafe` resulting in very poor ergonomics.
Not only that, but also having to call two functions possibly multiple
lines apart makes it very easy to forget it outright or during refactoring.
Here is an example of the current way of initializing a struct with two
synchronization primitives (see [3] for the full example):
struct SharedState {
state_changed: CondVar,
inner: Mutex<SharedStateInner>,
}
impl SharedState {
fn try_new() -> Result<Arc<Self>> {
let mut state = Pin::from(UniqueArc::try_new(Self {
// SAFETY: `condvar_init!` is called below.
state_changed: unsafe { CondVar::new() },
// SAFETY: `mutex_init!` is called below.
inner: unsafe {
Mutex::new(SharedStateInner { token_count: 0 })
},
})?);
// SAFETY: `state_changed` is pinned when `state` is.
let pinned = unsafe {
state.as_mut().map_unchecked_mut(|s| &mut s.state_changed)
};
kernel::condvar_init!(pinned, "SharedState::state_changed");
// SAFETY: `inner` is pinned when `state` is.
let pinned = unsafe {
state.as_mut().map_unchecked_mut(|s| &mut s.inner)
};
kernel::mutex_init!(pinned, "SharedState::inner");
Ok(state.into())
}
}
The pin-init API of this patch solves this issue by providing a
comprehensive solution comprised of macros and traits. Here is the example
from above using the pin-init API:
#[pin_data]
struct SharedState {
#[pin]
state_changed: CondVar,
#[pin]
inner: Mutex<SharedStateInner>,
}
impl SharedState {
fn new() -> impl PinInit<Self> {
pin_init!(Self {
state_changed <- new_condvar!("SharedState::state_changed"),
inner <- new_mutex!(
SharedStateInner { token_count: 0 },
"SharedState::inner",
),
})
}
}
Notably the way the macro is used here requires no `unsafe` and thus comes
with the usual Rust promise of safe code not introducing any memory
violations. Additionally it is now up to the caller of `new()` to decide
the memory location of the `SharedState`. They can choose at the moment
`Arc<T>`, `Box<T>` or the stack.
--
The API has the following architecture:
1. Initializer traits `PinInit<T, E>` and `Init<T, E>` that act like
closures.
2. Macros to create these initializer traits safely.
3. Functions to allow manually writing initializers.
The initializers (an `impl PinInit<T, E>`) receive a raw pointer pointing
to uninitialized memory and their job is to fully initialize a `T` at that
location. If initialization fails, they return an error (`E`) by value.
This way of initializing cannot be safely exposed to the user, since it
relies upon these properties outside of the control of the trait:
- the memory location (slot) needs to be valid memory,
- if initialization fails, the slot should not be read from,
- the value in the slot should be pinned, so it cannot move and the memory
cannot be deallocated until the value is dropped.
This is why using an initializer is facilitated by another trait that
ensures these requirements.
These initializers can be created manually by just supplying a closure that
fulfills the same safety requirements as `PinInit<T, E>`. But this is an
`unsafe` operation. To allow safe initializer creation, the `pin_init!` is
provided along with three other variants: `try_pin_init!`, `try_init!` and
`init!`. These take a modified struct initializer as a parameter and
generate a closure that initializes the fields in sequence.
The macros take great care in upholding the safety requirements:
- A shadowed struct type is used as the return type of the closure instead
of `()`. This is to prevent early returns, as these would prevent full
initialization.
- To ensure every field is only initialized once, a normal struct
initializer is placed in unreachable code. The type checker will emit
errors if a field is missing or specified multiple times.
- When initializing a field fails, the whole initializer will fail and
automatically drop fields that have been initialized earlier.
- Only the correct initializer type is allowed for unpinned fields. You
cannot use a `impl PinInit<T, E>` to initialize a structurally not pinned
field.
To ensure the last point, an additional macro `#[pin_data]` is needed. This
macro annotates the struct itself and the user specifies structurally
pinned and not pinned fields.
Because dropping a pinned struct is also not allowed to break the pinning
invariants, another macro attribute `#[pinned_drop]` is needed. This
macro is introduced in a following commit.
These two macros also have mechanisms to ensure the overall safety of the
API. Additionally, they utilize a combined proc-macro, declarative macro
design: first a proc-macro enables the outer attribute syntax `#[...]` and
does some important pre-parsing. Notably this prepares the generics such
that the declarative macro can handle them using token trees. Then the
actual parsing of the structure and the emission of code is handled by a
declarative macro.
For pin-projections the crates `pin-project` [4] and `pin-project-lite` [5]
had been considered, but were ultimately rejected:
- `pin-project` depends on `syn` [6] which is a very big dependency, around
50k lines of code.
- `pin-project-lite` is a more reasonable 5k lines of code, but contains a
very complex declarative macro to parse generics. On top of that it
would require modification that would need to be maintained
independently.
Link: https://rust-for-linux.com/the-safe-pinned-initialization-problem [1]
Link: https://github.com/Rust-for-Linux/linux/tree/0a04dc4ddd671efb87eef54dde0fb38e9074f4be [2]
Link: https://github.com/Rust-for-Linux/linux/blob/f509ede33fc10a07eba3da14aa00302bd4b5dddd/samples/rust/rust_miscdev.rs [3]
Link: https://crates.io/crates/pin-project [4]
Link: https://crates.io/crates/pin-project-lite [5]
Link: https://crates.io/crates/syn [6]
Co-developed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com>
Link: https://lore.kernel.org/r/20230408122429.1103522-7-y86-dev@protonmail.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-08 20:25:45 +08:00
|
|
|
pub mod init;
|
2023-04-03 17:33:53 +08:00
|
|
|
pub mod ioctl;
|
rust: support running Rust documentation tests as KUnit ones
Rust has documentation tests: these are typically examples of
usage of any item (e.g. function, struct, module...).
They are very convenient because they are just written
alongside the documentation. For instance:
/// Sums two numbers.
///
/// ```
/// assert_eq!(mymod::f(10, 20), 30);
/// ```
pub fn f(a: i32, b: i32) -> i32 {
a + b
}
In userspace, the tests are collected and run via `rustdoc`.
Using the tool as-is would be useful already, since it allows
to compile-test most tests (thus enforcing they are kept
in sync with the code they document) and run those that do not
depend on in-kernel APIs.
However, by transforming the tests into a KUnit test suite,
they can also be run inside the kernel. Moreover, the tests
get to be compiled as other Rust kernel objects instead of
targeting userspace.
On top of that, the integration with KUnit means the Rust
support gets to reuse the existing testing facilities. For
instance, the kernel log would look like:
KTAP version 1
1..1
KTAP version 1
# Subtest: rust_doctests_kernel
1..59
# rust_doctest_kernel_build_assert_rs_0.location: rust/kernel/build_assert.rs:13
ok 1 rust_doctest_kernel_build_assert_rs_0
# rust_doctest_kernel_build_assert_rs_1.location: rust/kernel/build_assert.rs:56
ok 2 rust_doctest_kernel_build_assert_rs_1
# rust_doctest_kernel_init_rs_0.location: rust/kernel/init.rs:122
ok 3 rust_doctest_kernel_init_rs_0
...
# rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150
ok 59 rust_doctest_kernel_types_rs_2
# rust_doctests_kernel: pass:59 fail:0 skip:0 total:59
# Totals: pass:59 fail:0 skip:0 total:59
ok 1 rust_doctests_kernel
Therefore, add support for running Rust documentation tests
in KUnit. Some other notes about the current implementation
and support follow.
The transformation is performed by a couple scripts written
as Rust hostprogs.
Tests using the `?` operator are also supported as usual, e.g.:
/// ```
/// # use kernel::{spawn_work_item, workqueue};
/// spawn_work_item!(workqueue::system(), || pr_info!("x"))?;
/// # Ok::<(), Error>(())
/// ```
The tests are also compiled with Clippy under `CLIPPY=1`, just
like normal code, thus also benefitting from extra linting.
The names of the tests are currently automatically generated.
This allows to reduce the burden for documentation writers,
while keeping them fairly stable for bisection. This is an
improvement over the `rustdoc`-generated names, which include
the line number; but ideally we would like to get `rustdoc` to
provide the Rust item path and a number (for multiple examples
in a single documented Rust item).
In order for developers to easily see from which original line
a failed doctests came from, a KTAP diagnostic line is printed
to the log, containing the location (file and line) of the
original test (i.e. instead of the location in the generated
Rust file):
# rust_doctest_kernel_types_rs_2.location: rust/kernel/types.rs:150
This line follows the syntax for declaring test metadata in the
proposed KTAP v2 spec [1], which may be used for the proposed
KUnit test attributes API [2]. Thus hopefully this will make
migration easier later on (suggested by David [3]).
The original line in that test attribute is figured out by
providing an anchor (suggested by Boqun [4]). The original file
is found by walking the filesystem, checking directory prefixes
to reduce the amount of combinations to check, and it is only
done once per file. Ambiguities are detected and reported.
A notable difference from KUnit C tests is that the Rust tests
appear to assert using the usual `assert!` and `assert_eq!`
macros from the Rust standard library (`core`). We provide
a custom version that forwards the call to KUnit instead.
Importantly, these macros do not require passing context,
unlike the KUnit C ones (i.e. `struct kunit *`). This makes
them easier to use, and readers of the documentation do not need
to care about which testing framework is used. In addition, it
may allow us to test third-party code more easily in the future.
However, a current limitation is that KUnit does not support
assertions in other tasks. Thus we presently simply print an
error to the kernel log if an assertion actually failed. This
should be revisited to properly fail the test, perhaps saving
the context somewhere else, or letting KUnit handle it.
Link: https://lore.kernel.org/lkml/20230420205734.1288498-1-rmoar@google.com/ [1]
Link: https://lore.kernel.org/linux-kselftest/20230707210947.1208717-1-rmoar@google.com/ [2]
Link: https://lore.kernel.org/rust-for-linux/CABVgOSkOLO-8v6kdAGpmYnZUb+LKOX0CtYCo-Bge7r_2YTuXDQ@mail.gmail.com/ [3]
Link: https://lore.kernel.org/rust-for-linux/ZIps86MbJF%2FiGIzd@boqun-archlinux/ [4]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Reviewed-by: David Gow <davidgow@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2023-07-18 13:27:51 +08:00
|
|
|
#[cfg(CONFIG_KUNIT)]
|
|
|
|
pub mod kunit;
|
2022-02-12 03:25:34 +08:00
|
|
|
pub mod prelude;
|
|
|
|
pub mod print;
|
2022-11-11 00:41:36 +08:00
|
|
|
mod static_assert;
|
2022-11-11 00:41:35 +08:00
|
|
|
#[doc(hidden)]
|
|
|
|
pub mod std_vendor;
|
2022-02-12 03:25:34 +08:00
|
|
|
pub mod str;
|
2022-12-28 14:03:40 +08:00
|
|
|
pub mod sync;
|
2023-04-11 13:45:39 +08:00
|
|
|
pub mod task;
|
2022-11-11 00:41:39 +08:00
|
|
|
pub mod types;
|
2022-02-12 03:25:34 +08:00
|
|
|
|
|
|
|
#[doc(hidden)]
|
|
|
|
pub use bindings;
|
|
|
|
pub use macros;
|
2023-04-03 17:33:52 +08:00
|
|
|
pub use uapi;
|
2022-02-12 03:25:34 +08:00
|
|
|
|
2022-11-11 00:41:38 +08:00
|
|
|
#[doc(hidden)]
|
|
|
|
pub use build_error::build_error;
|
|
|
|
|
2022-02-12 03:25:34 +08:00
|
|
|
/// Prefix to appear before log messages printed from within the `kernel` crate.
|
|
|
|
const __LOG_PREFIX: &[u8] = b"rust_kernel\0";
|
|
|
|
|
|
|
|
/// The top level entrypoint to implementing a kernel module.
|
|
|
|
///
|
|
|
|
/// For any teardown or cleanup operations, your type may implement [`Drop`].
|
|
|
|
pub trait Module: Sized + Sync {
|
|
|
|
/// Called at module initialization time.
|
|
|
|
///
|
|
|
|
/// Use this method to perform whatever setup or registration your module
|
|
|
|
/// should do.
|
|
|
|
///
|
|
|
|
/// Equivalent to the `module_init` macro in the C API.
|
|
|
|
fn init(module: &'static ThisModule) -> error::Result<Self>;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Equivalent to `THIS_MODULE` in the C API.
|
|
|
|
///
|
|
|
|
/// C header: `include/linux/export.h`
|
|
|
|
pub struct ThisModule(*mut bindings::module);
|
|
|
|
|
|
|
|
// SAFETY: `THIS_MODULE` may be used from all threads within a module.
|
|
|
|
unsafe impl Sync for ThisModule {}
|
|
|
|
|
|
|
|
impl ThisModule {
|
|
|
|
/// Creates a [`ThisModule`] given the `THIS_MODULE` pointer.
|
|
|
|
///
|
|
|
|
/// # Safety
|
|
|
|
///
|
|
|
|
/// The pointer must be equal to the right `THIS_MODULE`.
|
|
|
|
pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule {
|
|
|
|
ThisModule(ptr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(not(any(testlib, test)))]
|
|
|
|
#[panic_handler]
|
|
|
|
fn panic(info: &core::panic::PanicInfo<'_>) -> ! {
|
|
|
|
pr_emerg!("{}\n", info);
|
|
|
|
// SAFETY: FFI call.
|
|
|
|
unsafe { bindings::BUG() };
|
|
|
|
}
|