linux/drivers/md/bcache/util.h

577 lines
15 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHE_UTIL_H
#define _BCACHE_UTIL_H
#include <linux/blkdev.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sched/clock.h>
#include <linux/llist.h>
#include <linux/ratelimit.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include "closure.h"
#define PAGE_SECTORS (PAGE_SIZE / 512)
struct closure;
#ifdef CONFIG_BCACHE_DEBUG
#define EBUG_ON(cond) BUG_ON(cond)
#define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
#define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
#else /* DEBUG */
#define EBUG_ON(cond) do { if (cond); } while (0)
#define atomic_dec_bug(v) atomic_dec(v)
#define atomic_inc_bug(v, i) atomic_inc(v)
#endif
#define DECLARE_HEAP(type, name) \
struct { \
size_t size, used; \
type *data; \
} name
#define init_heap(heap, _size, gfp) \
({ \
size_t _bytes; \
(heap)->used = 0; \
(heap)->size = (_size); \
_bytes = (heap)->size * sizeof(*(heap)->data); \
treewide: use kv[mz]alloc* rather than opencoded variants There are many code paths opencoding kvmalloc. Let's use the helper instead. The main difference to kvmalloc is that those users are usually not considering all the aspects of the memory allocator. E.g. allocation requests <= 32kB (with 4kB pages) are basically never failing and invoke OOM killer to satisfy the allocation. This sounds too disruptive for something that has a reasonable fallback - the vmalloc. On the other hand those requests might fallback to vmalloc even when the memory allocator would succeed after several more reclaim/compaction attempts previously. There is no guarantee something like that happens though. This patch converts many of those places to kv[mz]alloc* helpers because they are more conservative. Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390 Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim Acked-by: David Sterba <dsterba@suse.com> # btrfs Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4 Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5 Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Santosh Raspatur <santosh@chelsio.com> Cc: Hariprasad S <hariprasad@chelsio.com> Cc: Yishai Hadas <yishaih@mellanox.com> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: "Yan, Zheng" <zyan@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 06:57:27 +08:00
(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
(heap)->data; \
})
#define free_heap(heap) \
do { \
kvfree((heap)->data); \
(heap)->data = NULL; \
} while (0)
#define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
#define heap_sift(h, i, cmp) \
do { \
size_t _r, _j = i; \
\
for (; _j * 2 + 1 < (h)->used; _j = _r) { \
_r = _j * 2 + 1; \
if (_r + 1 < (h)->used && \
cmp((h)->data[_r], (h)->data[_r + 1])) \
_r++; \
\
if (cmp((h)->data[_r], (h)->data[_j])) \
break; \
heap_swap(h, _r, _j); \
} \
} while (0)
#define heap_sift_down(h, i, cmp) \
do { \
while (i) { \
size_t p = (i - 1) / 2; \
if (cmp((h)->data[i], (h)->data[p])) \
break; \
heap_swap(h, i, p); \
i = p; \
} \
} while (0)
#define heap_add(h, d, cmp) \
({ \
bool _r = !heap_full(h); \
if (_r) { \
size_t _i = (h)->used++; \
(h)->data[_i] = d; \
\
heap_sift_down(h, _i, cmp); \
heap_sift(h, _i, cmp); \
} \
_r; \
})
#define heap_pop(h, d, cmp) \
({ \
bool _r = (h)->used; \
if (_r) { \
(d) = (h)->data[0]; \
(h)->used--; \
heap_swap(h, 0, (h)->used); \
heap_sift(h, 0, cmp); \
} \
_r; \
})
#define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
#define heap_full(h) ((h)->used == (h)->size)
#define DECLARE_FIFO(type, name) \
struct { \
size_t front, back, size, mask; \
type *data; \
} name
#define fifo_for_each(c, fifo, iter) \
for (iter = (fifo)->front; \
c = (fifo)->data[iter], iter != (fifo)->back; \
iter = (iter + 1) & (fifo)->mask)
#define __init_fifo(fifo, gfp) \
({ \
size_t _allocated_size, _bytes; \
BUG_ON(!(fifo)->size); \
\
_allocated_size = roundup_pow_of_two((fifo)->size + 1); \
_bytes = _allocated_size * sizeof(*(fifo)->data); \
\
(fifo)->mask = _allocated_size - 1; \
(fifo)->front = (fifo)->back = 0; \
\
treewide: use kv[mz]alloc* rather than opencoded variants There are many code paths opencoding kvmalloc. Let's use the helper instead. The main difference to kvmalloc is that those users are usually not considering all the aspects of the memory allocator. E.g. allocation requests <= 32kB (with 4kB pages) are basically never failing and invoke OOM killer to satisfy the allocation. This sounds too disruptive for something that has a reasonable fallback - the vmalloc. On the other hand those requests might fallback to vmalloc even when the memory allocator would succeed after several more reclaim/compaction attempts previously. There is no guarantee something like that happens though. This patch converts many of those places to kv[mz]alloc* helpers because they are more conservative. Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390 Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim Acked-by: David Sterba <dsterba@suse.com> # btrfs Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4 Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5 Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Santosh Raspatur <santosh@chelsio.com> Cc: Hariprasad S <hariprasad@chelsio.com> Cc: Yishai Hadas <yishaih@mellanox.com> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: "Yan, Zheng" <zyan@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-09 06:57:27 +08:00
(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
(fifo)->data; \
})
#define init_fifo_exact(fifo, _size, gfp) \
({ \
(fifo)->size = (_size); \
__init_fifo(fifo, gfp); \
})
#define init_fifo(fifo, _size, gfp) \
({ \
(fifo)->size = (_size); \
if ((fifo)->size > 4) \
(fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
__init_fifo(fifo, gfp); \
})
#define free_fifo(fifo) \
do { \
kvfree((fifo)->data); \
(fifo)->data = NULL; \
} while (0)
#define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
#define fifo_empty(fifo) (!fifo_used(fifo))
#define fifo_full(fifo) (!fifo_free(fifo))
#define fifo_front(fifo) ((fifo)->data[(fifo)->front])
#define fifo_back(fifo) \
((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
#define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
#define fifo_push_back(fifo, i) \
({ \
bool _r = !fifo_full((fifo)); \
if (_r) { \
(fifo)->data[(fifo)->back++] = (i); \
(fifo)->back &= (fifo)->mask; \
} \
_r; \
})
#define fifo_pop_front(fifo, i) \
({ \
bool _r = !fifo_empty((fifo)); \
if (_r) { \
(i) = (fifo)->data[(fifo)->front++]; \
(fifo)->front &= (fifo)->mask; \
} \
_r; \
})
#define fifo_push_front(fifo, i) \
({ \
bool _r = !fifo_full((fifo)); \
if (_r) { \
--(fifo)->front; \
(fifo)->front &= (fifo)->mask; \
(fifo)->data[(fifo)->front] = (i); \
} \
_r; \
})
#define fifo_pop_back(fifo, i) \
({ \
bool _r = !fifo_empty((fifo)); \
if (_r) { \
--(fifo)->back; \
(fifo)->back &= (fifo)->mask; \
(i) = (fifo)->data[(fifo)->back] \
} \
_r; \
})
#define fifo_push(fifo, i) fifo_push_back(fifo, (i))
#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
#define fifo_swap(l, r) \
do { \
swap((l)->front, (r)->front); \
swap((l)->back, (r)->back); \
swap((l)->size, (r)->size); \
swap((l)->mask, (r)->mask); \
swap((l)->data, (r)->data); \
} while (0)
#define fifo_move(dest, src) \
do { \
typeof(*((dest)->data)) _t; \
while (!fifo_full(dest) && \
fifo_pop(src, _t)) \
fifo_push(dest, _t); \
} while (0)
/*
* Simple array based allocator - preallocates a number of elements and you can
* never allocate more than that, also has no locking.
*
* Handy because if you know you only need a fixed number of elements you don't
* have to worry about memory allocation failure, and sometimes a mempool isn't
* what you want.
*
* We treat the free elements as entries in a singly linked list, and the
* freelist as a stack - allocating and freeing push and pop off the freelist.
*/
#define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
struct { \
type *freelist; \
type data[size]; \
} name
#define array_alloc(array) \
({ \
typeof((array)->freelist) _ret = (array)->freelist; \
\
if (_ret) \
(array)->freelist = *((typeof((array)->freelist) *) _ret);\
\
_ret; \
})
#define array_free(array, ptr) \
do { \
typeof((array)->freelist) _ptr = ptr; \
\
*((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
(array)->freelist = _ptr; \
} while (0)
#define array_allocator_init(array) \
do { \
typeof((array)->freelist) _i; \
\
BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
(array)->freelist = NULL; \
\
for (_i = (array)->data; \
_i < (array)->data + ARRAY_SIZE((array)->data); \
_i++) \
array_free(array, _i); \
} while (0)
#define array_freelist_empty(array) ((array)->freelist == NULL)
#define ANYSINT_MAX(t) \
((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
int bch_strtoint_h(const char *, int *);
int bch_strtouint_h(const char *, unsigned int *);
int bch_strtoll_h(const char *, long long *);
int bch_strtoull_h(const char *, unsigned long long *);
static inline int bch_strtol_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
return bch_strtoint_h(cp, (int *) res);
#else
return bch_strtoll_h(cp, (long long *) res);
#endif
}
static inline int bch_strtoul_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
return bch_strtouint_h(cp, (unsigned int *) res);
#else
return bch_strtoull_h(cp, (unsigned long long *) res);
#endif
}
#define strtoi_h(cp, res) \
(__builtin_types_compatible_p(typeof(*res), int) \
? bch_strtoint_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), long) \
? bch_strtol_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), long long) \
? bch_strtoll_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), unsigned int) \
? bch_strtouint_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), unsigned long) \
? bch_strtoul_h(cp, (void *) res) \
: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
? bch_strtoull_h(cp, (void *) res) : -EINVAL)
#define strtoul_safe(cp, var) \
({ \
unsigned long _v; \
int _r = kstrtoul(cp, 10, &_v); \
if (!_r) \
var = _v; \
_r; \
})
#define strtoul_safe_clamp(cp, var, min, max) \
({ \
unsigned long _v; \
int _r = kstrtoul(cp, 10, &_v); \
if (!_r) \
var = clamp_t(typeof(var), _v, min, max); \
_r; \
})
#define snprint(buf, size, var) \
snprintf(buf, size, \
__builtin_types_compatible_p(typeof(var), int) \
? "%i\n" : \
__builtin_types_compatible_p(typeof(var), unsigned) \
? "%u\n" : \
__builtin_types_compatible_p(typeof(var), long) \
? "%li\n" : \
__builtin_types_compatible_p(typeof(var), unsigned long)\
? "%lu\n" : \
__builtin_types_compatible_p(typeof(var), int64_t) \
? "%lli\n" : \
__builtin_types_compatible_p(typeof(var), uint64_t) \
? "%llu\n" : \
__builtin_types_compatible_p(typeof(var), const char *) \
? "%s\n" : "%i\n", var)
ssize_t bch_hprint(char *buf, int64_t v);
bool bch_is_zero(const char *p, size_t n);
int bch_parse_uuid(const char *s, char *uuid);
ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
size_t selected);
ssize_t bch_read_string_list(const char *buf, const char * const list[]);
struct time_stats {
spinlock_t lock;
/*
* all fields are in nanoseconds, averages are ewmas stored left shifted
* by 8
*/
uint64_t max_duration;
uint64_t average_duration;
uint64_t average_frequency;
uint64_t last;
};
void bch_time_stats_update(struct time_stats *stats, uint64_t time);
static inline unsigned local_clock_us(void)
{
return local_clock() >> 10;
}
#define NSEC_PER_ns 1L
#define NSEC_PER_us NSEC_PER_USEC
#define NSEC_PER_ms NSEC_PER_MSEC
#define NSEC_PER_sec NSEC_PER_SEC
#define __print_time_stat(stats, name, stat, units) \
sysfs_print(name ## _ ## stat ## _ ## units, \
div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
#define sysfs_print_time_stats(stats, name, \
frequency_units, \
duration_units) \
do { \
__print_time_stat(stats, name, \
average_frequency, frequency_units); \
__print_time_stat(stats, name, \
average_duration, duration_units); \
sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
\
sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
? div_s64(local_clock() - (stats)->last, \
NSEC_PER_ ## frequency_units) \
: -1LL); \
} while (0)
#define sysfs_time_stats_attribute(name, \
frequency_units, \
duration_units) \
read_attribute(name ## _average_frequency_ ## frequency_units); \
read_attribute(name ## _average_duration_ ## duration_units); \
read_attribute(name ## _max_duration_ ## duration_units); \
read_attribute(name ## _last_ ## frequency_units)
#define sysfs_time_stats_attribute_list(name, \
frequency_units, \
duration_units) \
&sysfs_ ## name ## _average_frequency_ ## frequency_units, \
&sysfs_ ## name ## _average_duration_ ## duration_units, \
&sysfs_ ## name ## _max_duration_ ## duration_units, \
&sysfs_ ## name ## _last_ ## frequency_units,
#define ewma_add(ewma, val, weight, factor) \
({ \
(ewma) *= (weight) - 1; \
(ewma) += (val) << factor; \
(ewma) /= (weight); \
(ewma) >> factor; \
})
struct bch_ratelimit {
/* Next time we want to do some work, in nanoseconds */
uint64_t next;
/*
* Rate at which we want to do work, in units per second
* The units here correspond to the units passed to bch_next_delay()
*/
uint32_t rate;
};
static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
{
d->next = local_clock();
}
uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
#define __DIV_SAFE(n, d, zero) \
({ \
typeof(n) _n = (n); \
typeof(d) _d = (d); \
_d ? _n / _d : zero; \
})
#define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
#define container_of_or_null(ptr, type, member) \
({ \
typeof(ptr) _ptr = ptr; \
_ptr ? container_of(_ptr, type, member) : NULL; \
})
#define RB_INSERT(root, new, member, cmp) \
({ \
__label__ dup; \
struct rb_node **n = &(root)->rb_node, *parent = NULL; \
typeof(new) this; \
int res, ret = -1; \
\
while (*n) { \
parent = *n; \
this = container_of(*n, typeof(*(new)), member); \
res = cmp(new, this); \
if (!res) \
goto dup; \
n = res < 0 \
? &(*n)->rb_left \
: &(*n)->rb_right; \
} \
\
rb_link_node(&(new)->member, parent, n); \
rb_insert_color(&(new)->member, root); \
ret = 0; \
dup: \
ret; \
})
#define RB_SEARCH(root, search, member, cmp) \
({ \
struct rb_node *n = (root)->rb_node; \
typeof(&(search)) this, ret = NULL; \
int res; \
\
while (n) { \
this = container_of(n, typeof(search), member); \
res = cmp(&(search), this); \
if (!res) { \
ret = this; \
break; \
} \
n = res < 0 \
? n->rb_left \
: n->rb_right; \
} \
ret; \
})
#define RB_GREATER(root, search, member, cmp) \
({ \
struct rb_node *n = (root)->rb_node; \
typeof(&(search)) this, ret = NULL; \
int res; \
\
while (n) { \
this = container_of(n, typeof(search), member); \
res = cmp(&(search), this); \
if (res < 0) { \
ret = this; \
n = n->rb_left; \
} else \
n = n->rb_right; \
} \
ret; \
})
#define RB_FIRST(root, type, member) \
container_of_or_null(rb_first(root), type, member)
#define RB_LAST(root, type, member) \
container_of_or_null(rb_last(root), type, member)
#define RB_NEXT(ptr, member) \
container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
#define RB_PREV(ptr, member) \
container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
/* Does linear interpolation between powers of two */
static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
{
unsigned fract = x & ~(~0 << fract_bits);
x >>= fract_bits;
x = 1 << x;
x += (x * fract) >> fract_bits;
return x;
}
void bch_bio_map(struct bio *bio, void *base);
static inline sector_t bdev_sectors(struct block_device *bdev)
{
return bdev->bd_inode->i_size >> 9;
}
#define closure_bio_submit(bio, cl) \
do { \
closure_get(cl); \
generic_make_request(bio); \
} while (0)
uint64_t bch_crc64_update(uint64_t, const void *, size_t);
uint64_t bch_crc64(const void *, size_t);
#endif /* _BCACHE_UTIL_H */