linux/arch/x86/kernel/cpu/common.c

1243 lines
29 KiB
C
Raw Normal View History

#include <linux/bootmem.h>
#include <linux/linkage.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kgdb.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <asm/stackprotector.h>
#include <asm/perf_counter.h>
#include <asm/mmu_context.h>
#include <asm/hypervisor.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/topology.h>
#include <asm/cpumask.h>
#include <asm/pgtable.h>
#include <asm/atomic.h>
#include <asm/proto.h>
#include <asm/setup.h>
#include <asm/apic.h>
#include <asm/desc.h>
#include <asm/i387.h>
#include <asm/mtrr.h>
#include <asm/numa.h>
#include <asm/asm.h>
#include <asm/cpu.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/pat.h>
#include <asm/smp.h>
#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/uv/uv.h>
#endif
#include "cpu.h"
/* all of these masks are initialized in setup_cpu_local_masks() */
cpumask_var_t cpu_initialized_mask;
cpumask_var_t cpu_callout_mask;
cpumask_var_t cpu_callin_mask;
/* representing cpus for which sibling maps can be computed */
cpumask_var_t cpu_sibling_setup_mask;
/* correctly size the local cpu masks */
void __init setup_cpu_local_masks(void)
{
alloc_bootmem_cpumask_var(&cpu_initialized_mask);
alloc_bootmem_cpumask_var(&cpu_callin_mask);
alloc_bootmem_cpumask_var(&cpu_callout_mask);
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
}
static const struct cpu_dev *this_cpu __cpuinitdata;
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
#ifdef CONFIG_X86_64
/*
* We need valid kernel segments for data and code in long mode too
* IRET will check the segment types kkeil 2000/10/28
* Also sysret mandates a special GDT layout
*
* TLS descriptors are currently at a different place compared to i386.
* Hopefully nobody expects them at a fixed place (Wine?)
*/
[GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
[GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
#else
[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
/*
* Segments used for calling PnP BIOS have byte granularity.
* They code segments and data segments have fixed 64k limits,
* the transfer segment sizes are set at run time.
*/
/* 32-bit code */
[GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
/* 16-bit code */
[GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
/* 16-bit data */
[GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
/*
* The APM segments have byte granularity and their bases
* are set at run time. All have 64k limits.
*/
/* 32-bit code */
[GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
/* 16-bit code */
[GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
/* data */
[GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
[GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
[GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
GDT_STACK_CANARY_INIT
#endif
} };
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
static int __init x86_xsave_setup(char *s)
{
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
return 1;
}
__setup("noxsave", x86_xsave_setup);
#ifdef CONFIG_X86_32
static int cachesize_override __cpuinitdata = -1;
static int disable_x86_serial_nr __cpuinitdata = 1;
static int __init cachesize_setup(char *str)
{
get_option(&str, &cachesize_override);
return 1;
}
__setup("cachesize=", cachesize_setup);
static int __init x86_fxsr_setup(char *s)
{
setup_clear_cpu_cap(X86_FEATURE_FXSR);
setup_clear_cpu_cap(X86_FEATURE_XMM);
return 1;
}
__setup("nofxsr", x86_fxsr_setup);
static int __init x86_sep_setup(char *s)
{
setup_clear_cpu_cap(X86_FEATURE_SEP);
return 1;
}
__setup("nosep", x86_sep_setup);
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(u32 flag)
{
u32 f1, f2;
/*
* Cyrix and IDT cpus allow disabling of CPUID
* so the code below may return different results
* when it is executed before and after enabling
* the CPUID. Add "volatile" to not allow gcc to
* optimize the subsequent calls to this function.
*/
asm volatile ("pushfl \n\t"
"pushfl \n\t"
"popl %0 \n\t"
"movl %0, %1 \n\t"
"xorl %2, %0 \n\t"
"pushl %0 \n\t"
"popfl \n\t"
"pushfl \n\t"
"popl %0 \n\t"
"popfl \n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
static int __cpuinit have_cpuid_p(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
unsigned long lo, hi;
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
return;
/* Disable processor serial number: */
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
lo |= 0x200000;
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
printk(KERN_NOTICE "CPU serial number disabled.\n");
clear_cpu_cap(c, X86_FEATURE_PN);
/* Disabling the serial number may affect the cpuid level */
c->cpuid_level = cpuid_eax(0);
}
static int __init x86_serial_nr_setup(char *s)
{
disable_x86_serial_nr = 0;
return 1;
}
__setup("serialnumber", x86_serial_nr_setup);
#else
static inline int flag_is_changeable_p(u32 flag)
{
return 1;
}
/* Probe for the CPUID instruction */
static inline int have_cpuid_p(void)
{
return 1;
}
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
}
#endif
/*
* Some CPU features depend on higher CPUID levels, which may not always
* be available due to CPUID level capping or broken virtualization
* software. Add those features to this table to auto-disable them.
*/
struct cpuid_dependent_feature {
u32 feature;
u32 level;
};
static const struct cpuid_dependent_feature __cpuinitconst
cpuid_dependent_features[] = {
{ X86_FEATURE_MWAIT, 0x00000005 },
{ X86_FEATURE_DCA, 0x00000009 },
{ X86_FEATURE_XSAVE, 0x0000000d },
{ 0, 0 }
};
static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
{
const struct cpuid_dependent_feature *df;
for (df = cpuid_dependent_features; df->feature; df++) {
if (!cpu_has(c, df->feature))
continue;
/*
* Note: cpuid_level is set to -1 if unavailable, but
* extended_extended_level is set to 0 if unavailable
* and the legitimate extended levels are all negative
* when signed; hence the weird messing around with
* signs here...
*/
if (!((s32)df->level < 0 ?
(u32)df->level > (u32)c->extended_cpuid_level :
(s32)df->level > (s32)c->cpuid_level))
continue;
clear_cpu_cap(c, df->feature);
if (!warn)
continue;
printk(KERN_WARNING
"CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
x86_cap_flags[df->feature], df->level);
}
}
/*
* Naming convention should be: <Name> [(<Codename>)]
* This table only is used unless init_<vendor>() below doesn't set it;
* in particular, if CPUID levels 0x80000002..4 are supported, this
* isn't used
*/
/* Look up CPU names by table lookup. */
static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
{
const struct cpu_model_info *info;
if (c->x86_model >= 16)
return NULL; /* Range check */
if (!this_cpu)
return NULL;
info = this_cpu->c_models;
while (info && info->family) {
if (info->family == c->x86)
return info->model_names[c->x86_model];
info++;
}
return NULL; /* Not found */
}
__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
void load_percpu_segment(int cpu)
{
#ifdef CONFIG_X86_32
loadsegment(fs, __KERNEL_PERCPU);
#else
loadsegment(gs, 0);
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
#endif
load_stack_canary_segment();
}
/*
* Current gdt points %fs at the "master" per-cpu area: after this,
* it's on the real one.
*/
void switch_to_new_gdt(int cpu)
{
struct desc_ptr gdt_descr;
gdt_descr.address = (long)get_cpu_gdt_table(cpu);
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
/* Reload the per-cpu base */
load_percpu_segment(cpu);
}
static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
static void __cpuinit default_init(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
display_cacheinfo(c);
#else
/* Not much we can do here... */
/* Check if at least it has cpuid */
if (c->cpuid_level == -1) {
/* No cpuid. It must be an ancient CPU */
if (c->x86 == 4)
strcpy(c->x86_model_id, "486");
else if (c->x86 == 3)
strcpy(c->x86_model_id, "386");
}
#endif
}
static const struct cpu_dev __cpuinitconst default_cpu = {
.c_init = default_init,
.c_vendor = "Unknown",
.c_x86_vendor = X86_VENDOR_UNKNOWN,
};
static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
char *p, *q;
if (c->extended_cpuid_level < 0x80000004)
return;
v = (unsigned int *)c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
/*
* Intel chips right-justify this string for some dumb reason;
* undo that brain damage:
*/
p = q = &c->x86_model_id[0];
while (*p == ' ')
p++;
if (p != q) {
while (*p)
*q++ = *p++;
while (q <= &c->x86_model_id[48])
*q++ = '\0'; /* Zero-pad the rest */
}
}
void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, ebx, ecx, edx, l2size;
n = c->extended_cpuid_level;
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
c->x86_cache_size = (ecx>>24) + (edx>>24);
#ifdef CONFIG_X86_64
/* On K8 L1 TLB is inclusive, so don't count it */
c->x86_tlbsize = 0;
#endif
}
if (n < 0x80000006) /* Some chips just has a large L1. */
return;
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
l2size = ecx >> 16;
#ifdef CONFIG_X86_64
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
#else
/* do processor-specific cache resizing */
if (this_cpu->c_size_cache)
l2size = this_cpu->c_size_cache(c, l2size);
/* Allow user to override all this if necessary. */
if (cachesize_override != -1)
l2size = cachesize_override;
if (l2size == 0)
return; /* Again, no L2 cache is possible */
#endif
c->x86_cache_size = l2size;
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
l2size, ecx & 0xFF);
}
void __cpuinit detect_ht(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_HT
u32 eax, ebx, ecx, edx;
int index_msb, core_bits;
if (!cpu_has(c, X86_FEATURE_HT))
return;
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
goto out;
if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
return;
cpuid(1, &eax, &ebx, &ecx, &edx);
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
goto out;
}
if (smp_num_siblings <= 1)
goto out;
if (smp_num_siblings > nr_cpu_ids) {
pr_warning("CPU: Unsupported number of siblings %d",
smp_num_siblings);
smp_num_siblings = 1;
return;
}
index_msb = get_count_order(smp_num_siblings);
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
index_msb = get_count_order(smp_num_siblings);
core_bits = get_count_order(c->x86_max_cores);
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
((1 << core_bits) - 1);
out:
if ((c->x86_max_cores * smp_num_siblings) > 1) {
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
c->phys_proc_id);
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
c->cpu_core_id);
}
#endif
}
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
static int printed;
int i;
for (i = 0; i < X86_VENDOR_NUM; i++) {
if (!cpu_devs[i])
break;
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
(cpu_devs[i]->c_ident[1] &&
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
this_cpu = cpu_devs[i];
c->x86_vendor = this_cpu->c_x86_vendor;
return;
}
}
if (!printed) {
printed++;
printk(KERN_ERR
"CPU: vendor_id '%s' unknown, using generic init.\n", v);
printk(KERN_ERR "CPU: Your system may be unstable.\n");
}
c->x86_vendor = X86_VENDOR_UNKNOWN;
this_cpu = &default_cpu;
}
void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
{
/* Get vendor name */
x86: fix sparse warnings in cpu/common.c The casts will always be needed, may as well make them the right signedness. The ebx variables can easily be unsigned, may as well. arch/x86/kernel/cpu/common.c:261:21: warning: incorrect type in argument 2 (different signedness) arch/x86/kernel/cpu/common.c:261:21: expected unsigned int *eax arch/x86/kernel/cpu/common.c:261:21: got int *<noident> arch/x86/kernel/cpu/common.c:262:9: warning: incorrect type in argument 3 (different signedness) arch/x86/kernel/cpu/common.c:262:9: expected unsigned int *ebx arch/x86/kernel/cpu/common.c:262:9: got int *<noident> arch/x86/kernel/cpu/common.c:263:9: warning: incorrect type in argument 4 (different signedness) arch/x86/kernel/cpu/common.c:263:9: expected unsigned int *ecx arch/x86/kernel/cpu/common.c:263:9: got int *<noident> arch/x86/kernel/cpu/common.c:264:9: warning: incorrect type in argument 5 (different signedness) arch/x86/kernel/cpu/common.c:264:9: expected unsigned int *edx arch/x86/kernel/cpu/common.c:264:9: got int *<noident> arch/x86/kernel/cpu/common.c:293:30: warning: incorrect type in argument 3 (different signedness) arch/x86/kernel/cpu/common.c:293:30: expected unsigned int *ebx arch/x86/kernel/cpu/common.c:293:30: got int *<noident> arch/x86/kernel/cpu/common.c:350:22: warning: incorrect type in argument 2 (different signedness) arch/x86/kernel/cpu/common.c:350:22: expected unsigned int *eax arch/x86/kernel/cpu/common.c:350:22: got int *<noident> arch/x86/kernel/cpu/common.c:351:10: warning: incorrect type in argument 3 (different signedness) arch/x86/kernel/cpu/common.c:351:10: expected unsigned int *ebx arch/x86/kernel/cpu/common.c:351:10: got int *<noident> arch/x86/kernel/cpu/common.c:352:10: warning: incorrect type in argument 4 (different signedness) arch/x86/kernel/cpu/common.c:352:10: expected unsigned int *ecx arch/x86/kernel/cpu/common.c:352:10: got int *<noident> arch/x86/kernel/cpu/common.c:353:10: warning: incorrect type in argument 5 (different signedness) arch/x86/kernel/cpu/common.c:353:10: expected unsigned int *edx arch/x86/kernel/cpu/common.c:353:10: got int *<noident> arch/x86/kernel/cpu/common.c:362:30: warning: incorrect type in argument 3 (different signedness) arch/x86/kernel/cpu/common.c:362:30: expected unsigned int *ebx arch/x86/kernel/cpu/common.c:362:30: got int *<noident> Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-02 00:49:43 +08:00
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
(unsigned int *)&c->x86_vendor_id[0],
(unsigned int *)&c->x86_vendor_id[8],
(unsigned int *)&c->x86_vendor_id[4]);
c->x86 = 4;
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
u32 junk, tfms, cap0, misc;
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
c->x86 = (tfms >> 8) & 0xf;
c->x86_model = (tfms >> 4) & 0xf;
c->x86_mask = tfms & 0xf;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xf) << 4;
if (cap0 & (1<<19)) {
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
c->x86_cache_alignment = c->x86_clflush_size;
}
}
}
static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
{
u32 tfms, xlvl;
u32 ebx;
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
u32 capability, excap;
cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
c->x86_capability[0] = capability;
c->x86_capability[4] = excap;
}
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
c->extended_cpuid_level = xlvl;
if ((xlvl & 0xffff0000) == 0x80000000) {
if (xlvl >= 0x80000001) {
c->x86_capability[1] = cpuid_edx(0x80000001);
c->x86_capability[6] = cpuid_ecx(0x80000001);
}
}
if (c->extended_cpuid_level >= 0x80000008) {
u32 eax = cpuid_eax(0x80000008);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
}
#ifdef CONFIG_X86_32
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
c->x86_phys_bits = 36;
#endif
if (c->extended_cpuid_level >= 0x80000007)
c->x86_power = cpuid_edx(0x80000007);
}
static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
int i;
/*
* First of all, decide if this is a 486 or higher
* It's a 486 if we can modify the AC flag
*/
if (flag_is_changeable_p(X86_EFLAGS_AC))
c->x86 = 4;
else
c->x86 = 3;
for (i = 0; i < X86_VENDOR_NUM; i++)
if (cpu_devs[i] && cpu_devs[i]->c_identify) {
c->x86_vendor_id[0] = 0;
cpu_devs[i]->c_identify(c);
if (c->x86_vendor_id[0]) {
get_cpu_vendor(c);
break;
}
}
#endif
}
/*
* Do minimum CPU detection early.
* Fields really needed: vendor, cpuid_level, family, model, mask,
* cache alignment.
* The others are not touched to avoid unwanted side effects.
*
* WARNING: this function is only called on the BP. Don't add code here
* that is supposed to run on all CPUs.
*/
static void __init early_identify_cpu(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
c->x86_clflush_size = 64;
c->x86_phys_bits = 36;
c->x86_virt_bits = 48;
#else
c->x86_clflush_size = 32;
c->x86_phys_bits = 32;
c->x86_virt_bits = 32;
#endif
c->x86_cache_alignment = c->x86_clflush_size;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
c->extended_cpuid_level = 0;
if (!have_cpuid_p())
identify_cpu_without_cpuid(c);
/* cyrix could have cpuid enabled via c_identify()*/
if (!have_cpuid_p())
return;
cpu_detect(c);
get_cpu_vendor(c);
get_cpu_cap(c);
if (this_cpu->c_early_init)
this_cpu->c_early_init(c);
#ifdef CONFIG_SMP
c->cpu_index = boot_cpu_id;
#endif
filter_cpuid_features(c, false);
}
void __init early_cpu_init(void)
{
const struct cpu_dev *const *cdev;
int count = 0;
printk(KERN_INFO "KERNEL supported cpus:\n");
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
const struct cpu_dev *cpudev = *cdev;
unsigned int j;
if (count >= X86_VENDOR_NUM)
break;
cpu_devs[count] = cpudev;
count++;
for (j = 0; j < 2; j++) {
if (!cpudev->c_ident[j])
continue;
printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
cpudev->c_ident[j]);
}
}
early_identify_cpu(&boot_cpu_data);
}
/*
* The NOPL instruction is supposed to exist on all CPUs with
* family >= 6; unfortunately, that's not true in practice because
* of early VIA chips and (more importantly) broken virtualizers that
* are not easy to detect. In the latter case it doesn't even *fail*
* reliably, so probing for it doesn't even work. Disable it completely
* unless we can find a reliable way to detect all the broken cases.
*/
static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
{
clear_cpu_cap(c, X86_FEATURE_NOPL);
}
static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
{
c->extended_cpuid_level = 0;
if (!have_cpuid_p())
identify_cpu_without_cpuid(c);
/* cyrix could have cpuid enabled via c_identify()*/
if (!have_cpuid_p())
return;
cpu_detect(c);
get_cpu_vendor(c);
get_cpu_cap(c);
if (c->cpuid_level >= 0x00000001) {
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
#ifdef CONFIG_X86_32
# ifdef CONFIG_X86_HT
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
# else
c->apicid = c->initial_apicid;
# endif
#endif
#ifdef CONFIG_X86_HT
c->phys_proc_id = c->initial_apicid;
#endif
}
get_model_name(c); /* Default name */
init_scattered_cpuid_features(c);
detect_nopl(c);
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
{
int i;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
c->x86_max_cores = 1;
c->x86_coreid_bits = 0;
#ifdef CONFIG_X86_64
c->x86_clflush_size = 64;
c->x86_phys_bits = 36;
c->x86_virt_bits = 48;
#else
c->cpuid_level = -1; /* CPUID not detected */
c->x86_clflush_size = 32;
c->x86_phys_bits = 32;
c->x86_virt_bits = 32;
#endif
c->x86_cache_alignment = c->x86_clflush_size;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
generic_identify(c);
if (this_cpu->c_identify)
this_cpu->c_identify(c);
#ifdef CONFIG_X86_64
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
#endif
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
if (this_cpu->c_init)
this_cpu->c_init(c);
/* Disable the PN if appropriate */
squash_the_stupid_serial_number(c);
/*
* The vendor-specific functions might have changed features.
* Now we do "generic changes."
*/
/* Filter out anything that depends on CPUID levels we don't have */
filter_cpuid_features(c, true);
/* If the model name is still unset, do table lookup. */
if (!c->x86_model_id[0]) {
const char *p;
p = table_lookup_model(c);
if (p)
strcpy(c->x86_model_id, p);
else
/* Last resort... */
sprintf(c->x86_model_id, "%02x/%02x",
c->x86, c->x86_model);
}
#ifdef CONFIG_X86_64
detect_ht(c);
#endif
x86: Hypervisor detection and get tsc_freq from hypervisor Impact: Changes timebase calibration on Vmware. v3->v2 : Abstract the hypervisor detection and feature (tsc_freq) request behind a hypervisor.c file v2->v1 : Add a x86_hyper_vendor field to the cpuinfo_x86 structure. This avoids multiple calls to the hypervisor detection function. This patch adds function to detect if we are running under VMware. The current way to check if we are on VMware is following, # check if "hypervisor present bit" is set, if so read the 0x40000000 cpuid leaf and check for "VMwareVMware" signature. # if the above fails, check the DMI vendors name for "VMware" string if we find one we query the VMware hypervisor port to check if we are under VMware. The DMI + "VMware hypervisor port check" is needed for older VMware products, which don't implement the hypervisor signature cpuid leaf. Also note that since we are checking for the DMI signature the hypervisor port should never be accessed on native hardware. This patch also adds a hypervisor_get_tsc_freq function, instead of calibrating the frequency which can be error prone in virtualized environment, we ask the hypervisor for it. We get the frequency from the hypervisor by accessing the hypervisor port if we are running on VMware. Other hypervisors too can add code to the generic routine to get frequency on their platform. Signed-off-by: Alok N Kataria <akataria@vmware.com> Signed-off-by: Dan Hecht <dhecht@vmware.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-28 01:41:46 +08:00
init_hypervisor(c);
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if (c != &boot_cpu_data) {
/* AND the already accumulated flags with these */
for (i = 0; i < NCAPINTS; i++)
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
}
/* Clear all flags overriden by options */
for (i = 0; i < NCAPINTS; i++)
x86: fix boot failure on 486 due to TSC breakage > Diffing dmesg between git7 and git8 doesn't sched any light since > git8 also removed the printouts of the x86 caps as they were being > initialised and updated. I'm currently adding those printouts back > in the hope of seeing where and when the caps get broken. That turned out to be very illuminating: --- dmesg-2.6.24-git7 2008-02-24 18:01:25.295851000 +0100 +++ dmesg-2.6.24-git8 2008-02-24 18:01:25.530358000 +0100 ... CPU: After generic identify, caps: 00000003 00000000 00000000 00000000 00000000 00000000 00000000 00000000 CPU: After all inits, caps: 00000003 00000000 00000000 00000000 00000000 00000000 00000000 00000000 +CPU: After applying cleared_cpu_caps, caps: 00000013 00000000 00000000 00000000 00000000 00000000 00000000 00000000 Notice how the TSC cap bit goes from Off to On. (The first two lines are printout loops from -git7 forward-ported to -git8, the third line is the same printout loop added just after the xor-with-cleared_cpu_caps[] loop.) Here's how the breakage occurs: 1. arch/x86/kernel/tsc_32.c:tsc_init() sees !cpu_has_tsc, so bails and calls setup_clear_cpu_cap(X86_FEATURE_TSC). 2. include/asm-x86/cpufeature.h:setup_clear_cpu_cap(bit) clears the bit in boot_cpu_data and sets it in cleared_cpu_caps 3. arch/x86/kernel/cpu/common.c:identify_cpu() XORs all caps in with cleared_cpu_caps HOWEVER, at this point c->x86_capability correctly has TSC Off, cleared_cpu_caps has TSC On, so the XOR incorrectly sets TSC to On in c->x86_capability, with disastrous results. The real bug is that clearing bits with XOR only works if the bits are known to be 1 prior to the XOR, and that's not true here. A simple fix is to convert the XOR to AND-NOT instead. The following patch does that, and allows my 486 to boot 2.6.25-rc kernels again. [ mingo@elte.hu: fixed a similar bug in setup_64.c as well. ] The breakage was introduced via commit 7d851c8d3db0. Signed-off-by: Mikael Pettersson <mikpe@it.uu.se> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-25 01:27:03 +08:00
c->x86_capability[i] &= ~cleared_cpu_caps[i];
#ifdef CONFIG_X86_MCE
/* Init Machine Check Exception if available. */
mcheck_init(c);
#endif
select_idle_routine(c);
#if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
numa_add_cpu(smp_processor_id());
#endif
}
#ifdef CONFIG_X86_64
static void vgetcpu_set_mode(void)
{
if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
vgetcpu_mode = VGETCPU_RDTSCP;
else
vgetcpu_mode = VGETCPU_LSL;
}
#endif
void __init identify_boot_cpu(void)
{
identify_cpu(&boot_cpu_data);
init_c1e_mask();
#ifdef CONFIG_X86_32
sysenter_setup();
enable_sep_cpu();
#else
vgetcpu_set_mode();
#endif
init_hw_perf_counters();
}
void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
{
BUG_ON(c == &boot_cpu_data);
identify_cpu(c);
#ifdef CONFIG_X86_32
enable_sep_cpu();
#endif
mtrr_ap_init();
}
struct msr_range {
unsigned min;
unsigned max;
};
static const struct msr_range msr_range_array[] __cpuinitconst = {
{ 0x00000000, 0x00000418},
{ 0xc0000000, 0xc000040b},
{ 0xc0010000, 0xc0010142},
{ 0xc0011000, 0xc001103b},
};
static void __cpuinit print_cpu_msr(void)
{
unsigned index_min, index_max;
unsigned index;
u64 val;
int i;
for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
index_min = msr_range_array[i].min;
index_max = msr_range_array[i].max;
for (index = index_min; index < index_max; index++) {
if (rdmsrl_amd_safe(index, &val))
continue;
printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
}
}
}
static int show_msr __cpuinitdata;
static __init int setup_show_msr(char *arg)
{
int num;
get_option(&arg, &num);
if (num > 0)
show_msr = num;
return 1;
}
__setup("show_msr=", setup_show_msr);
static __init int setup_noclflush(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
return 1;
}
__setup("noclflush", setup_noclflush);
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
{
const char *vendor = NULL;
if (c->x86_vendor < X86_VENDOR_NUM) {
vendor = this_cpu->c_vendor;
} else {
if (c->cpuid_level >= 0)
vendor = c->x86_vendor_id;
}
if (vendor && !strstr(c->x86_model_id, vendor))
printk(KERN_CONT "%s ", vendor);
if (c->x86_model_id[0])
printk(KERN_CONT "%s", c->x86_model_id);
else
printk(KERN_CONT "%d86", c->x86);
if (c->x86_mask || c->cpuid_level >= 0)
printk(KERN_CONT " stepping %02x\n", c->x86_mask);
else
printk(KERN_CONT "\n");
#ifdef CONFIG_SMP
if (c->cpu_index < show_msr)
print_cpu_msr();
#else
if (show_msr)
print_cpu_msr();
#endif
}
static __init int setup_disablecpuid(char *arg)
{
int bit;
if (get_option(&arg, &bit) && bit < NCAPINTS*32)
setup_clear_cpu_cap(bit);
else
return 0;
return 1;
}
__setup("clearcpuid=", setup_disablecpuid);
#ifdef CONFIG_X86_64
struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
DEFINE_PER_CPU_FIRST(union irq_stack_union,
irq_stack_union) __aligned(PAGE_SIZE);
DEFINE_PER_CPU(char *, irq_stack_ptr) =
init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
DEFINE_PER_CPU(unsigned long, kernel_stack) =
(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
EXPORT_PER_CPU_SYMBOL(kernel_stack);
DEFINE_PER_CPU(unsigned int, irq_count) = -1;
/*
* Special IST stacks which the CPU switches to when it calls
* an IST-marked descriptor entry. Up to 7 stacks (hardware
* limit), all of them are 4K, except the debug stack which
* is 8K.
*/
static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
[0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
[DEBUG_STACK - 1] = DEBUG_STKSZ
};
static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
__aligned(PAGE_SIZE);
/* May not be marked __init: used by software suspend */
void syscall_init(void)
{
/*
* LSTAR and STAR live in a bit strange symbiosis.
* They both write to the same internal register. STAR allows to
* set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
*/
wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
wrmsrl(MSR_LSTAR, system_call);
wrmsrl(MSR_CSTAR, ignore_sysret);
#ifdef CONFIG_IA32_EMULATION
syscall32_cpu_init();
#endif
/* Flags to clear on syscall */
wrmsrl(MSR_SYSCALL_MASK,
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
}
unsigned long kernel_eflags;
/*
* Copies of the original ist values from the tss are only accessed during
* debugging, no special alignment required.
*/
DEFINE_PER_CPU(struct orig_ist, orig_ist);
#else /* CONFIG_X86_64 */
#ifdef CONFIG_CC_STACKPROTECTOR
DEFINE_PER_CPU(unsigned long, stack_canary);
#endif
/* Make sure %fs and %gs are initialized properly in idle threads */
struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
{
memset(regs, 0, sizeof(struct pt_regs));
regs->fs = __KERNEL_PERCPU;
regs->gs = __KERNEL_STACK_CANARY;
return regs;
}
#endif /* CONFIG_X86_64 */
/*
* Clear all 6 debug registers:
*/
static void clear_all_debug_regs(void)
{
int i;
for (i = 0; i < 8; i++) {
/* Ignore db4, db5 */
if ((i == 4) || (i == 5))
continue;
set_debugreg(0, i);
}
}
/*
* cpu_init() initializes state that is per-CPU. Some data is already
* initialized (naturally) in the bootstrap process, such as the GDT
* and IDT. We reload them nevertheless, this function acts as a
* 'CPU state barrier', nothing should get across.
* A lot of state is already set up in PDA init for 64 bit
*/
#ifdef CONFIG_X86_64
void __cpuinit cpu_init(void)
{
struct orig_ist *orig_ist;
struct task_struct *me;
struct tss_struct *t;
unsigned long v;
int cpu;
int i;
cpu = stack_smp_processor_id();
t = &per_cpu(init_tss, cpu);
orig_ist = &per_cpu(orig_ist, cpu);
#ifdef CONFIG_NUMA
if (cpu != 0 && percpu_read(node_number) == 0 &&
cpu_to_node(cpu) != NUMA_NO_NODE)
percpu_write(node_number, cpu_to_node(cpu));
#endif
me = current;
if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
panic("CPU#%d already initialized!\n", cpu);
printk(KERN_INFO "Initializing CPU#%d\n", cpu);
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
/*
* Initialize the per-CPU GDT with the boot GDT,
* and set up the GDT descriptor:
*/
switch_to_new_gdt(cpu);
loadsegment(fs, 0);
load_idt((const struct desc_ptr *)&idt_descr);
memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
syscall_init();
wrmsrl(MSR_FS_BASE, 0);
wrmsrl(MSR_KERNEL_GS_BASE, 0);
barrier();
check_efer();
if (cpu != 0)
enable_x2apic();
/*
* set up and load the per-CPU TSS
*/
if (!orig_ist->ist[0]) {
char *estacks = per_cpu(exception_stacks, cpu);
for (v = 0; v < N_EXCEPTION_STACKS; v++) {
estacks += exception_stack_sizes[v];
orig_ist->ist[v] = t->x86_tss.ist[v] =
(unsigned long)estacks;
}
}
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
/*
* <= is required because the CPU will access up to
* 8 bits beyond the end of the IO permission bitmap.
*/
for (i = 0; i <= IO_BITMAP_LONGS; i++)
t->io_bitmap[i] = ~0UL;
atomic_inc(&init_mm.mm_count);
me->active_mm = &init_mm;
BUG_ON(me->mm);
enter_lazy_tlb(&init_mm, me);
load_sp0(t, &current->thread);
set_tss_desc(cpu, t);
load_TR_desc();
load_LDT(&init_mm.context);
#ifdef CONFIG_KGDB
/*
* If the kgdb is connected no debug regs should be altered. This
* is only applicable when KGDB and a KGDB I/O module are built
* into the kernel and you are using early debugging with
* kgdbwait. KGDB will control the kernel HW breakpoint registers.
*/
if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
arch_kgdb_ops.correct_hw_break();
else
#endif
clear_all_debug_regs();
fpu_init();
raw_local_save_flags(kernel_eflags);
if (is_uv_system())
uv_cpu_init();
}
#else
void __cpuinit cpu_init(void)
{
int cpu = smp_processor_id();
struct task_struct *curr = current;
struct tss_struct *t = &per_cpu(init_tss, cpu);
struct thread_struct *thread = &curr->thread;
if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
for (;;)
local_irq_enable();
}
printk(KERN_INFO "Initializing CPU#%d\n", cpu);
if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
load_idt(&idt_descr);
switch_to_new_gdt(cpu);
/*
* Set up and load the per-CPU TSS and LDT
*/
atomic_inc(&init_mm.mm_count);
curr->active_mm = &init_mm;
BUG_ON(curr->mm);
enter_lazy_tlb(&init_mm, curr);
load_sp0(t, thread);
set_tss_desc(cpu, t);
load_TR_desc();
load_LDT(&init_mm.context);
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
#ifdef CONFIG_DOUBLEFAULT
/* Set up doublefault TSS pointer in the GDT */
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
#endif
clear_all_debug_regs();
/*
* Force FPU initialization:
*/
if (cpu_has_xsave)
current_thread_info()->status = TS_XSAVE;
else
current_thread_info()->status = 0;
clear_used_math();
mxcsr_feature_mask_init();
/*
* Boot processor to setup the FP and extended state context info.
*/
if (smp_processor_id() == boot_cpu_id)
init_thread_xstate();
xsave_init();
}
#endif