linux/kernel/locking/percpu-rwsem.c

271 lines
7.1 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
percpu_rw_semaphore: kill ->writer_mutex, add ->write_ctr percpu_rw_semaphore->writer_mutex was only added to simplify the initial rewrite, the only thing it protects is clear_fast_ctr() which otherwise could be called by multiple writers. ->rw_sem is enough to serialize the writers. Kill this mutex and add "atomic_t write_ctr" instead. The writers increment/decrement this counter, the readers check it is zero instead of mutex_is_locked(). Move atomic_add(clear_fast_ctr(), slow_read_ctr) under down_write() to avoid the race with other writers. This is a bit sub-optimal, only the first writer needs this and we do not need to exclude the readers at this stage. But this is simple, we do not want another internal lock until we add more features. And this speeds up the write-contended case. Before this patch the racing writers sleep in synchronize_sched_expedited() sequentially, with this patch multiple synchronize_sched_expedited's can "overlap" with each other. Note: we can do more optimizations, this is only the first step. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Anton Arapov <anton@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 08:01:36 +08:00
#include <linux/atomic.h>
#include <linux/percpu.h>
#include <linux/wait.h>
#include <linux/lockdep.h>
#include <linux/percpu-rwsem.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/errno.h>
int __percpu_init_rwsem(struct percpu_rw_semaphore *sem,
const char *name, struct lock_class_key *key)
{
sem->read_count = alloc_percpu(int);
if (unlikely(!sem->read_count))
return -ENOMEM;
rcu_sync_init(&sem->rss);
rcuwait_init(&sem->writer);
init_waitqueue_head(&sem->waiters);
atomic_set(&sem->block, 0);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
debug_check_no_locks_freed((void *)sem, sizeof(*sem));
lockdep_init_map(&sem->dep_map, name, key, 0);
#endif
return 0;
}
EXPORT_SYMBOL_GPL(__percpu_init_rwsem);
void percpu_free_rwsem(struct percpu_rw_semaphore *sem)
{
/*
* XXX: temporary kludge. The error path in alloc_super()
* assumes that percpu_free_rwsem() is safe after kzalloc().
*/
if (!sem->read_count)
return;
rcu_sync_dtor(&sem->rss);
free_percpu(sem->read_count);
sem->read_count = NULL; /* catch use after free bugs */
}
EXPORT_SYMBOL_GPL(percpu_free_rwsem);
static bool __percpu_down_read_trylock(struct percpu_rw_semaphore *sem)
{
__this_cpu_inc(*sem->read_count);
/*
* Due to having preemption disabled the decrement happens on
* the same CPU as the increment, avoiding the
* increment-on-one-CPU-and-decrement-on-another problem.
*
* If the reader misses the writer's assignment of sem->block, then the
* writer is guaranteed to see the reader's increment.
*
* Conversely, any readers that increment their sem->read_count after
* the writer looks are guaranteed to see the sem->block value, which
* in turn means that they are guaranteed to immediately decrement
* their sem->read_count, so that it doesn't matter that the writer
* missed them.
*/
smp_mb(); /* A matches D */
/*
* If !sem->block the critical section starts here, matched by the
* release in percpu_up_write().
*/
if (likely(!atomic_read_acquire(&sem->block)))
return true;
__this_cpu_dec(*sem->read_count);
/* Prod writer to re-evaluate readers_active_check() */
rcuwait_wake_up(&sem->writer);
return false;
}
static inline bool __percpu_down_write_trylock(struct percpu_rw_semaphore *sem)
{
if (atomic_read(&sem->block))
return false;
return atomic_xchg(&sem->block, 1) == 0;
}
static bool __percpu_rwsem_trylock(struct percpu_rw_semaphore *sem, bool reader)
{
if (reader) {
bool ret;
preempt_disable();
ret = __percpu_down_read_trylock(sem);
preempt_enable();
return ret;
}
return __percpu_down_write_trylock(sem);
}
/*
* The return value of wait_queue_entry::func means:
*
* <0 - error, wakeup is terminated and the error is returned
* 0 - no wakeup, a next waiter is tried
* >0 - woken, if EXCLUSIVE, counted towards @nr_exclusive.
*
* We use EXCLUSIVE for both readers and writers to preserve FIFO order,
* and play games with the return value to allow waking multiple readers.
*
* Specifically, we wake readers until we've woken a single writer, or until a
* trylock fails.
*/
static int percpu_rwsem_wake_function(struct wait_queue_entry *wq_entry,
unsigned int mode, int wake_flags,
void *key)
{
bool reader = wq_entry->flags & WQ_FLAG_CUSTOM;
struct percpu_rw_semaphore *sem = key;
struct task_struct *p;
/* concurrent against percpu_down_write(), can get stolen */
if (!__percpu_rwsem_trylock(sem, reader))
return 1;
p = get_task_struct(wq_entry->private);
list_del_init(&wq_entry->entry);
smp_store_release(&wq_entry->private, NULL);
wake_up_process(p);
put_task_struct(p);
return !reader; /* wake (readers until) 1 writer */
}
static void percpu_rwsem_wait(struct percpu_rw_semaphore *sem, bool reader)
{
DEFINE_WAIT_FUNC(wq_entry, percpu_rwsem_wake_function);
bool wait;
spin_lock_irq(&sem->waiters.lock);
/*
* Serialize against the wakeup in percpu_up_write(), if we fail
* the trylock, the wakeup must see us on the list.
*/
wait = !__percpu_rwsem_trylock(sem, reader);
if (wait) {
wq_entry.flags |= WQ_FLAG_EXCLUSIVE | reader * WQ_FLAG_CUSTOM;
__add_wait_queue_entry_tail(&sem->waiters, &wq_entry);
}
spin_unlock_irq(&sem->waiters.lock);
while (wait) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (!smp_load_acquire(&wq_entry.private))
break;
schedule();
}
__set_current_state(TASK_RUNNING);
}
bool __percpu_down_read(struct percpu_rw_semaphore *sem, bool try)
{
if (__percpu_down_read_trylock(sem))
return true;
if (try)
return false;
preempt_enable();
percpu_rwsem_wait(sem, /* .reader = */ true);
preempt_disable();
return true;
}
EXPORT_SYMBOL_GPL(__percpu_down_read);
#define per_cpu_sum(var) \
({ \
typeof(var) __sum = 0; \
int cpu; \
compiletime_assert_atomic_type(__sum); \
for_each_possible_cpu(cpu) \
__sum += per_cpu(var, cpu); \
__sum; \
})
/*
* Return true if the modular sum of the sem->read_count per-CPU variable is
* zero. If this sum is zero, then it is stable due to the fact that if any
* newly arriving readers increment a given counter, they will immediately
* decrement that same counter.
*
* Assumes sem->block is set.
*/
static bool readers_active_check(struct percpu_rw_semaphore *sem)
{
if (per_cpu_sum(*sem->read_count) != 0)
return false;
/*
* If we observed the decrement; ensure we see the entire critical
* section.
*/
smp_mb(); /* C matches B */
return true;
}
void percpu_down_write(struct percpu_rw_semaphore *sem)
{
might_sleep();
rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
/* Notify readers to take the slow path. */
rcu_sync_enter(&sem->rss);
/*
* Try set sem->block; this provides writer-writer exclusion.
* Having sem->block set makes new readers block.
*/
if (!__percpu_down_write_trylock(sem))
percpu_rwsem_wait(sem, /* .reader = */ false);
/* smp_mb() implied by __percpu_down_write_trylock() on success -- D matches A */
percpu_rw_semaphore: kill ->writer_mutex, add ->write_ctr percpu_rw_semaphore->writer_mutex was only added to simplify the initial rewrite, the only thing it protects is clear_fast_ctr() which otherwise could be called by multiple writers. ->rw_sem is enough to serialize the writers. Kill this mutex and add "atomic_t write_ctr" instead. The writers increment/decrement this counter, the readers check it is zero instead of mutex_is_locked(). Move atomic_add(clear_fast_ctr(), slow_read_ctr) under down_write() to avoid the race with other writers. This is a bit sub-optimal, only the first writer needs this and we do not need to exclude the readers at this stage. But this is simple, we do not want another internal lock until we add more features. And this speeds up the write-contended case. Before this patch the racing writers sleep in synchronize_sched_expedited() sequentially, with this patch multiple synchronize_sched_expedited's can "overlap" with each other. Note: we can do more optimizations, this is only the first step. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Anton Arapov <anton@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 08:01:36 +08:00
/*
* If they don't see our store of sem->block, then we are guaranteed to
* see their sem->read_count increment, and therefore will wait for
* them.
*/
/* Wait for all active readers to complete. */
rcuwait_wait_event(&sem->writer, readers_active_check(sem), TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL_GPL(percpu_down_write);
void percpu_up_write(struct percpu_rw_semaphore *sem)
{
rwsem_release(&sem->dep_map, _RET_IP_);
/*
* Signal the writer is done, no fast path yet.
*
* One reason that we cannot just immediately flip to readers_fast is
* that new readers might fail to see the results of this writer's
* critical section.
*
* Therefore we force it through the slow path which guarantees an
* acquire and thereby guarantees the critical section's consistency.
*/
atomic_set_release(&sem->block, 0);
/*
* Prod any pending reader/writer to make progress.
*/
__wake_up(&sem->waiters, TASK_NORMAL, 1, sem);
/*
* Once this completes (at least one RCU-sched grace period hence) the
* reader fast path will be available again. Safe to use outside the
* exclusive write lock because its counting.
*/
rcu_sync_exit(&sem->rss);
}
EXPORT_SYMBOL_GPL(percpu_up_write);