linux/block/blk-flush.c

585 lines
17 KiB
C
Raw Normal View History

/*
* Functions to sequence PREFLUSH and FUA writes.
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
*
* Copyright (C) 2011 Max Planck Institute for Gravitational Physics
* Copyright (C) 2011 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2.
*
* REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
* properties and hardware capability.
*
* If a request doesn't have data, only REQ_PREFLUSH makes sense, which
* indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* that the device cache should be flushed before the data is executed, and
* REQ_FUA means that the data must be on non-volatile media on request
* completion.
*
* If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
* difference. The requests are either completed immediately if there's no data
* or executed as normal requests otherwise.
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
*
* If the device has writeback cache and supports FUA, REQ_PREFLUSH is
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
*
* If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
* is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
*
* The actual execution of flush is double buffered. Whenever a request
* needs to execute PRE or POSTFLUSH, it queues at
* fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
* REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* completes, all the requests which were pending are proceeded to the next
* step. This allows arbitrary merging of different types of PREFLUSH/FUA
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* requests.
*
* Currently, the following conditions are used to determine when to issue
* flush.
*
* C1. At any given time, only one flush shall be in progress. This makes
* double buffering sufficient.
*
* C2. Flush is deferred if any request is executing DATA of its sequence.
* This avoids issuing separate POSTFLUSHes for requests which shared
* PREFLUSH.
*
* C3. The second condition is ignored if there is a request which has
* waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
* starvation in the unlikely case where there are continuous stream of
* FUA (without PREFLUSH) requests.
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
*
* For devices which support FUA, it isn't clear whether C2 (and thus C3)
* is beneficial.
*
* Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* Once while executing DATA and again after the whole sequence is
* complete. The first completion updates the contained bio but doesn't
* finish it so that the bio submitter is notified only after the whole
* sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* req_bio_endio().
*
* The above peculiarity requires that each PREFLUSH/FUA request has only one
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* bio attached to it, which is guaranteed as they aren't allowed to be
* merged in the usual way.
*/
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
#include <linux/blk-mq.h>
#include "blk.h"
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
#include "blk-mq.h"
blk-mq: fix race between timeout and freeing request Inside timeout handler, blk_mq_tag_to_rq() is called to retrieve the request from one tag. This way is obviously wrong because the request can be freed any time and some fiedds of the request can't be trusted, then kernel oops might be triggered[1]. Currently wrt. blk_mq_tag_to_rq(), the only special case is that the flush request can share same tag with the request cloned from, and the two requests can't be active at the same time, so this patch fixes the above issue by updating tags->rqs[tag] with the active request(either flush rq or the request cloned from) of the tag. Also blk_mq_tag_to_rq() gets much simplified with this patch. Given blk_mq_tag_to_rq() is mainly for drivers and the caller must make sure the request can't be freed, so in bt_for_each() this helper is replaced with tags->rqs[tag]. [1] kernel oops log [ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M [ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M [ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 439.700653] Dumping ftrace buffer:^M [ 439.700653] (ftrace buffer empty)^M [ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M [ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M [ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M [ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M [ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M [ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M [ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M [ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M [ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M [ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M [ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M [ 439.730500] Stack:^M [ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M [ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M [ 439.755663] Call Trace:^M [ 439.755663] <IRQ> ^M [ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M [ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M [ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M [ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M [ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M [ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M [ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M [ 439.755663] <EOI> ^M [ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M [ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M [ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M [ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M [ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M [ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M [ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M [ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M [ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M [ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M [ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M [ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M [ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89 f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b 53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10 ^M [ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.790911] RSP <ffff880819203da0>^M [ 439.790911] CR2: 0000000000000158^M [ 439.790911] ---[ end trace d40af58949325661 ]---^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-09 15:41:51 +08:00
#include "blk-mq-tag.h"
#include "blk-mq-sched.h"
/* PREFLUSH/FUA sequences */
block: implement REQ_FLUSH/FUA based interface for FLUSH/FUA requests Now that the backend conversion is complete, export sequenced FLUSH/FUA capability through REQ_FLUSH/FUA flags. REQ_FLUSH means the device cache should be flushed before executing the request. REQ_FUA means that the data in the request should be on non-volatile media on completion. Block layer will choose the correct way of implementing the semantics and execute it. The request may be passed to the device directly if the device can handle it; otherwise, it will be sequenced using one or more proxy requests. Devices will never see REQ_FLUSH and/or FUA which it doesn't support. Also, unlike the original REQ_HARDBARRIER, REQ_FLUSH/FUA requests are never failed with -EOPNOTSUPP. If the underlying device doesn't support FLUSH/FUA, the block layer simply make those noop. IOW, it no longer distinguishes between writeback cache which doesn't support cache flush and writethrough/no cache. Devices which have WB cache w/o flush are very difficult to come by these days and there's nothing much we can do anyway, so it doesn't make sense to require everyone to implement -EOPNOTSUPP handling. This will simplify filesystems and block drivers as they can drop -EOPNOTSUPP retry logic for barriers. * QUEUE_ORDERED_* are removed and QUEUE_FSEQ_* are moved into blk-flush.c. * REQ_FLUSH w/o data can also be directly passed to drivers without sequencing but some drivers assume that zero length requests don't have rq->bio which isn't true for these requests requiring the use of proxy requests. * REQ_COMMON_MASK now includes REQ_FLUSH | REQ_FUA so that they are copied from bio to request. * WRITE_BARRIER is marked deprecated and WRITE_FLUSH, WRITE_FUA and WRITE_FLUSH_FUA are added. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-09-03 17:56:17 +08:00
enum {
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
REQ_FSEQ_DONE = (1 << 3),
REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
REQ_FSEQ_POSTFLUSH,
/*
* If flush has been pending longer than the following timeout,
* it's issued even if flush_data requests are still in flight.
*/
FLUSH_PENDING_TIMEOUT = 5 * HZ,
block: implement REQ_FLUSH/FUA based interface for FLUSH/FUA requests Now that the backend conversion is complete, export sequenced FLUSH/FUA capability through REQ_FLUSH/FUA flags. REQ_FLUSH means the device cache should be flushed before executing the request. REQ_FUA means that the data in the request should be on non-volatile media on completion. Block layer will choose the correct way of implementing the semantics and execute it. The request may be passed to the device directly if the device can handle it; otherwise, it will be sequenced using one or more proxy requests. Devices will never see REQ_FLUSH and/or FUA which it doesn't support. Also, unlike the original REQ_HARDBARRIER, REQ_FLUSH/FUA requests are never failed with -EOPNOTSUPP. If the underlying device doesn't support FLUSH/FUA, the block layer simply make those noop. IOW, it no longer distinguishes between writeback cache which doesn't support cache flush and writethrough/no cache. Devices which have WB cache w/o flush are very difficult to come by these days and there's nothing much we can do anyway, so it doesn't make sense to require everyone to implement -EOPNOTSUPP handling. This will simplify filesystems and block drivers as they can drop -EOPNOTSUPP retry logic for barriers. * QUEUE_ORDERED_* are removed and QUEUE_FSEQ_* are moved into blk-flush.c. * REQ_FLUSH w/o data can also be directly passed to drivers without sequencing but some drivers assume that zero length requests don't have rq->bio which isn't true for these requests requiring the use of proxy requests. * REQ_COMMON_MASK now includes REQ_FLUSH | REQ_FUA so that they are copied from bio to request. * WRITE_BARRIER is marked deprecated and WRITE_FLUSH, WRITE_FUA and WRITE_FLUSH_FUA are added. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-09-03 17:56:17 +08:00
};
static bool blk_kick_flush(struct request_queue *q,
struct blk_flush_queue *fq);
block: drop barrier ordering by queue draining Filesystems will take all the responsibilities for ordering requests around commit writes and will only indicate how the commit writes themselves should be handled by block layers. This patch drops barrier ordering by queue draining from block layer. Ordering by draining implementation was somewhat invasive to request handling. List of notable changes follow. * Each queue has 1 bit color which is flipped on each barrier issue. This is used to track whether a given request is issued before the current barrier or not. REQ_ORDERED_COLOR flag and coloring implementation in __elv_add_request() are removed. * Requests which shouldn't be processed yet for draining were stalled by returning -EAGAIN from blk_do_ordered() according to the test result between blk_ordered_req_seq() and blk_blk_ordered_cur_seq(). This logic is removed. * Draining completion logic in elv_completed_request() removed. * All barrier sequence requests were queued to request queue and then trckled to lower layer according to progress and thus maintaining request orders during requeue was necessary. This is replaced by queueing the next request in the barrier sequence only after the current one is complete from blk_ordered_complete_seq(), which removes the need for multiple proxy requests in struct request_queue and the request sorting logic in the ELEVATOR_INSERT_REQUEUE path of elv_insert(). * As barriers no longer have ordering constraints, there's no need to dump the whole elevator onto the dispatch queue on each barrier. Insert barriers at the front instead. * If other barrier requests come to the front of the dispatch queue while one is already in progress, they are stored in q->pending_barriers and restored to dispatch queue one-by-one after each barrier completion from blk_ordered_complete_seq(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-09-03 17:56:16 +08:00
static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
{
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
unsigned int policy = 0;
if (blk_rq_sectors(rq))
policy |= REQ_FSEQ_DATA;
if (fflags & (1UL << QUEUE_FLAG_WC)) {
if (rq->cmd_flags & REQ_PREFLUSH)
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
policy |= REQ_FSEQ_PREFLUSH;
if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
(rq->cmd_flags & REQ_FUA))
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
policy |= REQ_FSEQ_POSTFLUSH;
block: drop barrier ordering by queue draining Filesystems will take all the responsibilities for ordering requests around commit writes and will only indicate how the commit writes themselves should be handled by block layers. This patch drops barrier ordering by queue draining from block layer. Ordering by draining implementation was somewhat invasive to request handling. List of notable changes follow. * Each queue has 1 bit color which is flipped on each barrier issue. This is used to track whether a given request is issued before the current barrier or not. REQ_ORDERED_COLOR flag and coloring implementation in __elv_add_request() are removed. * Requests which shouldn't be processed yet for draining were stalled by returning -EAGAIN from blk_do_ordered() according to the test result between blk_ordered_req_seq() and blk_blk_ordered_cur_seq(). This logic is removed. * Draining completion logic in elv_completed_request() removed. * All barrier sequence requests were queued to request queue and then trckled to lower layer according to progress and thus maintaining request orders during requeue was necessary. This is replaced by queueing the next request in the barrier sequence only after the current one is complete from blk_ordered_complete_seq(), which removes the need for multiple proxy requests in struct request_queue and the request sorting logic in the ELEVATOR_INSERT_REQUEUE path of elv_insert(). * As barriers no longer have ordering constraints, there's no need to dump the whole elevator onto the dispatch queue on each barrier. Insert barriers at the front instead. * If other barrier requests come to the front of the dispatch queue while one is already in progress, they are stored in q->pending_barriers and restored to dispatch queue one-by-one after each barrier completion from blk_ordered_complete_seq(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-09-03 17:56:16 +08:00
}
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
return policy;
}
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
static unsigned int blk_flush_cur_seq(struct request *rq)
{
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
return 1 << ffz(rq->flush.seq);
}
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
static void blk_flush_restore_request(struct request *rq)
{
/*
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* After flush data completion, @rq->bio is %NULL but we need to
* complete the bio again. @rq->biotail is guaranteed to equal the
* original @rq->bio. Restore it.
*/
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
rq->bio = rq->biotail;
/* make @rq a normal request */
rq->rq_flags &= ~RQF_FLUSH_SEQ;
block: fix flush machinery for stacking drivers with differring flush flags Commit ae1b1539622fb46e51b4d13b3f9e5f4c713f86ae, block: reimplement FLUSH/FUA to support merge, introduced a performance regression when running any sort of fsyncing workload using dm-multipath and certain storage (in our case, an HP EVA). The test I ran was fs_mark, and it dropped from ~800 files/sec on ext4 to ~100 files/sec. It turns out that dm-multipath always advertised flush+fua support, and passed commands on down the stack, where those flags used to get stripped off. The above commit changed that behavior: static inline struct request *__elv_next_request(struct request_queue *q) { struct request *rq; while (1) { - while (!list_empty(&q->queue_head)) { + if (!list_empty(&q->queue_head)) { rq = list_entry_rq(q->queue_head.next); - if (!(rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) || - (rq->cmd_flags & REQ_FLUSH_SEQ)) - return rq; - rq = blk_do_flush(q, rq); - if (rq) - return rq; + return rq; } Note that previously, a command would come in here, have REQ_FLUSH|REQ_FUA set, and then get handed off to blk_do_flush: struct request *blk_do_flush(struct request_queue *q, struct request *rq) { unsigned int fflags = q->flush_flags; /* may change, cache it */ bool has_flush = fflags & REQ_FLUSH, has_fua = fflags & REQ_FUA; bool do_preflush = has_flush && (rq->cmd_flags & REQ_FLUSH); bool do_postflush = has_flush && !has_fua && (rq->cmd_flags & REQ_FUA); unsigned skip = 0; ... if (blk_rq_sectors(rq) && !do_preflush && !do_postflush) { rq->cmd_flags &= ~REQ_FLUSH; if (!has_fua) rq->cmd_flags &= ~REQ_FUA; return rq; } So, the flush machinery was bypassed in such cases (q->flush_flags == 0 && rq->cmd_flags & (REQ_FLUSH|REQ_FUA)). Now, however, we don't get into the flush machinery at all. Instead, __elv_next_request just hands a request with flush and fua bits set to the scsi_request_fn, even if the underlying request_queue does not support flush or fua. The agreed upon approach is to fix the flush machinery to allow stacking. While this isn't used in practice (since there is only one request-based dm target, and that target will now reflect the flush flags of the underlying device), it does future-proof the solution, and make it function as designed. In order to make this work, I had to add a field to the struct request, inside the flush structure (to store the original req->end_io). Shaohua had suggested overloading the union with rb_node and completion_data, but the completion data is used by device mapper and can also be used by other drivers. So, I didn't see a way around the additional field. I tested this patch on an HP EVA with both ext4 and xfs, and it recovers the lost performance. Comments and other testers, as always, are appreciated. Cheers, Jeff Signed-off-by: Jeff Moyer <jmoyer@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-08-16 03:37:25 +08:00
rq->end_io = rq->flush.saved_end_io;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
}
static bool blk_flush_queue_rq(struct request *rq, bool add_front)
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
{
if (rq->q->mq_ops) {
blk_mq_add_to_requeue_list(rq, add_front, true);
return false;
} else {
if (add_front)
list_add(&rq->queuelist, &rq->q->queue_head);
else
list_add_tail(&rq->queuelist, &rq->q->queue_head);
return true;
}
}
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/**
* blk_flush_complete_seq - complete flush sequence
* @rq: PREFLUSH/FUA request being sequenced
* @fq: flush queue
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
* @error: whether an error occurred
*
* @rq just completed @seq part of its flush sequence, record the
* completion and trigger the next step.
*
* CONTEXT:
* spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
*
* RETURNS:
* %true if requests were added to the dispatch queue, %false otherwise.
*/
static bool blk_flush_complete_seq(struct request *rq,
struct blk_flush_queue *fq,
unsigned int seq, blk_status_t error)
{
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
struct request_queue *q = rq->q;
struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
bool queued = false, kicked;
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
BUG_ON(rq->flush.seq & seq);
rq->flush.seq |= seq;
if (likely(!error))
seq = blk_flush_cur_seq(rq);
else
seq = REQ_FSEQ_DONE;
switch (seq) {
case REQ_FSEQ_PREFLUSH:
case REQ_FSEQ_POSTFLUSH:
/* queue for flush */
if (list_empty(pending))
fq->flush_pending_since = jiffies;
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
list_move_tail(&rq->flush.list, pending);
break;
case REQ_FSEQ_DATA:
list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
queued = blk_flush_queue_rq(rq, true);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
break;
case REQ_FSEQ_DONE:
/*
* @rq was previously adjusted by blk_flush_issue() for
* flush sequencing and may already have gone through the
* flush data request completion path. Restore @rq for
* normal completion and end it.
*/
BUG_ON(!list_empty(&rq->queuelist));
list_del_init(&rq->flush.list);
blk_flush_restore_request(rq);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
if (q->mq_ops)
blk_mq_end_request(rq, error);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
else
__blk_end_request_all(rq, error);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
break;
default:
BUG();
}
kicked = blk_kick_flush(q, fq);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
return kicked | queued;
}
static void flush_end_io(struct request *flush_rq, blk_status_t error)
{
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
struct request_queue *q = flush_rq->q;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
struct list_head *running;
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
bool queued = false;
struct request *rq, *n;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
unsigned long flags = 0;
struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
if (q->mq_ops) {
blk-mq: fix race between timeout and freeing request Inside timeout handler, blk_mq_tag_to_rq() is called to retrieve the request from one tag. This way is obviously wrong because the request can be freed any time and some fiedds of the request can't be trusted, then kernel oops might be triggered[1]. Currently wrt. blk_mq_tag_to_rq(), the only special case is that the flush request can share same tag with the request cloned from, and the two requests can't be active at the same time, so this patch fixes the above issue by updating tags->rqs[tag] with the active request(either flush rq or the request cloned from) of the tag. Also blk_mq_tag_to_rq() gets much simplified with this patch. Given blk_mq_tag_to_rq() is mainly for drivers and the caller must make sure the request can't be freed, so in bt_for_each() this helper is replaced with tags->rqs[tag]. [1] kernel oops log [ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M [ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M [ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 439.700653] Dumping ftrace buffer:^M [ 439.700653] (ftrace buffer empty)^M [ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M [ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M [ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M [ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M [ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M [ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M [ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M [ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M [ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M [ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M [ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M [ 439.730500] Stack:^M [ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M [ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M [ 439.755663] Call Trace:^M [ 439.755663] <IRQ> ^M [ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M [ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M [ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M [ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M [ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M [ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M [ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M [ 439.755663] <EOI> ^M [ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M [ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M [ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M [ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M [ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M [ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M [ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M [ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M [ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M [ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M [ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M [ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M [ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89 f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b 53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10 ^M [ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.790911] RSP <ffff880819203da0>^M [ 439.790911] CR2: 0000000000000158^M [ 439.790911] ---[ end trace d40af58949325661 ]---^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-09 15:41:51 +08:00
struct blk_mq_hw_ctx *hctx;
/* release the tag's ownership to the req cloned from */
spin_lock_irqsave(&fq->mq_flush_lock, flags);
hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
blk-mq: fix race between timeout and freeing request Inside timeout handler, blk_mq_tag_to_rq() is called to retrieve the request from one tag. This way is obviously wrong because the request can be freed any time and some fiedds of the request can't be trusted, then kernel oops might be triggered[1]. Currently wrt. blk_mq_tag_to_rq(), the only special case is that the flush request can share same tag with the request cloned from, and the two requests can't be active at the same time, so this patch fixes the above issue by updating tags->rqs[tag] with the active request(either flush rq or the request cloned from) of the tag. Also blk_mq_tag_to_rq() gets much simplified with this patch. Given blk_mq_tag_to_rq() is mainly for drivers and the caller must make sure the request can't be freed, so in bt_for_each() this helper is replaced with tags->rqs[tag]. [1] kernel oops log [ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M [ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M [ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 439.700653] Dumping ftrace buffer:^M [ 439.700653] (ftrace buffer empty)^M [ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M [ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M [ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M [ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M [ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M [ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M [ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M [ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M [ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M [ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M [ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M [ 439.730500] Stack:^M [ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M [ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M [ 439.755663] Call Trace:^M [ 439.755663] <IRQ> ^M [ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M [ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M [ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M [ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M [ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M [ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M [ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M [ 439.755663] <EOI> ^M [ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M [ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M [ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M [ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M [ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M [ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M [ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M [ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M [ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M [ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M [ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M [ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M [ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89 f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b 53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10 ^M [ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.790911] RSP <ffff880819203da0>^M [ 439.790911] CR2: 0000000000000158^M [ 439.790911] ---[ end trace d40af58949325661 ]---^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-09 15:41:51 +08:00
blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
flush_rq->tag = -1;
}
running = &fq->flush_queue[fq->flush_running_idx];
BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/* account completion of the flush request */
fq->flush_running_idx ^= 1;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
if (!q->mq_ops)
elv_completed_request(q, flush_rq);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/* and push the waiting requests to the next stage */
list_for_each_entry_safe(rq, n, running, flush.list) {
unsigned int seq = blk_flush_cur_seq(rq);
BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
queued |= blk_flush_complete_seq(rq, fq, seq, error);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
}
/*
* Kick the queue to avoid stall for two cases:
* 1. Moving a request silently to empty queue_head may stall the
* queue.
* 2. When flush request is running in non-queueable queue, the
* queue is hold. Restart the queue after flush request is finished
* to avoid stall.
* This function is called from request completion path and calling
* directly into request_fn may confuse the driver. Always use
* kblockd.
*/
if (queued || fq->flush_queue_delayed) {
WARN_ON(q->mq_ops);
blk_run_queue_async(q);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
}
fq->flush_queue_delayed = 0;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
if (q->mq_ops)
spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
}
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/**
* blk_kick_flush - consider issuing flush request
* @q: request_queue being kicked
* @fq: flush queue
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
*
* Flush related states of @q have changed, consider issuing flush request.
* Please read the comment at the top of this file for more info.
*
* CONTEXT:
* spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
*
* RETURNS:
* %true if flush was issued, %false otherwise.
*/
static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
{
struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
struct request *first_rq =
list_first_entry(pending, struct request, flush.list);
struct request *flush_rq = fq->flush_rq;
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/* C1 described at the top of this file */
if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
return false;
/* C2 and C3
*
* For blk-mq + scheduling, we can risk having all driver tags
* assigned to empty flushes, and we deadlock if we are expecting
* other requests to make progress. Don't defer for that case.
*/
if (!list_empty(&fq->flush_data_in_flight) &&
!(q->mq_ops && q->elevator) &&
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
time_before(jiffies,
fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
return false;
/*
* Issue flush and toggle pending_idx. This makes pending_idx
* different from running_idx, which means flush is in flight.
*/
fq->flush_pending_idx ^= 1;
blk_rq_init(q, flush_rq);
/*
* Borrow tag from the first request since they can't
blk-mq: fix race between timeout and freeing request Inside timeout handler, blk_mq_tag_to_rq() is called to retrieve the request from one tag. This way is obviously wrong because the request can be freed any time and some fiedds of the request can't be trusted, then kernel oops might be triggered[1]. Currently wrt. blk_mq_tag_to_rq(), the only special case is that the flush request can share same tag with the request cloned from, and the two requests can't be active at the same time, so this patch fixes the above issue by updating tags->rqs[tag] with the active request(either flush rq or the request cloned from) of the tag. Also blk_mq_tag_to_rq() gets much simplified with this patch. Given blk_mq_tag_to_rq() is mainly for drivers and the caller must make sure the request can't be freed, so in bt_for_each() this helper is replaced with tags->rqs[tag]. [1] kernel oops log [ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M [ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M [ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 439.700653] Dumping ftrace buffer:^M [ 439.700653] (ftrace buffer empty)^M [ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M [ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M [ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M [ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M [ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M [ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M [ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M [ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M [ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M [ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M [ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M [ 439.730500] Stack:^M [ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M [ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M [ 439.755663] Call Trace:^M [ 439.755663] <IRQ> ^M [ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M [ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M [ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M [ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M [ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M [ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M [ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M [ 439.755663] <EOI> ^M [ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M [ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M [ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M [ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M [ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M [ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M [ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M [ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M [ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M [ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M [ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M [ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M [ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89 f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b 53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10 ^M [ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.790911] RSP <ffff880819203da0>^M [ 439.790911] CR2: 0000000000000158^M [ 439.790911] ---[ end trace d40af58949325661 ]---^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-09 15:41:51 +08:00
* be in flight at the same time. And acquire the tag's
* ownership for flush req.
*/
if (q->mq_ops) {
blk-mq: fix race between timeout and freeing request Inside timeout handler, blk_mq_tag_to_rq() is called to retrieve the request from one tag. This way is obviously wrong because the request can be freed any time and some fiedds of the request can't be trusted, then kernel oops might be triggered[1]. Currently wrt. blk_mq_tag_to_rq(), the only special case is that the flush request can share same tag with the request cloned from, and the two requests can't be active at the same time, so this patch fixes the above issue by updating tags->rqs[tag] with the active request(either flush rq or the request cloned from) of the tag. Also blk_mq_tag_to_rq() gets much simplified with this patch. Given blk_mq_tag_to_rq() is mainly for drivers and the caller must make sure the request can't be freed, so in bt_for_each() this helper is replaced with tags->rqs[tag]. [1] kernel oops log [ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M [ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M [ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 439.700653] Dumping ftrace buffer:^M [ 439.700653] (ftrace buffer empty)^M [ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M [ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M [ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M [ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M [ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M [ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M [ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M [ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M [ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M [ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M [ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M [ 439.730500] Stack:^M [ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M [ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M [ 439.755663] Call Trace:^M [ 439.755663] <IRQ> ^M [ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M [ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M [ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M [ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M [ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M [ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M [ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M [ 439.755663] <EOI> ^M [ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M [ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M [ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M [ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M [ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M [ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M [ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M [ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M [ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M [ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M [ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M [ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M [ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89 f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b 53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10 ^M [ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.790911] RSP <ffff880819203da0>^M [ 439.790911] CR2: 0000000000000158^M [ 439.790911] ---[ end trace d40af58949325661 ]---^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-09 15:41:51 +08:00
struct blk_mq_hw_ctx *hctx;
flush_rq->mq_ctx = first_rq->mq_ctx;
flush_rq->tag = first_rq->tag;
blk-mq: fix race between timeout and freeing request Inside timeout handler, blk_mq_tag_to_rq() is called to retrieve the request from one tag. This way is obviously wrong because the request can be freed any time and some fiedds of the request can't be trusted, then kernel oops might be triggered[1]. Currently wrt. blk_mq_tag_to_rq(), the only special case is that the flush request can share same tag with the request cloned from, and the two requests can't be active at the same time, so this patch fixes the above issue by updating tags->rqs[tag] with the active request(either flush rq or the request cloned from) of the tag. Also blk_mq_tag_to_rq() gets much simplified with this patch. Given blk_mq_tag_to_rq() is mainly for drivers and the caller must make sure the request can't be freed, so in bt_for_each() this helper is replaced with tags->rqs[tag]. [1] kernel oops log [ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M [ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M [ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 439.700653] Dumping ftrace buffer:^M [ 439.700653] (ftrace buffer empty)^M [ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M [ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M [ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M [ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M [ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M [ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M [ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M [ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M [ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M [ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M [ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M [ 439.730500] Stack:^M [ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M [ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M [ 439.755663] Call Trace:^M [ 439.755663] <IRQ> ^M [ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M [ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M [ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M [ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M [ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M [ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M [ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M [ 439.755663] <EOI> ^M [ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M [ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M [ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M [ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M [ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M [ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M [ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M [ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M [ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M [ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M [ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M [ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M [ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89 f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b 53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10 ^M [ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.790911] RSP <ffff880819203da0>^M [ 439.790911] CR2: 0000000000000158^M [ 439.790911] ---[ end trace d40af58949325661 ]---^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-09 15:41:51 +08:00
fq->orig_rq = first_rq;
hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
blk-mq: fix race between timeout and freeing request Inside timeout handler, blk_mq_tag_to_rq() is called to retrieve the request from one tag. This way is obviously wrong because the request can be freed any time and some fiedds of the request can't be trusted, then kernel oops might be triggered[1]. Currently wrt. blk_mq_tag_to_rq(), the only special case is that the flush request can share same tag with the request cloned from, and the two requests can't be active at the same time, so this patch fixes the above issue by updating tags->rqs[tag] with the active request(either flush rq or the request cloned from) of the tag. Also blk_mq_tag_to_rq() gets much simplified with this patch. Given blk_mq_tag_to_rq() is mainly for drivers and the caller must make sure the request can't be freed, so in bt_for_each() this helper is replaced with tags->rqs[tag]. [1] kernel oops log [ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M [ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M [ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 439.700653] Dumping ftrace buffer:^M [ 439.700653] (ftrace buffer empty)^M [ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M [ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M [ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M [ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M [ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M [ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M [ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M [ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M [ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M [ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M [ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M [ 439.730500] Stack:^M [ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M [ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M [ 439.755663] Call Trace:^M [ 439.755663] <IRQ> ^M [ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M [ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M [ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M [ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M [ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M [ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M [ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M [ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M [ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M [ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M [ 439.755663] <EOI> ^M [ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M [ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M [ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M [ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M [ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M [ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M [ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M [ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M [ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M [ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M [ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M [ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M [ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89 f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b 53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10 ^M [ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M [ 439.790911] RSP <ffff880819203da0>^M [ 439.790911] CR2: 0000000000000158^M [ 439.790911] ---[ end trace d40af58949325661 ]---^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-09 15:41:51 +08:00
blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
}
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
flush_rq->rq_flags |= RQF_FLUSH_SEQ;
flush_rq->rq_disk = first_rq->rq_disk;
flush_rq->end_io = flush_end_io;
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
return blk_flush_queue_rq(flush_rq, false);
}
static void flush_data_end_io(struct request *rq, blk_status_t error)
{
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
struct request_queue *q = rq->q;
struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
lockdep_assert_held(q->queue_lock);
/*
* Updating q->in_flight[] here for making this tag usable
* early. Because in blk_queue_start_tag(),
* q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
* reserve tags for sync I/O.
*
* More importantly this way can avoid the following I/O
* deadlock:
*
* - suppose there are 40 fua requests comming to flush queue
* and queue depth is 31
* - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
* tag for async I/O any more
* - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
* and flush_data_end_io() is called
* - the other rqs still can't go ahead if not updating
* q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
* are held in flush data queue and make no progress of
* handling post flush rq
* - only after the post flush rq is handled, all these rqs
* can be completed
*/
elv_completed_request(q, rq);
/* for avoiding double accounting */
Merge branch 'for-4.10/block' of git://git.kernel.dk/linux-block Pull block layer updates from Jens Axboe: "This is the main block pull request this series. Contrary to previous release, I've kept the core and driver changes in the same branch. We always ended up having dependencies between the two for obvious reasons, so makes more sense to keep them together. That said, I'll probably try and keep more topical branches going forward, especially for cycles that end up being as busy as this one. The major parts of this pull request is: - Improved support for O_DIRECT on block devices, with a small private implementation instead of using the pig that is fs/direct-io.c. From Christoph. - Request completion tracking in a scalable fashion. This is utilized by two components in this pull, the new hybrid polling and the writeback queue throttling code. - Improved support for polling with O_DIRECT, adding a hybrid mode that combines pure polling with an initial sleep. From me. - Support for automatic throttling of writeback queues on the block side. This uses feedback from the device completion latencies to scale the queue on the block side up or down. From me. - Support from SMR drives in the block layer and for SD. From Hannes and Shaun. - Multi-connection support for nbd. From Josef. - Cleanup of request and bio flags, so we have a clear split between which are bio (or rq) private, and which ones are shared. From Christoph. - A set of patches from Bart, that improve how we handle queue stopping and starting in blk-mq. - Support for WRITE_ZEROES from Chaitanya. - Lightnvm updates from Javier/Matias. - Supoort for FC for the nvme-over-fabrics code. From James Smart. - A bunch of fixes from a whole slew of people, too many to name here" * 'for-4.10/block' of git://git.kernel.dk/linux-block: (182 commits) blk-stat: fix a few cases of missing batch flushing blk-flush: run the queue when inserting blk-mq flush elevator: make the rqhash helpers exported blk-mq: abstract out blk_mq_dispatch_rq_list() helper blk-mq: add blk_mq_start_stopped_hw_queue() block: improve handling of the magic discard payload blk-wbt: don't throttle discard or write zeroes nbd: use dev_err_ratelimited in io path nbd: reset the setup task for NBD_CLEAR_SOCK nvme-fabrics: Add FC LLDD loopback driver to test FC-NVME nvme-fabrics: Add target support for FC transport nvme-fabrics: Add host support for FC transport nvme-fabrics: Add FC transport LLDD api definitions nvme-fabrics: Add FC transport FC-NVME definitions nvme-fabrics: Add FC transport error codes to nvme.h Add type 0x28 NVME type code to scsi fc headers nvme-fabrics: patch target code in prep for FC transport support nvme-fabrics: set sqe.command_id in core not transports parser: add u64 number parser nvme-rdma: align to generic ib_event logging helper ...
2016-12-14 02:19:16 +08:00
rq->rq_flags &= ~RQF_STARTED;
/*
* After populating an empty queue, kick it to avoid stall. Read
* the comment in flush_end_io().
*/
if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
blk_run_queue_async(q);
}
static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
{
struct request_queue *q = rq->q;
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx = rq->mq_ctx;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
unsigned long flags;
struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
hctx = blk_mq_map_queue(q, ctx->cpu);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
/*
* After populating an empty queue, kick it to avoid stall. Read
* the comment in flush_end_io().
*/
spin_lock_irqsave(&fq->mq_flush_lock, flags);
blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
blk_mq_run_hw_queue(hctx, true);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
}
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/**
* blk_insert_flush - insert a new PREFLUSH/FUA request
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* @rq: request to insert
*
* To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
* or __blk_mq_run_hw_queue() to dispatch request.
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
* @rq is being submitted. Analyze what needs to be done and put it on the
* right queue.
*/
void blk_insert_flush(struct request *rq)
{
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
struct request_queue *q = rq->q;
unsigned long fflags = q->queue_flags; /* may change, cache */
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
unsigned int policy = blk_flush_policy(fflags, rq);
struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
if (!q->mq_ops)
lockdep_assert_held(q->queue_lock);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/*
* @policy now records what operations need to be done. Adjust
* REQ_PREFLUSH and FUA for the driver.
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
*/
rq->cmd_flags &= ~REQ_PREFLUSH;
if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
rq->cmd_flags &= ~REQ_FUA;
/*
* REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
* of those flags, we have to set REQ_SYNC to avoid skewing
* the request accounting.
*/
rq->cmd_flags |= REQ_SYNC;
block: fix flush machinery for stacking drivers with differring flush flags Commit ae1b1539622fb46e51b4d13b3f9e5f4c713f86ae, block: reimplement FLUSH/FUA to support merge, introduced a performance regression when running any sort of fsyncing workload using dm-multipath and certain storage (in our case, an HP EVA). The test I ran was fs_mark, and it dropped from ~800 files/sec on ext4 to ~100 files/sec. It turns out that dm-multipath always advertised flush+fua support, and passed commands on down the stack, where those flags used to get stripped off. The above commit changed that behavior: static inline struct request *__elv_next_request(struct request_queue *q) { struct request *rq; while (1) { - while (!list_empty(&q->queue_head)) { + if (!list_empty(&q->queue_head)) { rq = list_entry_rq(q->queue_head.next); - if (!(rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) || - (rq->cmd_flags & REQ_FLUSH_SEQ)) - return rq; - rq = blk_do_flush(q, rq); - if (rq) - return rq; + return rq; } Note that previously, a command would come in here, have REQ_FLUSH|REQ_FUA set, and then get handed off to blk_do_flush: struct request *blk_do_flush(struct request_queue *q, struct request *rq) { unsigned int fflags = q->flush_flags; /* may change, cache it */ bool has_flush = fflags & REQ_FLUSH, has_fua = fflags & REQ_FUA; bool do_preflush = has_flush && (rq->cmd_flags & REQ_FLUSH); bool do_postflush = has_flush && !has_fua && (rq->cmd_flags & REQ_FUA); unsigned skip = 0; ... if (blk_rq_sectors(rq) && !do_preflush && !do_postflush) { rq->cmd_flags &= ~REQ_FLUSH; if (!has_fua) rq->cmd_flags &= ~REQ_FUA; return rq; } So, the flush machinery was bypassed in such cases (q->flush_flags == 0 && rq->cmd_flags & (REQ_FLUSH|REQ_FUA)). Now, however, we don't get into the flush machinery at all. Instead, __elv_next_request just hands a request with flush and fua bits set to the scsi_request_fn, even if the underlying request_queue does not support flush or fua. The agreed upon approach is to fix the flush machinery to allow stacking. While this isn't used in practice (since there is only one request-based dm target, and that target will now reflect the flush flags of the underlying device), it does future-proof the solution, and make it function as designed. In order to make this work, I had to add a field to the struct request, inside the flush structure (to store the original req->end_io). Shaohua had suggested overloading the union with rb_node and completion_data, but the completion data is used by device mapper and can also be used by other drivers. So, I didn't see a way around the additional field. I tested this patch on an HP EVA with both ext4 and xfs, and it recovers the lost performance. Comments and other testers, as always, are appreciated. Cheers, Jeff Signed-off-by: Jeff Moyer <jmoyer@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-08-16 03:37:25 +08:00
/*
* An empty flush handed down from a stacking driver may
* translate into nothing if the underlying device does not
* advertise a write-back cache. In this case, simply
* complete the request.
*/
if (!policy) {
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
if (q->mq_ops)
blk_mq_end_request(rq, 0);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
else
__blk_end_request(rq, 0, 0);
block: fix flush machinery for stacking drivers with differring flush flags Commit ae1b1539622fb46e51b4d13b3f9e5f4c713f86ae, block: reimplement FLUSH/FUA to support merge, introduced a performance regression when running any sort of fsyncing workload using dm-multipath and certain storage (in our case, an HP EVA). The test I ran was fs_mark, and it dropped from ~800 files/sec on ext4 to ~100 files/sec. It turns out that dm-multipath always advertised flush+fua support, and passed commands on down the stack, where those flags used to get stripped off. The above commit changed that behavior: static inline struct request *__elv_next_request(struct request_queue *q) { struct request *rq; while (1) { - while (!list_empty(&q->queue_head)) { + if (!list_empty(&q->queue_head)) { rq = list_entry_rq(q->queue_head.next); - if (!(rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) || - (rq->cmd_flags & REQ_FLUSH_SEQ)) - return rq; - rq = blk_do_flush(q, rq); - if (rq) - return rq; + return rq; } Note that previously, a command would come in here, have REQ_FLUSH|REQ_FUA set, and then get handed off to blk_do_flush: struct request *blk_do_flush(struct request_queue *q, struct request *rq) { unsigned int fflags = q->flush_flags; /* may change, cache it */ bool has_flush = fflags & REQ_FLUSH, has_fua = fflags & REQ_FUA; bool do_preflush = has_flush && (rq->cmd_flags & REQ_FLUSH); bool do_postflush = has_flush && !has_fua && (rq->cmd_flags & REQ_FUA); unsigned skip = 0; ... if (blk_rq_sectors(rq) && !do_preflush && !do_postflush) { rq->cmd_flags &= ~REQ_FLUSH; if (!has_fua) rq->cmd_flags &= ~REQ_FUA; return rq; } So, the flush machinery was bypassed in such cases (q->flush_flags == 0 && rq->cmd_flags & (REQ_FLUSH|REQ_FUA)). Now, however, we don't get into the flush machinery at all. Instead, __elv_next_request just hands a request with flush and fua bits set to the scsi_request_fn, even if the underlying request_queue does not support flush or fua. The agreed upon approach is to fix the flush machinery to allow stacking. While this isn't used in practice (since there is only one request-based dm target, and that target will now reflect the flush flags of the underlying device), it does future-proof the solution, and make it function as designed. In order to make this work, I had to add a field to the struct request, inside the flush structure (to store the original req->end_io). Shaohua had suggested overloading the union with rb_node and completion_data, but the completion data is used by device mapper and can also be used by other drivers. So, I didn't see a way around the additional field. I tested this patch on an HP EVA with both ext4 and xfs, and it recovers the lost performance. Comments and other testers, as always, are appreciated. Cheers, Jeff Signed-off-by: Jeff Moyer <jmoyer@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-08-16 03:37:25 +08:00
return;
}
BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
block: fix flush machinery for stacking drivers with differring flush flags Commit ae1b1539622fb46e51b4d13b3f9e5f4c713f86ae, block: reimplement FLUSH/FUA to support merge, introduced a performance regression when running any sort of fsyncing workload using dm-multipath and certain storage (in our case, an HP EVA). The test I ran was fs_mark, and it dropped from ~800 files/sec on ext4 to ~100 files/sec. It turns out that dm-multipath always advertised flush+fua support, and passed commands on down the stack, where those flags used to get stripped off. The above commit changed that behavior: static inline struct request *__elv_next_request(struct request_queue *q) { struct request *rq; while (1) { - while (!list_empty(&q->queue_head)) { + if (!list_empty(&q->queue_head)) { rq = list_entry_rq(q->queue_head.next); - if (!(rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) || - (rq->cmd_flags & REQ_FLUSH_SEQ)) - return rq; - rq = blk_do_flush(q, rq); - if (rq) - return rq; + return rq; } Note that previously, a command would come in here, have REQ_FLUSH|REQ_FUA set, and then get handed off to blk_do_flush: struct request *blk_do_flush(struct request_queue *q, struct request *rq) { unsigned int fflags = q->flush_flags; /* may change, cache it */ bool has_flush = fflags & REQ_FLUSH, has_fua = fflags & REQ_FUA; bool do_preflush = has_flush && (rq->cmd_flags & REQ_FLUSH); bool do_postflush = has_flush && !has_fua && (rq->cmd_flags & REQ_FUA); unsigned skip = 0; ... if (blk_rq_sectors(rq) && !do_preflush && !do_postflush) { rq->cmd_flags &= ~REQ_FLUSH; if (!has_fua) rq->cmd_flags &= ~REQ_FUA; return rq; } So, the flush machinery was bypassed in such cases (q->flush_flags == 0 && rq->cmd_flags & (REQ_FLUSH|REQ_FUA)). Now, however, we don't get into the flush machinery at all. Instead, __elv_next_request just hands a request with flush and fua bits set to the scsi_request_fn, even if the underlying request_queue does not support flush or fua. The agreed upon approach is to fix the flush machinery to allow stacking. While this isn't used in practice (since there is only one request-based dm target, and that target will now reflect the flush flags of the underlying device), it does future-proof the solution, and make it function as designed. In order to make this work, I had to add a field to the struct request, inside the flush structure (to store the original req->end_io). Shaohua had suggested overloading the union with rb_node and completion_data, but the completion data is used by device mapper and can also be used by other drivers. So, I didn't see a way around the additional field. I tested this patch on an HP EVA with both ext4 and xfs, and it recovers the lost performance. Comments and other testers, as always, are appreciated. Cheers, Jeff Signed-off-by: Jeff Moyer <jmoyer@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-08-16 03:37:25 +08:00
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/*
* If there's data but flush is not necessary, the request can be
* processed directly without going through flush machinery. Queue
* for normal execution.
*/
if ((policy & REQ_FSEQ_DATA) &&
!(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
if (q->mq_ops)
blk_mq_sched_insert_request(rq, false, true, false, false);
else
list_add_tail(&rq->queuelist, &q->queue_head);
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
return;
block: drop barrier ordering by queue draining Filesystems will take all the responsibilities for ordering requests around commit writes and will only indicate how the commit writes themselves should be handled by block layers. This patch drops barrier ordering by queue draining from block layer. Ordering by draining implementation was somewhat invasive to request handling. List of notable changes follow. * Each queue has 1 bit color which is flipped on each barrier issue. This is used to track whether a given request is issued before the current barrier or not. REQ_ORDERED_COLOR flag and coloring implementation in __elv_add_request() are removed. * Requests which shouldn't be processed yet for draining were stalled by returning -EAGAIN from blk_do_ordered() according to the test result between blk_ordered_req_seq() and blk_blk_ordered_cur_seq(). This logic is removed. * Draining completion logic in elv_completed_request() removed. * All barrier sequence requests were queued to request queue and then trckled to lower layer according to progress and thus maintaining request orders during requeue was necessary. This is replaced by queueing the next request in the barrier sequence only after the current one is complete from blk_ordered_complete_seq(), which removes the need for multiple proxy requests in struct request_queue and the request sorting logic in the ELEVATOR_INSERT_REQUEUE path of elv_insert(). * As barriers no longer have ordering constraints, there's no need to dump the whole elevator onto the dispatch queue on each barrier. Insert barriers at the front instead. * If other barrier requests come to the front of the dispatch queue while one is already in progress, they are stored in q->pending_barriers and restored to dispatch queue one-by-one after each barrier completion from blk_ordered_complete_seq(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-09-03 17:56:16 +08:00
}
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
/*
* @rq should go through flush machinery. Mark it part of flush
* sequence and submit for further processing.
*/
memset(&rq->flush, 0, sizeof(rq->flush));
INIT_LIST_HEAD(&rq->flush.list);
rq->rq_flags |= RQF_FLUSH_SEQ;
block: fix flush machinery for stacking drivers with differring flush flags Commit ae1b1539622fb46e51b4d13b3f9e5f4c713f86ae, block: reimplement FLUSH/FUA to support merge, introduced a performance regression when running any sort of fsyncing workload using dm-multipath and certain storage (in our case, an HP EVA). The test I ran was fs_mark, and it dropped from ~800 files/sec on ext4 to ~100 files/sec. It turns out that dm-multipath always advertised flush+fua support, and passed commands on down the stack, where those flags used to get stripped off. The above commit changed that behavior: static inline struct request *__elv_next_request(struct request_queue *q) { struct request *rq; while (1) { - while (!list_empty(&q->queue_head)) { + if (!list_empty(&q->queue_head)) { rq = list_entry_rq(q->queue_head.next); - if (!(rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) || - (rq->cmd_flags & REQ_FLUSH_SEQ)) - return rq; - rq = blk_do_flush(q, rq); - if (rq) - return rq; + return rq; } Note that previously, a command would come in here, have REQ_FLUSH|REQ_FUA set, and then get handed off to blk_do_flush: struct request *blk_do_flush(struct request_queue *q, struct request *rq) { unsigned int fflags = q->flush_flags; /* may change, cache it */ bool has_flush = fflags & REQ_FLUSH, has_fua = fflags & REQ_FUA; bool do_preflush = has_flush && (rq->cmd_flags & REQ_FLUSH); bool do_postflush = has_flush && !has_fua && (rq->cmd_flags & REQ_FUA); unsigned skip = 0; ... if (blk_rq_sectors(rq) && !do_preflush && !do_postflush) { rq->cmd_flags &= ~REQ_FLUSH; if (!has_fua) rq->cmd_flags &= ~REQ_FUA; return rq; } So, the flush machinery was bypassed in such cases (q->flush_flags == 0 && rq->cmd_flags & (REQ_FLUSH|REQ_FUA)). Now, however, we don't get into the flush machinery at all. Instead, __elv_next_request just hands a request with flush and fua bits set to the scsi_request_fn, even if the underlying request_queue does not support flush or fua. The agreed upon approach is to fix the flush machinery to allow stacking. While this isn't used in practice (since there is only one request-based dm target, and that target will now reflect the flush flags of the underlying device), it does future-proof the solution, and make it function as designed. In order to make this work, I had to add a field to the struct request, inside the flush structure (to store the original req->end_io). Shaohua had suggested overloading the union with rb_node and completion_data, but the completion data is used by device mapper and can also be used by other drivers. So, I didn't see a way around the additional field. I tested this patch on an HP EVA with both ext4 and xfs, and it recovers the lost performance. Comments and other testers, as always, are appreciated. Cheers, Jeff Signed-off-by: Jeff Moyer <jmoyer@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-08-16 03:37:25 +08:00
rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
if (q->mq_ops) {
rq->end_io = mq_flush_data_end_io;
spin_lock_irq(&fq->mq_flush_lock);
blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
spin_unlock_irq(&fq->mq_flush_lock);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
return;
}
block: reimplement FLUSH/FUA to support merge The current FLUSH/FUA support has evolved from the implementation which had to perform queue draining. As such, sequencing is done queue-wide one flush request after another. However, with the draining requirement gone, there's no reason to keep the queue-wide sequential approach. This patch reimplements FLUSH/FUA support such that each FLUSH/FUA request is sequenced individually. The actual FLUSH execution is double buffered and whenever a request wants to execute one for either PRE or POSTFLUSH, it queues on the pending queue. Once certain conditions are met, a flush request is issued and on its completion all pending requests proceed to the next sequence. This allows arbitrary merging of different type of flushes. How they are merged can be primarily controlled and tuned by adjusting the above said 'conditions' used to determine when to issue the next flush. This is inspired by Darrick's patches to merge multiple zero-data flushes which helps workloads with highly concurrent fsync requests. * As flush requests are never put on the IO scheduler, request fields used for flush share space with rq->rb_node. rq->completion_data is moved out of the union. This increases the request size by one pointer. As rq->elevator_private* are used only by the iosched too, it is possible to reduce the request size further. However, to do that, we need to modify request allocation path such that iosched data is not allocated for flush requests. * FLUSH/FUA processing happens on insertion now instead of dispatch. - Comments updated as per Vivek and Mike. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "Darrick J. Wong" <djwong@us.ibm.com> Cc: Shaohua Li <shli@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-25 19:43:54 +08:00
rq->end_io = flush_data_end_io;
blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
}
/**
* blkdev_issue_flush - queue a flush
* @bdev: blockdev to issue flush for
* @gfp_mask: memory allocation flags (for bio_alloc)
* @error_sector: error sector
*
* Description:
* Issue a flush for the block device in question. Caller can supply
* room for storing the error offset in case of a flush error, if they
* wish to.
*/
int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
sector_t *error_sector)
{
struct request_queue *q;
struct bio *bio;
int ret = 0;
if (bdev->bd_disk == NULL)
return -ENXIO;
q = bdev_get_queue(bdev);
if (!q)
return -ENXIO;
/*
* some block devices may not have their queue correctly set up here
* (e.g. loop device without a backing file) and so issuing a flush
* here will panic. Ensure there is a request function before issuing
* the flush.
*/
if (!q->make_request_fn)
return -ENXIO;
bio = bio_alloc(gfp_mask, 0);
bio_set_dev(bio, bdev);
bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
ret = submit_bio_wait(bio);
/*
* The driver must store the error location in ->bi_sector, if
* it supports it. For non-stacked drivers, this should be
* copied from blk_rq_pos(rq).
*/
if (error_sector)
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
*error_sector = bio->bi_iter.bi_sector;
bio_put(bio);
return ret;
}
EXPORT_SYMBOL(blkdev_issue_flush);
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
int node, int cmd_size)
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
{
struct blk_flush_queue *fq;
int rq_sz = sizeof(struct request);
fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
if (!fq)
goto fail;
if (q->mq_ops)
spin_lock_init(&fq->mq_flush_lock);
rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
if (!fq->flush_rq)
goto fail_rq;
INIT_LIST_HEAD(&fq->flush_queue[0]);
INIT_LIST_HEAD(&fq->flush_queue[1]);
INIT_LIST_HEAD(&fq->flush_data_in_flight);
return fq;
fail_rq:
kfree(fq);
fail:
return NULL;
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 16:20:05 +08:00
}
void blk_free_flush_queue(struct blk_flush_queue *fq)
{
/* bio based request queue hasn't flush queue */
if (!fq)
return;
kfree(fq->flush_rq);
kfree(fq);
}