0
0
mirror of https://mirrors.bfsu.edu.cn/git/linux.git synced 2025-01-07 14:24:18 +08:00
linux/drivers/iio/light/gp2ap020a00f.c

1618 lines
45 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013 Samsung Electronics Co., Ltd.
* Author: Jacek Anaszewski <j.anaszewski@samsung.com>
*
* IIO features supported by the driver:
*
* Read-only raw channels:
* - illiminance_clear [lux]
* - illiminance_ir
* - proximity
*
* Triggered buffer:
* - illiminance_clear
* - illiminance_ir
* - proximity
*
* Events:
* - illuminance_clear (rising and falling)
* - proximity (rising and falling)
* - both falling and rising thresholds for the proximity events
* must be set to the values greater than 0.
*
* The driver supports triggered buffers for all the three
* channels as well as high and low threshold events for the
* illuminance_clear and proxmimity channels. Triggers
* can be enabled simultaneously with both illuminance_clear
* events. Proximity events cannot be enabled simultaneously
* with any triggers or illuminance events. Enabling/disabling
* one of the proximity events automatically enables/disables
* the other one.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*/
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irq_work.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define GP2A_I2C_NAME "gp2ap020a00f"
/* Registers */
#define GP2AP020A00F_OP_REG 0x00 /* Basic operations */
#define GP2AP020A00F_ALS_REG 0x01 /* ALS related settings */
#define GP2AP020A00F_PS_REG 0x02 /* PS related settings */
#define GP2AP020A00F_LED_REG 0x03 /* LED reg */
#define GP2AP020A00F_TL_L_REG 0x04 /* ALS: Threshold low LSB */
#define GP2AP020A00F_TL_H_REG 0x05 /* ALS: Threshold low MSB */
#define GP2AP020A00F_TH_L_REG 0x06 /* ALS: Threshold high LSB */
#define GP2AP020A00F_TH_H_REG 0x07 /* ALS: Threshold high MSB */
#define GP2AP020A00F_PL_L_REG 0x08 /* PS: Threshold low LSB */
#define GP2AP020A00F_PL_H_REG 0x09 /* PS: Threshold low MSB */
#define GP2AP020A00F_PH_L_REG 0x0a /* PS: Threshold high LSB */
#define GP2AP020A00F_PH_H_REG 0x0b /* PS: Threshold high MSB */
#define GP2AP020A00F_D0_L_REG 0x0c /* ALS result: Clear/Illuminance LSB */
#define GP2AP020A00F_D0_H_REG 0x0d /* ALS result: Clear/Illuminance MSB */
#define GP2AP020A00F_D1_L_REG 0x0e /* ALS result: IR LSB */
#define GP2AP020A00F_D1_H_REG 0x0f /* ALS result: IR LSB */
#define GP2AP020A00F_D2_L_REG 0x10 /* PS result LSB */
#define GP2AP020A00F_D2_H_REG 0x11 /* PS result MSB */
#define GP2AP020A00F_NUM_REGS 0x12 /* Number of registers */
/* OP_REG bits */
#define GP2AP020A00F_OP3_MASK 0x80 /* Software shutdown */
#define GP2AP020A00F_OP3_SHUTDOWN 0x00
#define GP2AP020A00F_OP3_OPERATION 0x80
#define GP2AP020A00F_OP2_MASK 0x40 /* Auto shutdown/Continuous mode */
#define GP2AP020A00F_OP2_AUTO_SHUTDOWN 0x00
#define GP2AP020A00F_OP2_CONT_OPERATION 0x40
#define GP2AP020A00F_OP_MASK 0x30 /* Operating mode selection */
#define GP2AP020A00F_OP_ALS_AND_PS 0x00
#define GP2AP020A00F_OP_ALS 0x10
#define GP2AP020A00F_OP_PS 0x20
#define GP2AP020A00F_OP_DEBUG 0x30
#define GP2AP020A00F_PROX_MASK 0x08 /* PS: detection/non-detection */
#define GP2AP020A00F_PROX_NON_DETECT 0x00
#define GP2AP020A00F_PROX_DETECT 0x08
#define GP2AP020A00F_FLAG_P 0x04 /* PS: interrupt result */
#define GP2AP020A00F_FLAG_A 0x02 /* ALS: interrupt result */
#define GP2AP020A00F_TYPE_MASK 0x01 /* Output data type selection */
#define GP2AP020A00F_TYPE_MANUAL_CALC 0x00
#define GP2AP020A00F_TYPE_AUTO_CALC 0x01
/* ALS_REG bits */
#define GP2AP020A00F_PRST_MASK 0xc0 /* Number of measurement cycles */
#define GP2AP020A00F_PRST_ONCE 0x00
#define GP2AP020A00F_PRST_4_CYCLES 0x40
#define GP2AP020A00F_PRST_8_CYCLES 0x80
#define GP2AP020A00F_PRST_16_CYCLES 0xc0
#define GP2AP020A00F_RES_A_MASK 0x38 /* ALS: Resolution */
#define GP2AP020A00F_RES_A_800ms 0x00
#define GP2AP020A00F_RES_A_400ms 0x08
#define GP2AP020A00F_RES_A_200ms 0x10
#define GP2AP020A00F_RES_A_100ms 0x18
#define GP2AP020A00F_RES_A_25ms 0x20
#define GP2AP020A00F_RES_A_6_25ms 0x28
#define GP2AP020A00F_RES_A_1_56ms 0x30
#define GP2AP020A00F_RES_A_0_39ms 0x38
#define GP2AP020A00F_RANGE_A_MASK 0x07 /* ALS: Max measurable range */
#define GP2AP020A00F_RANGE_A_x1 0x00
#define GP2AP020A00F_RANGE_A_x2 0x01
#define GP2AP020A00F_RANGE_A_x4 0x02
#define GP2AP020A00F_RANGE_A_x8 0x03
#define GP2AP020A00F_RANGE_A_x16 0x04
#define GP2AP020A00F_RANGE_A_x32 0x05
#define GP2AP020A00F_RANGE_A_x64 0x06
#define GP2AP020A00F_RANGE_A_x128 0x07
/* PS_REG bits */
#define GP2AP020A00F_ALC_MASK 0x80 /* Auto light cancel */
#define GP2AP020A00F_ALC_ON 0x80
#define GP2AP020A00F_ALC_OFF 0x00
#define GP2AP020A00F_INTTYPE_MASK 0x40 /* Interrupt type setting */
#define GP2AP020A00F_INTTYPE_LEVEL 0x00
#define GP2AP020A00F_INTTYPE_PULSE 0x40
#define GP2AP020A00F_RES_P_MASK 0x38 /* PS: Resolution */
#define GP2AP020A00F_RES_P_800ms_x2 0x00
#define GP2AP020A00F_RES_P_400ms_x2 0x08
#define GP2AP020A00F_RES_P_200ms_x2 0x10
#define GP2AP020A00F_RES_P_100ms_x2 0x18
#define GP2AP020A00F_RES_P_25ms_x2 0x20
#define GP2AP020A00F_RES_P_6_25ms_x2 0x28
#define GP2AP020A00F_RES_P_1_56ms_x2 0x30
#define GP2AP020A00F_RES_P_0_39ms_x2 0x38
#define GP2AP020A00F_RANGE_P_MASK 0x07 /* PS: Max measurable range */
#define GP2AP020A00F_RANGE_P_x1 0x00
#define GP2AP020A00F_RANGE_P_x2 0x01
#define GP2AP020A00F_RANGE_P_x4 0x02
#define GP2AP020A00F_RANGE_P_x8 0x03
#define GP2AP020A00F_RANGE_P_x16 0x04
#define GP2AP020A00F_RANGE_P_x32 0x05
#define GP2AP020A00F_RANGE_P_x64 0x06
#define GP2AP020A00F_RANGE_P_x128 0x07
/* LED reg bits */
#define GP2AP020A00F_INTVAL_MASK 0xc0 /* Intermittent operating */
#define GP2AP020A00F_INTVAL_0 0x00
#define GP2AP020A00F_INTVAL_4 0x40
#define GP2AP020A00F_INTVAL_8 0x80
#define GP2AP020A00F_INTVAL_16 0xc0
#define GP2AP020A00F_IS_MASK 0x30 /* ILED drive peak current */
#define GP2AP020A00F_IS_13_8mA 0x00
#define GP2AP020A00F_IS_27_5mA 0x10
#define GP2AP020A00F_IS_55mA 0x20
#define GP2AP020A00F_IS_110mA 0x30
#define GP2AP020A00F_PIN_MASK 0x0c /* INT terminal setting */
#define GP2AP020A00F_PIN_ALS_OR_PS 0x00
#define GP2AP020A00F_PIN_ALS 0x04
#define GP2AP020A00F_PIN_PS 0x08
#define GP2AP020A00F_PIN_PS_DETECT 0x0c
#define GP2AP020A00F_FREQ_MASK 0x02 /* LED modulation frequency */
#define GP2AP020A00F_FREQ_327_5kHz 0x00
#define GP2AP020A00F_FREQ_81_8kHz 0x02
#define GP2AP020A00F_RST 0x01 /* Software reset */
#define GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR 0
#define GP2AP020A00F_SCAN_MODE_LIGHT_IR 1
#define GP2AP020A00F_SCAN_MODE_PROXIMITY 2
#define GP2AP020A00F_CHAN_TIMESTAMP 3
#define GP2AP020A00F_DATA_READY_TIMEOUT msecs_to_jiffies(1000)
#define GP2AP020A00F_DATA_REG(chan) (GP2AP020A00F_D0_L_REG + \
(chan) * 2)
#define GP2AP020A00F_THRESH_REG(th_val_id) (GP2AP020A00F_TL_L_REG + \
(th_val_id) * 2)
#define GP2AP020A00F_THRESH_VAL_ID(reg_addr) ((reg_addr - 4) / 2)
#define GP2AP020A00F_SUBTRACT_MODE 0
#define GP2AP020A00F_ADD_MODE 1
#define GP2AP020A00F_MAX_CHANNELS 3
enum gp2ap020a00f_opmode {
GP2AP020A00F_OPMODE_READ_RAW_CLEAR,
GP2AP020A00F_OPMODE_READ_RAW_IR,
GP2AP020A00F_OPMODE_READ_RAW_PROXIMITY,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_OPMODE_PS,
GP2AP020A00F_OPMODE_ALS_AND_PS,
GP2AP020A00F_OPMODE_PROX_DETECT,
GP2AP020A00F_OPMODE_SHUTDOWN,
GP2AP020A00F_NUM_OPMODES,
};
enum gp2ap020a00f_cmd {
GP2AP020A00F_CMD_READ_RAW_CLEAR,
GP2AP020A00F_CMD_READ_RAW_IR,
GP2AP020A00F_CMD_READ_RAW_PROXIMITY,
GP2AP020A00F_CMD_TRIGGER_CLEAR_EN,
GP2AP020A00F_CMD_TRIGGER_CLEAR_DIS,
GP2AP020A00F_CMD_TRIGGER_IR_EN,
GP2AP020A00F_CMD_TRIGGER_IR_DIS,
GP2AP020A00F_CMD_TRIGGER_PROX_EN,
GP2AP020A00F_CMD_TRIGGER_PROX_DIS,
GP2AP020A00F_CMD_ALS_HIGH_EV_EN,
GP2AP020A00F_CMD_ALS_HIGH_EV_DIS,
GP2AP020A00F_CMD_ALS_LOW_EV_EN,
GP2AP020A00F_CMD_ALS_LOW_EV_DIS,
GP2AP020A00F_CMD_PROX_HIGH_EV_EN,
GP2AP020A00F_CMD_PROX_HIGH_EV_DIS,
GP2AP020A00F_CMD_PROX_LOW_EV_EN,
GP2AP020A00F_CMD_PROX_LOW_EV_DIS,
};
enum gp2ap020a00f_flags {
GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER,
GP2AP020A00F_FLAG_ALS_IR_TRIGGER,
GP2AP020A00F_FLAG_PROX_TRIGGER,
GP2AP020A00F_FLAG_PROX_RISING_EV,
GP2AP020A00F_FLAG_PROX_FALLING_EV,
GP2AP020A00F_FLAG_ALS_RISING_EV,
GP2AP020A00F_FLAG_ALS_FALLING_EV,
GP2AP020A00F_FLAG_LUX_MODE_HI,
GP2AP020A00F_FLAG_DATA_READY,
};
enum gp2ap020a00f_thresh_val_id {
GP2AP020A00F_THRESH_TL,
GP2AP020A00F_THRESH_TH,
GP2AP020A00F_THRESH_PL,
GP2AP020A00F_THRESH_PH,
};
struct gp2ap020a00f_data {
const struct gp2ap020a00f_platform_data *pdata;
struct i2c_client *client;
struct mutex lock;
char *buffer;
struct regulator *vled_reg;
unsigned long flags;
enum gp2ap020a00f_opmode cur_opmode;
struct iio_trigger *trig;
struct regmap *regmap;
unsigned int thresh_val[4];
u8 debug_reg_addr;
struct irq_work work;
wait_queue_head_t data_ready_queue;
};
static const u8 gp2ap020a00f_reg_init_tab[] = {
[GP2AP020A00F_OP_REG] = GP2AP020A00F_OP3_SHUTDOWN,
[GP2AP020A00F_ALS_REG] = GP2AP020A00F_RES_A_25ms |
GP2AP020A00F_RANGE_A_x8,
[GP2AP020A00F_PS_REG] = GP2AP020A00F_ALC_ON |
GP2AP020A00F_RES_P_1_56ms_x2 |
GP2AP020A00F_RANGE_P_x4,
[GP2AP020A00F_LED_REG] = GP2AP020A00F_INTVAL_0 |
GP2AP020A00F_IS_110mA |
GP2AP020A00F_FREQ_327_5kHz,
[GP2AP020A00F_TL_L_REG] = 0,
[GP2AP020A00F_TL_H_REG] = 0,
[GP2AP020A00F_TH_L_REG] = 0,
[GP2AP020A00F_TH_H_REG] = 0,
[GP2AP020A00F_PL_L_REG] = 0,
[GP2AP020A00F_PL_H_REG] = 0,
[GP2AP020A00F_PH_L_REG] = 0,
[GP2AP020A00F_PH_H_REG] = 0,
};
static bool gp2ap020a00f_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case GP2AP020A00F_OP_REG:
case GP2AP020A00F_D0_L_REG:
case GP2AP020A00F_D0_H_REG:
case GP2AP020A00F_D1_L_REG:
case GP2AP020A00F_D1_H_REG:
case GP2AP020A00F_D2_L_REG:
case GP2AP020A00F_D2_H_REG:
return true;
default:
return false;
}
}
static const struct regmap_config gp2ap020a00f_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = GP2AP020A00F_D2_H_REG,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = gp2ap020a00f_is_volatile_reg,
};
static const struct gp2ap020a00f_mutable_config_regs {
u8 op_reg;
u8 als_reg;
u8 ps_reg;
u8 led_reg;
} opmode_regs_settings[GP2AP020A00F_NUM_OPMODES] = {
[GP2AP020A00F_OPMODE_READ_RAW_CLEAR] = {
GP2AP020A00F_OP_ALS | GP2AP020A00F_OP2_CONT_OPERATION
| GP2AP020A00F_OP3_OPERATION
| GP2AP020A00F_TYPE_AUTO_CALC,
GP2AP020A00F_PRST_ONCE,
GP2AP020A00F_INTTYPE_LEVEL,
GP2AP020A00F_PIN_ALS
},
[GP2AP020A00F_OPMODE_READ_RAW_IR] = {
GP2AP020A00F_OP_ALS | GP2AP020A00F_OP2_CONT_OPERATION
| GP2AP020A00F_OP3_OPERATION
| GP2AP020A00F_TYPE_MANUAL_CALC,
GP2AP020A00F_PRST_ONCE,
GP2AP020A00F_INTTYPE_LEVEL,
GP2AP020A00F_PIN_ALS
},
[GP2AP020A00F_OPMODE_READ_RAW_PROXIMITY] = {
GP2AP020A00F_OP_PS | GP2AP020A00F_OP2_CONT_OPERATION
| GP2AP020A00F_OP3_OPERATION
| GP2AP020A00F_TYPE_MANUAL_CALC,
GP2AP020A00F_PRST_ONCE,
GP2AP020A00F_INTTYPE_LEVEL,
GP2AP020A00F_PIN_PS
},
[GP2AP020A00F_OPMODE_PROX_DETECT] = {
GP2AP020A00F_OP_PS | GP2AP020A00F_OP2_CONT_OPERATION
| GP2AP020A00F_OP3_OPERATION
| GP2AP020A00F_TYPE_MANUAL_CALC,
GP2AP020A00F_PRST_4_CYCLES,
GP2AP020A00F_INTTYPE_PULSE,
GP2AP020A00F_PIN_PS_DETECT
},
[GP2AP020A00F_OPMODE_ALS] = {
GP2AP020A00F_OP_ALS | GP2AP020A00F_OP2_CONT_OPERATION
| GP2AP020A00F_OP3_OPERATION
| GP2AP020A00F_TYPE_AUTO_CALC,
GP2AP020A00F_PRST_ONCE,
GP2AP020A00F_INTTYPE_LEVEL,
GP2AP020A00F_PIN_ALS
},
[GP2AP020A00F_OPMODE_PS] = {
GP2AP020A00F_OP_PS | GP2AP020A00F_OP2_CONT_OPERATION
| GP2AP020A00F_OP3_OPERATION
| GP2AP020A00F_TYPE_MANUAL_CALC,
GP2AP020A00F_PRST_4_CYCLES,
GP2AP020A00F_INTTYPE_LEVEL,
GP2AP020A00F_PIN_PS
},
[GP2AP020A00F_OPMODE_ALS_AND_PS] = {
GP2AP020A00F_OP_ALS_AND_PS
| GP2AP020A00F_OP2_CONT_OPERATION
| GP2AP020A00F_OP3_OPERATION
| GP2AP020A00F_TYPE_AUTO_CALC,
GP2AP020A00F_PRST_4_CYCLES,
GP2AP020A00F_INTTYPE_LEVEL,
GP2AP020A00F_PIN_ALS_OR_PS
},
[GP2AP020A00F_OPMODE_SHUTDOWN] = { GP2AP020A00F_OP3_SHUTDOWN, },
};
static int gp2ap020a00f_set_operation_mode(struct gp2ap020a00f_data *data,
enum gp2ap020a00f_opmode op)
{
unsigned int op_reg_val;
int err;
if (op != GP2AP020A00F_OPMODE_SHUTDOWN) {
err = regmap_read(data->regmap, GP2AP020A00F_OP_REG,
&op_reg_val);
if (err < 0)
return err;
/*
* Shutdown the device if the operation being executed entails
* mode transition.
*/
if ((opmode_regs_settings[op].op_reg & GP2AP020A00F_OP_MASK) !=
(op_reg_val & GP2AP020A00F_OP_MASK)) {
/* set shutdown mode */
err = regmap_update_bits(data->regmap,
GP2AP020A00F_OP_REG, GP2AP020A00F_OP3_MASK,
GP2AP020A00F_OP3_SHUTDOWN);
if (err < 0)
return err;
}
err = regmap_update_bits(data->regmap, GP2AP020A00F_ALS_REG,
GP2AP020A00F_PRST_MASK, opmode_regs_settings[op]
.als_reg);
if (err < 0)
return err;
err = regmap_update_bits(data->regmap, GP2AP020A00F_PS_REG,
GP2AP020A00F_INTTYPE_MASK, opmode_regs_settings[op]
.ps_reg);
if (err < 0)
return err;
err = regmap_update_bits(data->regmap, GP2AP020A00F_LED_REG,
GP2AP020A00F_PIN_MASK, opmode_regs_settings[op]
.led_reg);
if (err < 0)
return err;
}
/* Set OP_REG and apply operation mode (power on / off) */
err = regmap_update_bits(data->regmap,
GP2AP020A00F_OP_REG,
GP2AP020A00F_OP_MASK | GP2AP020A00F_OP2_MASK |
GP2AP020A00F_OP3_MASK | GP2AP020A00F_TYPE_MASK,
opmode_regs_settings[op].op_reg);
if (err < 0)
return err;
data->cur_opmode = op;
return 0;
}
static bool gp2ap020a00f_als_enabled(struct gp2ap020a00f_data *data)
{
return test_bit(GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, &data->flags) ||
test_bit(GP2AP020A00F_FLAG_ALS_IR_TRIGGER, &data->flags) ||
test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags) ||
test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags);
}
static bool gp2ap020a00f_prox_detect_enabled(struct gp2ap020a00f_data *data)
{
return test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags) ||
test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags);
}
static int gp2ap020a00f_write_event_threshold(struct gp2ap020a00f_data *data,
enum gp2ap020a00f_thresh_val_id th_val_id,
bool enable)
{
__le16 thresh_buf = 0;
unsigned int thresh_reg_val;
if (!enable)
thresh_reg_val = 0;
else if (test_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags) &&
th_val_id != GP2AP020A00F_THRESH_PL &&
th_val_id != GP2AP020A00F_THRESH_PH)
/*
* For the high lux mode ALS threshold has to be scaled down
* to allow for proper comparison with the output value.
*/
thresh_reg_val = data->thresh_val[th_val_id] / 16;
else
thresh_reg_val = data->thresh_val[th_val_id] > 16000 ?
16000 :
data->thresh_val[th_val_id];
thresh_buf = cpu_to_le16(thresh_reg_val);
return regmap_bulk_write(data->regmap,
GP2AP020A00F_THRESH_REG(th_val_id),
(u8 *)&thresh_buf, 2);
}
static int gp2ap020a00f_alter_opmode(struct gp2ap020a00f_data *data,
enum gp2ap020a00f_opmode diff_mode, int add_sub)
{
enum gp2ap020a00f_opmode new_mode;
if (diff_mode != GP2AP020A00F_OPMODE_ALS &&
diff_mode != GP2AP020A00F_OPMODE_PS)
return -EINVAL;
if (add_sub == GP2AP020A00F_ADD_MODE) {
if (data->cur_opmode == GP2AP020A00F_OPMODE_SHUTDOWN)
new_mode = diff_mode;
else
new_mode = GP2AP020A00F_OPMODE_ALS_AND_PS;
} else {
if (data->cur_opmode == GP2AP020A00F_OPMODE_ALS_AND_PS)
new_mode = (diff_mode == GP2AP020A00F_OPMODE_ALS) ?
GP2AP020A00F_OPMODE_PS :
GP2AP020A00F_OPMODE_ALS;
else
new_mode = GP2AP020A00F_OPMODE_SHUTDOWN;
}
return gp2ap020a00f_set_operation_mode(data, new_mode);
}
static int gp2ap020a00f_exec_cmd(struct gp2ap020a00f_data *data,
enum gp2ap020a00f_cmd cmd)
{
int err = 0;
switch (cmd) {
case GP2AP020A00F_CMD_READ_RAW_CLEAR:
if (data->cur_opmode != GP2AP020A00F_OPMODE_SHUTDOWN)
return -EBUSY;
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_READ_RAW_CLEAR);
break;
case GP2AP020A00F_CMD_READ_RAW_IR:
if (data->cur_opmode != GP2AP020A00F_OPMODE_SHUTDOWN)
return -EBUSY;
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_READ_RAW_IR);
break;
case GP2AP020A00F_CMD_READ_RAW_PROXIMITY:
if (data->cur_opmode != GP2AP020A00F_OPMODE_SHUTDOWN)
return -EBUSY;
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_READ_RAW_PROXIMITY);
break;
case GP2AP020A00F_CMD_TRIGGER_CLEAR_EN:
if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT)
return -EBUSY;
if (!gp2ap020a00f_als_enabled(data))
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_ADD_MODE);
set_bit(GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, &data->flags);
break;
case GP2AP020A00F_CMD_TRIGGER_CLEAR_DIS:
clear_bit(GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, &data->flags);
if (gp2ap020a00f_als_enabled(data))
break;
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_SUBTRACT_MODE);
break;
case GP2AP020A00F_CMD_TRIGGER_IR_EN:
if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT)
return -EBUSY;
if (!gp2ap020a00f_als_enabled(data))
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_ADD_MODE);
set_bit(GP2AP020A00F_FLAG_ALS_IR_TRIGGER, &data->flags);
break;
case GP2AP020A00F_CMD_TRIGGER_IR_DIS:
clear_bit(GP2AP020A00F_FLAG_ALS_IR_TRIGGER, &data->flags);
if (gp2ap020a00f_als_enabled(data))
break;
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_SUBTRACT_MODE);
break;
case GP2AP020A00F_CMD_TRIGGER_PROX_EN:
if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT)
return -EBUSY;
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_PS,
GP2AP020A00F_ADD_MODE);
set_bit(GP2AP020A00F_FLAG_PROX_TRIGGER, &data->flags);
break;
case GP2AP020A00F_CMD_TRIGGER_PROX_DIS:
clear_bit(GP2AP020A00F_FLAG_PROX_TRIGGER, &data->flags);
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_PS,
GP2AP020A00F_SUBTRACT_MODE);
break;
case GP2AP020A00F_CMD_ALS_HIGH_EV_EN:
if (test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags))
return 0;
if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT)
return -EBUSY;
if (!gp2ap020a00f_als_enabled(data)) {
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_ADD_MODE);
if (err < 0)
return err;
}
set_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags);
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_TH, true);
break;
case GP2AP020A00F_CMD_ALS_HIGH_EV_DIS:
if (!test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags))
return 0;
clear_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags);
if (!gp2ap020a00f_als_enabled(data)) {
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_SUBTRACT_MODE);
if (err < 0)
return err;
}
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_TH, false);
break;
case GP2AP020A00F_CMD_ALS_LOW_EV_EN:
if (test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags))
return 0;
if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT)
return -EBUSY;
if (!gp2ap020a00f_als_enabled(data)) {
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_ADD_MODE);
if (err < 0)
return err;
}
set_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags);
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_TL, true);
break;
case GP2AP020A00F_CMD_ALS_LOW_EV_DIS:
if (!test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags))
return 0;
clear_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags);
if (!gp2ap020a00f_als_enabled(data)) {
err = gp2ap020a00f_alter_opmode(data,
GP2AP020A00F_OPMODE_ALS,
GP2AP020A00F_SUBTRACT_MODE);
if (err < 0)
return err;
}
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_TL, false);
break;
case GP2AP020A00F_CMD_PROX_HIGH_EV_EN:
if (test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags))
return 0;
if (gp2ap020a00f_als_enabled(data) ||
data->cur_opmode == GP2AP020A00F_OPMODE_PS)
return -EBUSY;
if (!gp2ap020a00f_prox_detect_enabled(data)) {
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_PROX_DETECT);
if (err < 0)
return err;
}
set_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags);
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_PH, true);
break;
case GP2AP020A00F_CMD_PROX_HIGH_EV_DIS:
if (!test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags))
return 0;
clear_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags);
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_SHUTDOWN);
if (err < 0)
return err;
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_PH, false);
break;
case GP2AP020A00F_CMD_PROX_LOW_EV_EN:
if (test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags))
return 0;
if (gp2ap020a00f_als_enabled(data) ||
data->cur_opmode == GP2AP020A00F_OPMODE_PS)
return -EBUSY;
if (!gp2ap020a00f_prox_detect_enabled(data)) {
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_PROX_DETECT);
if (err < 0)
return err;
}
set_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags);
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_PL, true);
break;
case GP2AP020A00F_CMD_PROX_LOW_EV_DIS:
if (!test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags))
return 0;
clear_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags);
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_SHUTDOWN);
if (err < 0)
return err;
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_PL, false);
break;
}
return err;
}
static int wait_conversion_complete_irq(struct gp2ap020a00f_data *data)
{
int ret;
ret = wait_event_timeout(data->data_ready_queue,
test_bit(GP2AP020A00F_FLAG_DATA_READY,
&data->flags),
GP2AP020A00F_DATA_READY_TIMEOUT);
clear_bit(GP2AP020A00F_FLAG_DATA_READY, &data->flags);
return ret > 0 ? 0 : -ETIME;
}
static int gp2ap020a00f_read_output(struct gp2ap020a00f_data *data,
unsigned int output_reg, int *val)
{
u8 reg_buf[2];
int err;
err = wait_conversion_complete_irq(data);
if (err < 0)
dev_dbg(&data->client->dev, "data ready timeout\n");
err = regmap_bulk_read(data->regmap, output_reg, reg_buf, 2);
if (err < 0)
return err;
*val = le16_to_cpup((__le16 *)reg_buf);
return err;
}
static bool gp2ap020a00f_adjust_lux_mode(struct gp2ap020a00f_data *data,
int output_val)
{
u8 new_range = 0xff;
int err;
if (!test_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags)) {
if (output_val > 16000) {
set_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags);
new_range = GP2AP020A00F_RANGE_A_x128;
}
} else {
if (output_val < 1000) {
clear_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags);
new_range = GP2AP020A00F_RANGE_A_x8;
}
}
if (new_range != 0xff) {
/* Clear als threshold registers to avoid spurious
* events caused by lux mode transition.
*/
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_TH, false);
if (err < 0) {
dev_err(&data->client->dev,
"Clearing als threshold register failed.\n");
return false;
}
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_TL, false);
if (err < 0) {
dev_err(&data->client->dev,
"Clearing als threshold register failed.\n");
return false;
}
/* Change lux mode */
err = regmap_update_bits(data->regmap,
GP2AP020A00F_OP_REG,
GP2AP020A00F_OP3_MASK,
GP2AP020A00F_OP3_SHUTDOWN);
if (err < 0) {
dev_err(&data->client->dev,
"Shutting down the device failed.\n");
return false;
}
err = regmap_update_bits(data->regmap,
GP2AP020A00F_ALS_REG,
GP2AP020A00F_RANGE_A_MASK,
new_range);
if (err < 0) {
dev_err(&data->client->dev,
"Adjusting device lux mode failed.\n");
return false;
}
err = regmap_update_bits(data->regmap,
GP2AP020A00F_OP_REG,
GP2AP020A00F_OP3_MASK,
GP2AP020A00F_OP3_OPERATION);
if (err < 0) {
dev_err(&data->client->dev,
"Powering up the device failed.\n");
return false;
}
/* Adjust als threshold register values to the new lux mode */
if (test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags)) {
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_TH, true);
if (err < 0) {
dev_err(&data->client->dev,
"Adjusting als threshold value failed.\n");
return false;
}
}
if (test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags)) {
err = gp2ap020a00f_write_event_threshold(data,
GP2AP020A00F_THRESH_TL, true);
if (err < 0) {
dev_err(&data->client->dev,
"Adjusting als threshold value failed.\n");
return false;
}
}
return true;
}
return false;
}
static void gp2ap020a00f_output_to_lux(struct gp2ap020a00f_data *data,
int *output_val)
{
if (test_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags))
*output_val *= 16;
}
static void gp2ap020a00f_iio_trigger_work(struct irq_work *work)
{
struct gp2ap020a00f_data *data =
container_of(work, struct gp2ap020a00f_data, work);
iio_trigger_poll(data->trig, 0);
}
static irqreturn_t gp2ap020a00f_prox_sensing_handler(int irq, void *data)
{
struct iio_dev *indio_dev = data;
struct gp2ap020a00f_data *priv = iio_priv(indio_dev);
unsigned int op_reg_val;
int ret;
/* Read interrupt flags */
ret = regmap_read(priv->regmap, GP2AP020A00F_OP_REG, &op_reg_val);
if (ret < 0)
return IRQ_HANDLED;
if (gp2ap020a00f_prox_detect_enabled(priv)) {
if (op_reg_val & GP2AP020A00F_PROX_DETECT) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(
IIO_PROXIMITY,
GP2AP020A00F_SCAN_MODE_PROXIMITY,
IIO_EV_TYPE_ROC,
IIO_EV_DIR_RISING),
iio_get_time_ns());
} else {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(
IIO_PROXIMITY,
GP2AP020A00F_SCAN_MODE_PROXIMITY,
IIO_EV_TYPE_ROC,
IIO_EV_DIR_FALLING),
iio_get_time_ns());
}
}
return IRQ_HANDLED;
}
static irqreturn_t gp2ap020a00f_thresh_event_handler(int irq, void *data)
{
struct iio_dev *indio_dev = data;
struct gp2ap020a00f_data *priv = iio_priv(indio_dev);
u8 op_reg_flags, d0_reg_buf[2];
unsigned int output_val, op_reg_val;
int thresh_val_id, ret;
/* Read interrupt flags */
ret = regmap_read(priv->regmap, GP2AP020A00F_OP_REG,
&op_reg_val);
if (ret < 0)
goto done;
op_reg_flags = op_reg_val & (GP2AP020A00F_FLAG_A | GP2AP020A00F_FLAG_P
| GP2AP020A00F_PROX_DETECT);
op_reg_val &= (~GP2AP020A00F_FLAG_A & ~GP2AP020A00F_FLAG_P
& ~GP2AP020A00F_PROX_DETECT);
/* Clear interrupt flags (if not in INTTYPE_PULSE mode) */
if (priv->cur_opmode != GP2AP020A00F_OPMODE_PROX_DETECT) {
ret = regmap_write(priv->regmap, GP2AP020A00F_OP_REG,
op_reg_val);
if (ret < 0)
goto done;
}
if (op_reg_flags & GP2AP020A00F_FLAG_A) {
/* Check D0 register to assess if the lux mode
* transition is required.
*/
ret = regmap_bulk_read(priv->regmap, GP2AP020A00F_D0_L_REG,
d0_reg_buf, 2);
if (ret < 0)
goto done;
output_val = le16_to_cpup((__le16 *)d0_reg_buf);
if (gp2ap020a00f_adjust_lux_mode(priv, output_val))
goto done;
gp2ap020a00f_output_to_lux(priv, &output_val);
/*
* We need to check output value to distinguish
* between high and low ambient light threshold event.
*/
if (test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &priv->flags)) {
thresh_val_id =
GP2AP020A00F_THRESH_VAL_ID(GP2AP020A00F_TH_L_REG);
if (output_val > priv->thresh_val[thresh_val_id])
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(
IIO_LIGHT,
GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR,
IIO_MOD_LIGHT_CLEAR,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
iio_get_time_ns());
}
if (test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &priv->flags)) {
thresh_val_id =
GP2AP020A00F_THRESH_VAL_ID(GP2AP020A00F_TL_L_REG);
if (output_val < priv->thresh_val[thresh_val_id])
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(
IIO_LIGHT,
GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR,
IIO_MOD_LIGHT_CLEAR,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
iio_get_time_ns());
}
}
if (priv->cur_opmode == GP2AP020A00F_OPMODE_READ_RAW_CLEAR ||
priv->cur_opmode == GP2AP020A00F_OPMODE_READ_RAW_IR ||
priv->cur_opmode == GP2AP020A00F_OPMODE_READ_RAW_PROXIMITY) {
set_bit(GP2AP020A00F_FLAG_DATA_READY, &priv->flags);
wake_up(&priv->data_ready_queue);
goto done;
}
if (test_bit(GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, &priv->flags) ||
test_bit(GP2AP020A00F_FLAG_ALS_IR_TRIGGER, &priv->flags) ||
test_bit(GP2AP020A00F_FLAG_PROX_TRIGGER, &priv->flags))
/* This fires off the trigger. */
irq_work_queue(&priv->work);
done:
return IRQ_HANDLED;
}
static irqreturn_t gp2ap020a00f_trigger_handler(int irq, void *data)
{
struct iio_poll_func *pf = data;
struct iio_dev *indio_dev = pf->indio_dev;
struct gp2ap020a00f_data *priv = iio_priv(indio_dev);
size_t d_size = 0;
__le32 light_lux;
int i, out_val, ret;
for_each_set_bit(i, indio_dev->active_scan_mask,
indio_dev->masklength) {
ret = regmap_bulk_read(priv->regmap,
GP2AP020A00F_DATA_REG(i),
&priv->buffer[d_size], 2);
if (ret < 0)
goto done;
if (i == GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR ||
i == GP2AP020A00F_SCAN_MODE_LIGHT_IR) {
out_val = le16_to_cpup((__le16 *)&priv->buffer[d_size]);
gp2ap020a00f_output_to_lux(priv, &out_val);
light_lux = cpu_to_le32(out_val);
memcpy(&priv->buffer[d_size], (u8 *)&light_lux, 4);
d_size += 4;
} else {
d_size += 2;
}
}
iio_push_to_buffers_with_timestamp(indio_dev, priv->buffer,
pf->timestamp);
done:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static u8 gp2ap020a00f_get_reg_by_event_code(u64 event_code)
{
int event_dir = IIO_EVENT_CODE_EXTRACT_DIR(event_code);
switch (IIO_EVENT_CODE_EXTRACT_CHAN_TYPE(event_code)) {
case IIO_PROXIMITY:
if (event_dir == IIO_EV_DIR_RISING)
return GP2AP020A00F_PH_L_REG;
else
return GP2AP020A00F_PL_L_REG;
case IIO_LIGHT:
if (event_dir == IIO_EV_DIR_RISING)
return GP2AP020A00F_TH_L_REG;
else
return GP2AP020A00F_TL_L_REG;
}
return -EINVAL;
}
static int gp2ap020a00f_write_event_val(struct iio_dev *indio_dev,
u64 event_code, int val)
{
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
bool event_en = false;
u8 thresh_val_id;
u8 thresh_reg_l;
int err = 0;
mutex_lock(&data->lock);
thresh_reg_l = gp2ap020a00f_get_reg_by_event_code(event_code);
thresh_val_id = GP2AP020A00F_THRESH_VAL_ID(thresh_reg_l);
if (thresh_val_id > GP2AP020A00F_THRESH_PH) {
err = -EINVAL;
goto error_unlock;
}
switch (thresh_reg_l) {
case GP2AP020A00F_TH_L_REG:
event_en = test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV,
&data->flags);
break;
case GP2AP020A00F_TL_L_REG:
event_en = test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV,
&data->flags);
break;
case GP2AP020A00F_PH_L_REG:
if (val == 0) {
err = -EINVAL;
goto error_unlock;
}
event_en = test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV,
&data->flags);
break;
case GP2AP020A00F_PL_L_REG:
if (val == 0) {
err = -EINVAL;
goto error_unlock;
}
event_en = test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV,
&data->flags);
break;
}
data->thresh_val[thresh_val_id] = val;
err = gp2ap020a00f_write_event_threshold(data, thresh_val_id,
event_en);
error_unlock:
mutex_unlock(&data->lock);
return err;
}
static int gp2ap020a00f_read_event_val(struct iio_dev *indio_dev,
u64 event_code, int *val)
{
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
u8 thresh_reg_l;
int err = 0;
mutex_lock(&data->lock);
thresh_reg_l = gp2ap020a00f_get_reg_by_event_code(event_code);
if (thresh_reg_l > GP2AP020A00F_PH_L_REG) {
err = -EINVAL;
goto error_unlock;
}
*val = data->thresh_val[GP2AP020A00F_THRESH_VAL_ID(thresh_reg_l)];
error_unlock:
mutex_unlock(&data->lock);
return err;
}
static int gp2ap020a00f_write_prox_event_config(struct iio_dev *indio_dev,
u64 event_code, int state)
{
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
enum gp2ap020a00f_cmd cmd_high_ev, cmd_low_ev;
int err;
cmd_high_ev = state ? GP2AP020A00F_CMD_PROX_HIGH_EV_EN :
GP2AP020A00F_CMD_PROX_HIGH_EV_DIS;
cmd_low_ev = state ? GP2AP020A00F_CMD_PROX_LOW_EV_EN :
GP2AP020A00F_CMD_PROX_LOW_EV_DIS;
/*
* In order to enable proximity detection feature in the device
* both high and low threshold registers have to be written
* with different values, greater than zero.
*/
if (state) {
if (data->thresh_val[GP2AP020A00F_THRESH_PL] == 0)
return -EINVAL;
if (data->thresh_val[GP2AP020A00F_THRESH_PH] == 0)
return -EINVAL;
}
err = gp2ap020a00f_exec_cmd(data, cmd_high_ev);
if (err < 0)
return err;
err = gp2ap020a00f_exec_cmd(data, cmd_low_ev);
if (err < 0)
return err;
free_irq(data->client->irq, indio_dev);
if (state)
err = request_threaded_irq(data->client->irq, NULL,
&gp2ap020a00f_prox_sensing_handler,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
"gp2ap020a00f_prox_sensing",
indio_dev);
else {
err = request_threaded_irq(data->client->irq, NULL,
&gp2ap020a00f_thresh_event_handler,
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
"gp2ap020a00f_thresh_event",
indio_dev);
}
return err;
}
static int gp2ap020a00f_write_event_config(struct iio_dev *indio_dev,
u64 event_code, int state)
{
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
enum gp2ap020a00f_cmd cmd;
int err;
mutex_lock(&data->lock);
switch (IIO_EVENT_CODE_EXTRACT_CHAN_TYPE(event_code)) {
case IIO_PROXIMITY:
err = gp2ap020a00f_write_prox_event_config(indio_dev,
event_code, state);
break;
case IIO_LIGHT:
if (IIO_EVENT_CODE_EXTRACT_DIR(event_code)
== IIO_EV_DIR_RISING) {
cmd = state ? GP2AP020A00F_CMD_ALS_HIGH_EV_EN :
GP2AP020A00F_CMD_ALS_HIGH_EV_DIS;
err = gp2ap020a00f_exec_cmd(data, cmd);
} else {
cmd = state ? GP2AP020A00F_CMD_ALS_LOW_EV_EN :
GP2AP020A00F_CMD_ALS_LOW_EV_DIS;
err = gp2ap020a00f_exec_cmd(data, cmd);
}
break;
default:
err = -EINVAL;
}
mutex_unlock(&data->lock);
return err;
}
static int gp2ap020a00f_read_event_config(struct iio_dev *indio_dev,
u64 event_code)
{
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
int event_en = 0;
mutex_lock(&data->lock);
switch (IIO_EVENT_CODE_EXTRACT_CHAN_TYPE(event_code)) {
case IIO_PROXIMITY:
if (IIO_EVENT_CODE_EXTRACT_DIR(event_code)
== IIO_EV_DIR_RISING)
event_en = test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV,
&data->flags);
else
event_en = test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV,
&data->flags);
break;
case IIO_LIGHT:
if (IIO_EVENT_CODE_EXTRACT_DIR(event_code)
== IIO_EV_DIR_RISING)
event_en = test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV,
&data->flags);
else
event_en = test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV,
&data->flags);
break;
}
mutex_unlock(&data->lock);
return event_en;
}
static int gp2ap020a00f_read_channel(struct gp2ap020a00f_data *data,
struct iio_chan_spec const *chan, int *val)
{
enum gp2ap020a00f_cmd cmd;
int err;
switch (chan->scan_index) {
case GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR:
cmd = GP2AP020A00F_CMD_READ_RAW_CLEAR;
break;
case GP2AP020A00F_SCAN_MODE_LIGHT_IR:
cmd = GP2AP020A00F_CMD_READ_RAW_IR;
break;
case GP2AP020A00F_SCAN_MODE_PROXIMITY:
cmd = GP2AP020A00F_CMD_READ_RAW_PROXIMITY;
break;
default:
return -EINVAL;
}
err = gp2ap020a00f_exec_cmd(data, cmd);
if (err < 0) {
dev_err(&data->client->dev,
"gp2ap020a00f_exec_cmd failed\n");
goto error_ret;
}
err = gp2ap020a00f_read_output(data, chan->address, val);
if (err < 0)
dev_err(&data->client->dev,
"gp2ap020a00f_read_output failed\n");
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_SHUTDOWN);
if (err < 0)
dev_err(&data->client->dev,
"Failed to shut down the device.\n");
if (cmd == GP2AP020A00F_CMD_READ_RAW_CLEAR ||
cmd == GP2AP020A00F_CMD_READ_RAW_IR)
gp2ap020a00f_output_to_lux(data, val);
error_ret:
return err;
}
static int gp2ap020a00f_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2,
long mask)
{
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
int err = -EINVAL;
mutex_lock(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (iio_buffer_enabled(indio_dev)) {
err = -EBUSY;
goto error_unlock;
}
err = gp2ap020a00f_read_channel(data, chan, val);
break;
}
error_unlock:
mutex_unlock(&data->lock);
return err < 0 ? err : IIO_VAL_INT;
}
static const struct iio_chan_spec gp2ap020a00f_channels[] = {
{
.type = IIO_LIGHT,
.channel2 = IIO_MOD_LIGHT_CLEAR,
.modified = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.scan_type = {
.sign = 'u',
.realbits = 24,
.shift = 0,
.storagebits = 32,
.endianness = IIO_LE,
},
.scan_index = GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR,
.address = GP2AP020A00F_D0_L_REG,
.event_mask = IIO_EV_BIT(IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING) |
IIO_EV_BIT(IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
},
{
.type = IIO_LIGHT,
.channel2 = IIO_MOD_LIGHT_IR,
.modified = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.scan_type = {
.sign = 'u',
.realbits = 24,
.shift = 0,
.storagebits = 32,
.endianness = IIO_LE,
},
.scan_index = GP2AP020A00F_SCAN_MODE_LIGHT_IR,
.address = GP2AP020A00F_D1_L_REG,
},
{
.type = IIO_PROXIMITY,
.modified = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.scan_type = {
.sign = 'u',
.realbits = 16,
.shift = 0,
.storagebits = 16,
.endianness = IIO_LE,
},
.scan_index = GP2AP020A00F_SCAN_MODE_PROXIMITY,
.address = GP2AP020A00F_D2_L_REG,
.event_mask = IIO_EV_BIT(IIO_EV_TYPE_ROC,
IIO_EV_DIR_RISING) |
IIO_EV_BIT(IIO_EV_TYPE_ROC,
IIO_EV_DIR_FALLING),
},
IIO_CHAN_SOFT_TIMESTAMP(GP2AP020A00F_CHAN_TIMESTAMP),
};
static const struct iio_info gp2ap020a00f_info = {
.read_raw = &gp2ap020a00f_read_raw,
.read_event_value = &gp2ap020a00f_read_event_val,
.read_event_config = &gp2ap020a00f_read_event_config,
.write_event_value = &gp2ap020a00f_write_event_val,
.write_event_config = &gp2ap020a00f_write_event_config,
.driver_module = THIS_MODULE,
};
static int gp2ap020a00f_buffer_postenable(struct iio_dev *indio_dev)
{
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
int i, err = 0;
mutex_lock(&data->lock);
/*
* Enable triggers according to the scan_mask. Enabling either
* LIGHT_CLEAR or LIGHT_IR scan mode results in enabling ALS
* module in the device, which generates samples in both D0 (clear)
* and D1 (ir) registers. As the two registers are bound to the
* two separate IIO channels they are treated in the driver logic
* as if they were controlled independently.
*/
for_each_set_bit(i, indio_dev->active_scan_mask,
indio_dev->masklength) {
switch (i) {
case GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR:
err = gp2ap020a00f_exec_cmd(data,
GP2AP020A00F_CMD_TRIGGER_CLEAR_EN);
break;
case GP2AP020A00F_SCAN_MODE_LIGHT_IR:
err = gp2ap020a00f_exec_cmd(data,
GP2AP020A00F_CMD_TRIGGER_IR_EN);
break;
case GP2AP020A00F_SCAN_MODE_PROXIMITY:
err = gp2ap020a00f_exec_cmd(data,
GP2AP020A00F_CMD_TRIGGER_PROX_EN);
break;
}
}
if (err < 0)
goto error_unlock;
data->buffer = kmalloc(indio_dev->scan_bytes, GFP_KERNEL);
if (!data->buffer) {
err = -ENOMEM;
goto error_unlock;
}
err = iio_triggered_buffer_postenable(indio_dev);
error_unlock:
mutex_unlock(&data->lock);
return err;
}
static int gp2ap020a00f_buffer_predisable(struct iio_dev *indio_dev)
{
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
int i, err;
mutex_lock(&data->lock);
err = iio_triggered_buffer_predisable(indio_dev);
if (err < 0)
goto error_unlock;
for_each_set_bit(i, indio_dev->active_scan_mask,
indio_dev->masklength) {
switch (i) {
case GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR:
err = gp2ap020a00f_exec_cmd(data,
GP2AP020A00F_CMD_TRIGGER_CLEAR_DIS);
break;
case GP2AP020A00F_SCAN_MODE_LIGHT_IR:
err = gp2ap020a00f_exec_cmd(data,
GP2AP020A00F_CMD_TRIGGER_IR_DIS);
break;
case GP2AP020A00F_SCAN_MODE_PROXIMITY:
err = gp2ap020a00f_exec_cmd(data,
GP2AP020A00F_CMD_TRIGGER_PROX_DIS);
break;
}
}
if (err == 0)
kfree(data->buffer);
error_unlock:
mutex_unlock(&data->lock);
return err;
}
static const struct iio_buffer_setup_ops gp2ap020a00f_buffer_setup_ops = {
.preenable = &iio_sw_buffer_preenable,
.postenable = &gp2ap020a00f_buffer_postenable,
.predisable = &gp2ap020a00f_buffer_predisable,
};
static const struct iio_trigger_ops gp2ap020a00f_trigger_ops = {
.owner = THIS_MODULE,
};
static int gp2ap020a00f_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct gp2ap020a00f_data *data;
struct iio_dev *indio_dev;
struct regmap *regmap;
int err;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->vled_reg = devm_regulator_get(&client->dev, "vled");
if (IS_ERR(data->vled_reg))
return PTR_ERR(data->vled_reg);
err = regulator_enable(data->vled_reg);
if (err)
return err;
regmap = devm_regmap_init_i2c(client, &gp2ap020a00f_regmap_config);
if (IS_ERR(regmap)) {
dev_err(&client->dev, "Regmap initialization failed.\n");
err = PTR_ERR(regmap);
goto error_regulator_disable;
}
/* Initialize device registers */
err = regmap_bulk_write(regmap, GP2AP020A00F_OP_REG,
gp2ap020a00f_reg_init_tab,
ARRAY_SIZE(gp2ap020a00f_reg_init_tab));
if (err < 0) {
dev_err(&client->dev, "Device initialization failed.\n");
goto error_regulator_disable;
}
i2c_set_clientdata(client, indio_dev);
data->client = client;
data->cur_opmode = GP2AP020A00F_OPMODE_SHUTDOWN;
data->regmap = regmap;
init_waitqueue_head(&data->data_ready_queue);
mutex_init(&data->lock);
indio_dev->dev.parent = &client->dev;
indio_dev->channels = gp2ap020a00f_channels;
indio_dev->num_channels = ARRAY_SIZE(gp2ap020a00f_channels);
indio_dev->info = &gp2ap020a00f_info;
indio_dev->name = id->name;
indio_dev->modes = INDIO_DIRECT_MODE;
/* Allocate buffer */
err = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
&gp2ap020a00f_trigger_handler, &gp2ap020a00f_buffer_setup_ops);
if (err < 0)
goto error_regulator_disable;
/* Allocate trigger */
data->trig = devm_iio_trigger_alloc(&client->dev, "%s-trigger",
indio_dev->name);
if (data->trig == NULL) {
err = -ENOMEM;
dev_err(&indio_dev->dev, "Failed to allocate iio trigger.\n");
goto error_uninit_buffer;
}
/* This needs to be requested here for read_raw calls to work. */
err = request_threaded_irq(client->irq, NULL,
&gp2ap020a00f_thresh_event_handler,
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
"gp2ap020a00f_als_event",
indio_dev);
if (err < 0) {
dev_err(&client->dev, "Irq request failed.\n");
goto error_uninit_buffer;
}
data->trig->ops = &gp2ap020a00f_trigger_ops;
data->trig->dev.parent = &data->client->dev;
init_irq_work(&data->work, gp2ap020a00f_iio_trigger_work);
err = iio_trigger_register(data->trig);
if (err < 0) {
dev_err(&client->dev, "Failed to register iio trigger.\n");
goto error_free_irq;
}
err = iio_device_register(indio_dev);
if (err < 0)
goto error_trigger_unregister;
return 0;
error_trigger_unregister:
iio_trigger_unregister(data->trig);
error_free_irq:
free_irq(client->irq, indio_dev);
error_uninit_buffer:
iio_triggered_buffer_cleanup(indio_dev);
error_regulator_disable:
regulator_disable(data->vled_reg);
return err;
}
static int gp2ap020a00f_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct gp2ap020a00f_data *data = iio_priv(indio_dev);
int err;
err = gp2ap020a00f_set_operation_mode(data,
GP2AP020A00F_OPMODE_SHUTDOWN);
if (err < 0)
dev_err(&indio_dev->dev, "Failed to power off the device.\n");
iio_device_unregister(indio_dev);
iio_trigger_unregister(data->trig);
free_irq(client->irq, indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
regulator_disable(data->vled_reg);
return 0;
}
static const struct i2c_device_id gp2ap020a00f_id[] = {
{ GP2A_I2C_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, gp2ap020a00f_id);
#ifdef CONFIG_OF
static const struct of_device_id gp2ap020a00f_of_match[] = {
{ .compatible = "sharp,gp2ap020a00f" },
{ }
};
#endif
static struct i2c_driver gp2ap020a00f_driver = {
.driver = {
.name = GP2A_I2C_NAME,
.of_match_table = of_match_ptr(gp2ap020a00f_of_match),
.owner = THIS_MODULE,
},
.probe = gp2ap020a00f_probe,
.remove = gp2ap020a00f_remove,
.id_table = gp2ap020a00f_id,
};
module_i2c_driver(gp2ap020a00f_driver);
MODULE_AUTHOR("Jacek Anaszewski <j.anaszewski@samsung.com>");
MODULE_DESCRIPTION("Sharp GP2AP020A00F Proximity/ALS sensor driver");
MODULE_LICENSE("GPL v2");