linux/fs/kernfs/dir.c

1782 lines
45 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* fs/kernfs/dir.c - kernfs directory implementation
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
*/
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/hash.h>
#include "kernfs-internal.h"
static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
/*
* Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
* call pr_cont() while holding rename_lock. Because sometimes pr_cont()
* will perform wakeups when releasing console_sem. Holding rename_lock
* will introduce deadlock if the scheduler reads the kernfs_name in the
* wakeup path.
*/
static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
static bool kernfs_active(struct kernfs_node *kn)
{
lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
return atomic_read(&kn->active) >= 0;
}
static bool kernfs_lockdep(struct kernfs_node *kn)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
return kn->flags & KERNFS_LOCKDEP;
#else
return false;
#endif
}
static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
{
if (!kn)
return strlcpy(buf, "(null)", buflen);
return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
}
/* kernfs_node_depth - compute depth from @from to @to */
static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
{
size_t depth = 0;
while (to->parent && to != from) {
depth++;
to = to->parent;
}
return depth;
}
static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
struct kernfs_node *b)
{
size_t da, db;
struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
if (ra != rb)
return NULL;
da = kernfs_depth(ra->kn, a);
db = kernfs_depth(rb->kn, b);
while (da > db) {
a = a->parent;
da--;
}
while (db > da) {
b = b->parent;
db--;
}
/* worst case b and a will be the same at root */
while (b != a) {
b = b->parent;
a = a->parent;
}
return a;
}
/**
* kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
* where kn_from is treated as root of the path.
* @kn_from: kernfs node which should be treated as root for the path
* @kn_to: kernfs node to which path is needed
* @buf: buffer to copy the path into
* @buflen: size of @buf
*
* We need to handle couple of scenarios here:
* [1] when @kn_from is an ancestor of @kn_to at some level
* kn_from: /n1/n2/n3
* kn_to: /n1/n2/n3/n4/n5
* result: /n4/n5
*
* [2] when @kn_from is on a different hierarchy and we need to find common
* ancestor between @kn_from and @kn_to.
* kn_from: /n1/n2/n3/n4
* kn_to: /n1/n2/n5
* result: /../../n5
* OR
* kn_from: /n1/n2/n3/n4/n5 [depth=5]
* kn_to: /n1/n2/n3 [depth=3]
* result: /../..
*
* [3] when @kn_to is NULL result will be "(null)"
*
* Returns the length of the full path. If the full length is equal to or
* greater than @buflen, @buf contains the truncated path with the trailing
* '\0'. On error, -errno is returned.
*/
static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
struct kernfs_node *kn_from,
char *buf, size_t buflen)
{
struct kernfs_node *kn, *common;
const char parent_str[] = "/..";
size_t depth_from, depth_to, len = 0;
int i, j;
if (!kn_to)
return strlcpy(buf, "(null)", buflen);
if (!kn_from)
kn_from = kernfs_root(kn_to)->kn;
if (kn_from == kn_to)
return strlcpy(buf, "/", buflen);
if (!buf)
return -EINVAL;
common = kernfs_common_ancestor(kn_from, kn_to);
if (WARN_ON(!common))
return -EINVAL;
depth_to = kernfs_depth(common, kn_to);
depth_from = kernfs_depth(common, kn_from);
buf[0] = '\0';
for (i = 0; i < depth_from; i++)
len += strlcpy(buf + len, parent_str,
len < buflen ? buflen - len : 0);
/* Calculate how many bytes we need for the rest */
for (i = depth_to - 1; i >= 0; i--) {
for (kn = kn_to, j = 0; j < i; j++)
kn = kn->parent;
len += strlcpy(buf + len, "/",
len < buflen ? buflen - len : 0);
len += strlcpy(buf + len, kn->name,
len < buflen ? buflen - len : 0);
}
return len;
}
/**
* kernfs_name - obtain the name of a given node
* @kn: kernfs_node of interest
* @buf: buffer to copy @kn's name into
* @buflen: size of @buf
*
* Copies the name of @kn into @buf of @buflen bytes. The behavior is
* similar to strlcpy(). It returns the length of @kn's name and if @buf
* isn't long enough, it's filled upto @buflen-1 and nul terminated.
*
* Fills buffer with "(null)" if @kn is NULL.
*
* This function can be called from any context.
*/
int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&kernfs_rename_lock, flags);
ret = kernfs_name_locked(kn, buf, buflen);
spin_unlock_irqrestore(&kernfs_rename_lock, flags);
return ret;
}
/**
* kernfs_path_from_node - build path of node @to relative to @from.
* @from: parent kernfs_node relative to which we need to build the path
* @to: kernfs_node of interest
* @buf: buffer to copy @to's path into
* @buflen: size of @buf
*
* Builds @to's path relative to @from in @buf. @from and @to must
* be on the same kernfs-root. If @from is not parent of @to, then a relative
* path (which includes '..'s) as needed to reach from @from to @to is
* returned.
*
* Returns the length of the full path. If the full length is equal to or
* greater than @buflen, @buf contains the truncated path with the trailing
* '\0'. On error, -errno is returned.
*/
int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
char *buf, size_t buflen)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&kernfs_rename_lock, flags);
ret = kernfs_path_from_node_locked(to, from, buf, buflen);
spin_unlock_irqrestore(&kernfs_rename_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(kernfs_path_from_node);
/**
* pr_cont_kernfs_name - pr_cont name of a kernfs_node
* @kn: kernfs_node of interest
*
* This function can be called from any context.
*/
void pr_cont_kernfs_name(struct kernfs_node *kn)
{
unsigned long flags;
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
pr_cont("%s", kernfs_pr_cont_buf);
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
}
/**
* pr_cont_kernfs_path - pr_cont path of a kernfs_node
* @kn: kernfs_node of interest
*
* This function can be called from any context.
*/
void pr_cont_kernfs_path(struct kernfs_node *kn)
{
unsigned long flags;
int sz;
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
sizeof(kernfs_pr_cont_buf));
if (sz < 0) {
pr_cont("(error)");
goto out;
}
if (sz >= sizeof(kernfs_pr_cont_buf)) {
pr_cont("(name too long)");
goto out;
}
pr_cont("%s", kernfs_pr_cont_buf);
out:
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
}
/**
* kernfs_get_parent - determine the parent node and pin it
* @kn: kernfs_node of interest
*
* Determines @kn's parent, pins and returns it. This function can be
* called from any context.
*/
struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
{
struct kernfs_node *parent;
unsigned long flags;
spin_lock_irqsave(&kernfs_rename_lock, flags);
parent = kn->parent;
kernfs_get(parent);
spin_unlock_irqrestore(&kernfs_rename_lock, flags);
return parent;
}
/**
* kernfs_name_hash
* @name: Null terminated string to hash
* @ns: Namespace tag to hash
*
* Returns 31 bit hash of ns + name (so it fits in an off_t )
*/
static unsigned int kernfs_name_hash(const char *name, const void *ns)
{
unsigned long hash = init_name_hash(ns);
unsigned int len = strlen(name);
while (len--)
hash = partial_name_hash(*name++, hash);
hash = end_name_hash(hash);
hash &= 0x7fffffffU;
/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
if (hash < 2)
hash += 2;
if (hash >= INT_MAX)
hash = INT_MAX - 1;
return hash;
}
static int kernfs_name_compare(unsigned int hash, const char *name,
const void *ns, const struct kernfs_node *kn)
{
if (hash < kn->hash)
return -1;
if (hash > kn->hash)
return 1;
if (ns < kn->ns)
return -1;
if (ns > kn->ns)
return 1;
return strcmp(name, kn->name);
}
static int kernfs_sd_compare(const struct kernfs_node *left,
const struct kernfs_node *right)
{
return kernfs_name_compare(left->hash, left->name, left->ns, right);
}
/**
* kernfs_link_sibling - link kernfs_node into sibling rbtree
* @kn: kernfs_node of interest
*
* Link @kn into its sibling rbtree which starts from
* @kn->parent->dir.children.
*
* Locking:
* kernfs_rwsem held exclusive
*
* RETURNS:
* 0 on susccess -EEXIST on failure.
*/
static int kernfs_link_sibling(struct kernfs_node *kn)
{
struct rb_node **node = &kn->parent->dir.children.rb_node;
struct rb_node *parent = NULL;
while (*node) {
struct kernfs_node *pos;
int result;
pos = rb_to_kn(*node);
parent = *node;
result = kernfs_sd_compare(kn, pos);
if (result < 0)
node = &pos->rb.rb_left;
else if (result > 0)
node = &pos->rb.rb_right;
else
return -EEXIST;
}
/* add new node and rebalance the tree */
rb_link_node(&kn->rb, parent, node);
rb_insert_color(&kn->rb, &kn->parent->dir.children);
/* successfully added, account subdir number */
if (kernfs_type(kn) == KERNFS_DIR)
kn->parent->dir.subdirs++;
kernfs_inc_rev(kn->parent);
return 0;
}
/**
* kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
* @kn: kernfs_node of interest
*
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
* Try to unlink @kn from its sibling rbtree which starts from
* kn->parent->dir.children. Returns %true if @kn was actually
* removed, %false if @kn wasn't on the rbtree.
*
* Locking:
* kernfs_rwsem held exclusive
*/
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
static bool kernfs_unlink_sibling(struct kernfs_node *kn)
{
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
if (RB_EMPTY_NODE(&kn->rb))
return false;
if (kernfs_type(kn) == KERNFS_DIR)
kn->parent->dir.subdirs--;
kernfs_inc_rev(kn->parent);
rb_erase(&kn->rb, &kn->parent->dir.children);
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
RB_CLEAR_NODE(&kn->rb);
return true;
}
/**
* kernfs_get_active - get an active reference to kernfs_node
* @kn: kernfs_node to get an active reference to
*
* Get an active reference of @kn. This function is noop if @kn
* is NULL.
*
* RETURNS:
* Pointer to @kn on success, NULL on failure.
*/
struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
{
if (unlikely(!kn))
return NULL;
if (!atomic_inc_unless_negative(&kn->active))
return NULL;
if (kernfs_lockdep(kn))
rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
return kn;
}
/**
* kernfs_put_active - put an active reference to kernfs_node
* @kn: kernfs_node to put an active reference to
*
* Put an active reference to @kn. This function is noop if @kn
* is NULL.
*/
void kernfs_put_active(struct kernfs_node *kn)
{
int v;
if (unlikely(!kn))
return;
if (kernfs_lockdep(kn))
2019-09-20 00:09:40 +08:00
rwsem_release(&kn->dep_map, _RET_IP_);
v = atomic_dec_return(&kn->active);
if (likely(v != KN_DEACTIVATED_BIAS))
return;
wake_up_all(&kernfs_root(kn)->deactivate_waitq);
}
/**
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
* kernfs_drain - drain kernfs_node
* @kn: kernfs_node to drain
*
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
* Drain existing usages and nuke all existing mmaps of @kn. Mutiple
* removers may invoke this function concurrently on @kn and all will
* return after draining is complete.
*/
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
static void kernfs_drain(struct kernfs_node *kn)
__releases(&kernfs_root(kn)->kernfs_rwsem)
__acquires(&kernfs_root(kn)->kernfs_rwsem)
{
struct kernfs_root *root = kernfs_root(kn);
lockdep_assert_held_write(&root->kernfs_rwsem);
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
WARN_ON_ONCE(kernfs_active(kn));
up_write(&root->kernfs_rwsem);
if (kernfs_lockdep(kn)) {
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
lock_contended(&kn->dep_map, _RET_IP_);
}
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
/* but everyone should wait for draining */
wait_event(root->deactivate_waitq,
atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
if (kernfs_lockdep(kn)) {
kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag kernfs_deactivate() forgot to check whether KERNFS_LOCKDEP is set before performing lockdep annotations and ends up feeding uninitialized lockdep_map to lockdep triggering warning like the following on USB stick hotunplug. usb 1-2: USB disconnect, device number 2 INFO: trying to register non-static key. the code is fine but needs lockdep annotation. turning off the locking correctness validator. CPU: 1 PID: 62 Comm: khubd Not tainted 3.13.0-work+ #82 Hardware name: empty empty/S3992, BIOS 080011 10/26/2007 ffff880065ca7f60 ffff88013a4ffa08 ffffffff81cfb6bd 0000000000000002 ffff88013a4ffac8 ffffffff810f8530 ffff88013a4fc710 0000000000000002 ffff880100000000 ffffffff82a3db50 0000000000000001 ffff88013a4fc710 Call Trace: [<ffffffff81cfb6bd>] dump_stack+0x4e/0x7a [<ffffffff810f8530>] __lock_acquire+0x1910/0x1e70 [<ffffffff810f931a>] lock_acquire+0x9a/0x1d0 [<ffffffff8127c75e>] kernfs_deactivate+0xee/0x130 [<ffffffff8127d4c8>] kernfs_addrm_finish+0x38/0x60 [<ffffffff8127d701>] kernfs_remove_by_name_ns+0x51/0xa0 [<ffffffff8127b4f1>] remove_files.isra.1+0x41/0x80 [<ffffffff8127b7e7>] sysfs_remove_group+0x47/0xa0 [<ffffffff8127b873>] sysfs_remove_groups+0x33/0x50 [<ffffffff8177d66d>] device_remove_attrs+0x4d/0x80 [<ffffffff8177e25e>] device_del+0x12e/0x1d0 [<ffffffff819722c2>] usb_disconnect+0x122/0x1a0 [<ffffffff819749b5>] hub_thread+0x3c5/0x1290 [<ffffffff810c6a6d>] kthread+0xed/0x110 [<ffffffff81d0a56c>] ret_from_fork+0x7c/0xb0 Fix it by making kernfs_deactivate() perform lockdep annotations only if KERNFS_LOCKDEP is set. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Fabio Estevam <festevam@gmail.com> Reported-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:54 +08:00
lock_acquired(&kn->dep_map, _RET_IP_);
2019-09-20 00:09:40 +08:00
rwsem_release(&kn->dep_map, _RET_IP_);
kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag kernfs_deactivate() forgot to check whether KERNFS_LOCKDEP is set before performing lockdep annotations and ends up feeding uninitialized lockdep_map to lockdep triggering warning like the following on USB stick hotunplug. usb 1-2: USB disconnect, device number 2 INFO: trying to register non-static key. the code is fine but needs lockdep annotation. turning off the locking correctness validator. CPU: 1 PID: 62 Comm: khubd Not tainted 3.13.0-work+ #82 Hardware name: empty empty/S3992, BIOS 080011 10/26/2007 ffff880065ca7f60 ffff88013a4ffa08 ffffffff81cfb6bd 0000000000000002 ffff88013a4ffac8 ffffffff810f8530 ffff88013a4fc710 0000000000000002 ffff880100000000 ffffffff82a3db50 0000000000000001 ffff88013a4fc710 Call Trace: [<ffffffff81cfb6bd>] dump_stack+0x4e/0x7a [<ffffffff810f8530>] __lock_acquire+0x1910/0x1e70 [<ffffffff810f931a>] lock_acquire+0x9a/0x1d0 [<ffffffff8127c75e>] kernfs_deactivate+0xee/0x130 [<ffffffff8127d4c8>] kernfs_addrm_finish+0x38/0x60 [<ffffffff8127d701>] kernfs_remove_by_name_ns+0x51/0xa0 [<ffffffff8127b4f1>] remove_files.isra.1+0x41/0x80 [<ffffffff8127b7e7>] sysfs_remove_group+0x47/0xa0 [<ffffffff8127b873>] sysfs_remove_groups+0x33/0x50 [<ffffffff8177d66d>] device_remove_attrs+0x4d/0x80 [<ffffffff8177e25e>] device_del+0x12e/0x1d0 [<ffffffff819722c2>] usb_disconnect+0x122/0x1a0 [<ffffffff819749b5>] hub_thread+0x3c5/0x1290 [<ffffffff810c6a6d>] kthread+0xed/0x110 [<ffffffff81d0a56c>] ret_from_fork+0x7c/0xb0 Fix it by making kernfs_deactivate() perform lockdep annotations only if KERNFS_LOCKDEP is set. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Fabio Estevam <festevam@gmail.com> Reported-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:54 +08:00
}
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
kernfs_drain_open_files(kn);
down_write(&root->kernfs_rwsem);
}
/**
* kernfs_get - get a reference count on a kernfs_node
* @kn: the target kernfs_node
*/
void kernfs_get(struct kernfs_node *kn)
{
if (kn) {
WARN_ON(!atomic_read(&kn->count));
atomic_inc(&kn->count);
}
}
EXPORT_SYMBOL_GPL(kernfs_get);
/**
* kernfs_put - put a reference count on a kernfs_node
* @kn: the target kernfs_node
*
* Put a reference count of @kn and destroy it if it reached zero.
*/
void kernfs_put(struct kernfs_node *kn)
{
struct kernfs_node *parent;
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
struct kernfs_root *root;
if (!kn || !atomic_dec_and_test(&kn->count))
return;
root = kernfs_root(kn);
repeat:
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
/*
* Moving/renaming is always done while holding reference.
* kn->parent won't change beneath us.
*/
parent = kn->parent;
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
"kernfs_put: %s/%s: released with incorrect active_ref %d\n",
parent ? parent->name : "", kn->name, atomic_read(&kn->active));
if (kernfs_type(kn) == KERNFS_LINK)
kernfs_put(kn->symlink.target_kn);
kfree_const(kn->name);
if (kn->iattr) {
simple_xattrs_free(&kn->iattr->xattrs);
kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
}
spin_lock(&kernfs_idr_lock);
idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
spin_unlock(&kernfs_idr_lock);
kmem_cache_free(kernfs_node_cache, kn);
kn = parent;
if (kn) {
if (atomic_dec_and_test(&kn->count))
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
goto repeat;
} else {
/* just released the root kn, free @root too */
idr_destroy(&root->ino_idr);
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
kfree(root);
}
}
EXPORT_SYMBOL_GPL(kernfs_put);
/**
* kernfs_node_from_dentry - determine kernfs_node associated with a dentry
* @dentry: the dentry in question
*
* Return the kernfs_node associated with @dentry. If @dentry is not a
* kernfs one, %NULL is returned.
*
* While the returned kernfs_node will stay accessible as long as @dentry
* is accessible, the returned node can be in any state and the caller is
* fully responsible for determining what's accessible.
*/
struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
{
if (dentry->d_sb->s_op == &kernfs_sops)
return kernfs_dentry_node(dentry);
return NULL;
}
static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
kernfs: initialize security of newly created nodes Use the new security_kernfs_init_security() hook to allow LSMs to possibly assign a non-default security context to a newly created kernfs node based on the attributes of the new node and also its parent node. This fixes an issue with cgroupfs under SELinux, where newly created cgroup subdirectories/files would not inherit its parent's context if it had been set explicitly to a non-default value (other than the genfs context specified by the policy). This can be reproduced as follows (on Fedora/RHEL): # mkdir /sys/fs/cgroup/unified/test # # Need permissive to change the label under Fedora policy: # setenforce 0 # chcon -t container_file_t /sys/fs/cgroup/unified/test # ls -lZ /sys/fs/cgroup/unified total 0 -r--r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.controllers -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.max.depth -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.max.descendants -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.procs -r--r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.stat -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.subtree_control -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.threads drwxr-xr-x. 2 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 init.scope drwxr-xr-x. 26 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:21 system.slice drwxr-xr-x. 3 root root system_u:object_r:container_file_t:s0 0 Jan 29 03:15 test drwxr-xr-x. 3 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 user.slice # mkdir /sys/fs/cgroup/unified/test/subdir Actual result: # ls -ldZ /sys/fs/cgroup/unified/test/subdir drwxr-xr-x. 2 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:15 /sys/fs/cgroup/unified/test/subdir Expected result: # ls -ldZ /sys/fs/cgroup/unified/test/subdir drwxr-xr-x. 2 root root unconfined_u:object_r:container_file_t:s0 0 Jan 29 03:15 /sys/fs/cgroup/unified/test/subdir Link: https://github.com/SELinuxProject/selinux-kernel/issues/39 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-02-22 22:57:18 +08:00
struct kernfs_node *parent,
const char *name, umode_t mode,
kuid_t uid, kgid_t gid,
unsigned flags)
{
struct kernfs_node *kn;
u32 id_highbits;
int ret;
name = kstrdup_const(name, GFP_KERNEL);
if (!name)
return NULL;
kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
if (!kn)
goto err_out1;
idr_preload(GFP_KERNEL);
spin_lock(&kernfs_idr_lock);
ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
if (ret >= 0 && ret < root->last_id_lowbits)
root->id_highbits++;
id_highbits = root->id_highbits;
root->last_id_lowbits = ret;
spin_unlock(&kernfs_idr_lock);
idr_preload_end();
if (ret < 0)
goto err_out2;
kn->id = (u64)id_highbits << 32 | ret;
atomic_set(&kn->count, 1);
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
RB_CLEAR_NODE(&kn->rb);
kn->name = name;
kn->mode = mode;
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
kn->flags = flags;
if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
struct iattr iattr = {
.ia_valid = ATTR_UID | ATTR_GID,
.ia_uid = uid,
.ia_gid = gid,
};
ret = __kernfs_setattr(kn, &iattr);
if (ret < 0)
goto err_out3;
}
kernfs: initialize security of newly created nodes Use the new security_kernfs_init_security() hook to allow LSMs to possibly assign a non-default security context to a newly created kernfs node based on the attributes of the new node and also its parent node. This fixes an issue with cgroupfs under SELinux, where newly created cgroup subdirectories/files would not inherit its parent's context if it had been set explicitly to a non-default value (other than the genfs context specified by the policy). This can be reproduced as follows (on Fedora/RHEL): # mkdir /sys/fs/cgroup/unified/test # # Need permissive to change the label under Fedora policy: # setenforce 0 # chcon -t container_file_t /sys/fs/cgroup/unified/test # ls -lZ /sys/fs/cgroup/unified total 0 -r--r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.controllers -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.max.depth -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.max.descendants -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.procs -r--r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.stat -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.subtree_control -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.threads drwxr-xr-x. 2 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 init.scope drwxr-xr-x. 26 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:21 system.slice drwxr-xr-x. 3 root root system_u:object_r:container_file_t:s0 0 Jan 29 03:15 test drwxr-xr-x. 3 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 user.slice # mkdir /sys/fs/cgroup/unified/test/subdir Actual result: # ls -ldZ /sys/fs/cgroup/unified/test/subdir drwxr-xr-x. 2 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:15 /sys/fs/cgroup/unified/test/subdir Expected result: # ls -ldZ /sys/fs/cgroup/unified/test/subdir drwxr-xr-x. 2 root root unconfined_u:object_r:container_file_t:s0 0 Jan 29 03:15 /sys/fs/cgroup/unified/test/subdir Link: https://github.com/SELinuxProject/selinux-kernel/issues/39 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-02-22 22:57:18 +08:00
if (parent) {
ret = security_kernfs_init_security(parent, kn);
if (ret)
goto err_out3;
}
return kn;
err_out3:
idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
err_out2:
kmem_cache_free(kernfs_node_cache, kn);
err_out1:
kfree_const(name);
return NULL;
}
struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
const char *name, umode_t mode,
kuid_t uid, kgid_t gid,
unsigned flags)
{
struct kernfs_node *kn;
kernfs: initialize security of newly created nodes Use the new security_kernfs_init_security() hook to allow LSMs to possibly assign a non-default security context to a newly created kernfs node based on the attributes of the new node and also its parent node. This fixes an issue with cgroupfs under SELinux, where newly created cgroup subdirectories/files would not inherit its parent's context if it had been set explicitly to a non-default value (other than the genfs context specified by the policy). This can be reproduced as follows (on Fedora/RHEL): # mkdir /sys/fs/cgroup/unified/test # # Need permissive to change the label under Fedora policy: # setenforce 0 # chcon -t container_file_t /sys/fs/cgroup/unified/test # ls -lZ /sys/fs/cgroup/unified total 0 -r--r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.controllers -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.max.depth -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.max.descendants -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.procs -r--r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.stat -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.subtree_control -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.threads drwxr-xr-x. 2 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 init.scope drwxr-xr-x. 26 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:21 system.slice drwxr-xr-x. 3 root root system_u:object_r:container_file_t:s0 0 Jan 29 03:15 test drwxr-xr-x. 3 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 user.slice # mkdir /sys/fs/cgroup/unified/test/subdir Actual result: # ls -ldZ /sys/fs/cgroup/unified/test/subdir drwxr-xr-x. 2 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:15 /sys/fs/cgroup/unified/test/subdir Expected result: # ls -ldZ /sys/fs/cgroup/unified/test/subdir drwxr-xr-x. 2 root root unconfined_u:object_r:container_file_t:s0 0 Jan 29 03:15 /sys/fs/cgroup/unified/test/subdir Link: https://github.com/SELinuxProject/selinux-kernel/issues/39 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-02-22 22:57:18 +08:00
kn = __kernfs_new_node(kernfs_root(parent), parent,
name, mode, uid, gid, flags);
if (kn) {
kernfs_get(parent);
kn->parent = parent;
}
return kn;
}
/*
* kernfs_find_and_get_node_by_id - get kernfs_node from node id
* @root: the kernfs root
* @id: the target node id
*
* @id's lower 32bits encode ino and upper gen. If the gen portion is
* zero, all generations are matched.
*
* RETURNS:
* NULL on failure. Return a kernfs node with reference counter incremented
*/
struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
u64 id)
{
struct kernfs_node *kn;
ino_t ino = kernfs_id_ino(id);
u32 gen = kernfs_id_gen(id);
spin_lock(&kernfs_idr_lock);
kn = idr_find(&root->ino_idr, (u32)ino);
if (!kn)
goto err_unlock;
if (sizeof(ino_t) >= sizeof(u64)) {
/* we looked up with the low 32bits, compare the whole */
if (kernfs_ino(kn) != ino)
goto err_unlock;
} else {
/* 0 matches all generations */
if (unlikely(gen && kernfs_gen(kn) != gen))
goto err_unlock;
}
/*
* ACTIVATED is protected with kernfs_mutex but it was clear when
* @kn was added to idr and we just wanna see it set. No need to
* grab kernfs_mutex.
*/
if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
!atomic_inc_not_zero(&kn->count)))
goto err_unlock;
spin_unlock(&kernfs_idr_lock);
return kn;
err_unlock:
spin_unlock(&kernfs_idr_lock);
return NULL;
}
/**
* kernfs_add_one - add kernfs_node to parent without warning
* @kn: kernfs_node to be added
*
* The caller must already have initialized @kn->parent. This
* function increments nlink of the parent's inode if @kn is a
* directory and link into the children list of the parent.
*
* RETURNS:
* 0 on success, -EEXIST if entry with the given name already
* exists.
*/
int kernfs_add_one(struct kernfs_node *kn)
{
struct kernfs_node *parent = kn->parent;
struct kernfs_root *root = kernfs_root(parent);
struct kernfs_iattrs *ps_iattr;
bool has_ns;
int ret;
down_write(&root->kernfs_rwsem);
ret = -EINVAL;
has_ns = kernfs_ns_enabled(parent);
if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
has_ns ? "required" : "invalid", parent->name, kn->name))
goto out_unlock;
if (kernfs_type(parent) != KERNFS_DIR)
goto out_unlock;
ret = -ENOENT;
if (parent->flags & KERNFS_EMPTY_DIR)
goto out_unlock;
if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
goto out_unlock;
kn->hash = kernfs_name_hash(kn->name, kn->ns);
ret = kernfs_link_sibling(kn);
if (ret)
goto out_unlock;
/* Update timestamps on the parent */
ps_iattr = parent->iattr;
if (ps_iattr) {
ktime_get_real_ts64(&ps_iattr->ia_ctime);
ps_iattr->ia_mtime = ps_iattr->ia_ctime;
}
up_write(&root->kernfs_rwsem);
/*
* Activate the new node unless CREATE_DEACTIVATED is requested.
* If not activated here, the kernfs user is responsible for
* activating the node with kernfs_activate(). A node which hasn't
* been activated is not visible to userland and its removal won't
* trigger deactivation.
*/
if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
kernfs_activate(kn);
return 0;
out_unlock:
up_write(&root->kernfs_rwsem);
return ret;
}
/**
* kernfs_find_ns - find kernfs_node with the given name
* @parent: kernfs_node to search under
* @name: name to look for
* @ns: the namespace tag to use
*
* Look for kernfs_node with name @name under @parent. Returns pointer to
* the found kernfs_node on success, %NULL on failure.
*/
static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
const unsigned char *name,
const void *ns)
{
struct rb_node *node = parent->dir.children.rb_node;
bool has_ns = kernfs_ns_enabled(parent);
unsigned int hash;
lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
if (has_ns != (bool)ns) {
WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
has_ns ? "required" : "invalid", parent->name, name);
return NULL;
}
hash = kernfs_name_hash(name, ns);
while (node) {
struct kernfs_node *kn;
int result;
kn = rb_to_kn(node);
result = kernfs_name_compare(hash, name, ns, kn);
if (result < 0)
node = node->rb_left;
else if (result > 0)
node = node->rb_right;
else
return kn;
}
return NULL;
}
static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
const unsigned char *path,
const void *ns)
{
size_t len;
char *p, *name;
lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
spin_lock_irq(&kernfs_pr_cont_lock);
len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
if (len >= sizeof(kernfs_pr_cont_buf)) {
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
spin_unlock_irq(&kernfs_pr_cont_lock);
return NULL;
}
p = kernfs_pr_cont_buf;
while ((name = strsep(&p, "/")) && parent) {
if (*name == '\0')
continue;
parent = kernfs_find_ns(parent, name, ns);
}
kernfs: Separate kernfs_pr_cont_buf and rename_lock. Previously the protection of kernfs_pr_cont_buf was piggy backed by rename_lock, which means that pr_cont() needs to be protected under rename_lock. This can cause potential circular lock dependencies. If there is an OOM, we have the following call hierarchy: -> cpuset_print_current_mems_allowed() -> pr_cont_cgroup_name() -> pr_cont_kernfs_name() pr_cont_kernfs_name() will grab rename_lock and call printk. So we have the following lock dependencies: kernfs_rename_lock -> console_sem Sometimes, printk does a wakeup before releasing console_sem, which has the dependence chain: console_sem -> p->pi_lock -> rq->lock Now, imagine one wants to read cgroup_name under rq->lock, for example, printing cgroup_name in a tracepoint in the scheduler code. They will be holding rq->lock and take rename_lock: rq->lock -> kernfs_rename_lock Now they will deadlock. A prevention to this circular lock dependency is to separate the protection of pr_cont_buf from rename_lock. In principle, rename_lock is to protect the integrity of cgroup name when copying to buf. Once pr_cont_buf has got its content, rename_lock can be dropped. So it's safe to drop rename_lock after kernfs_name_locked (and kernfs_path_from_node_locked) and rely on a dedicated pr_cont_lock to protect pr_cont_buf. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220516190951.3144144-1-haoluo@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-17 03:09:51 +08:00
spin_unlock_irq(&kernfs_pr_cont_lock);
return parent;
}
/**
* kernfs_find_and_get_ns - find and get kernfs_node with the given name
* @parent: kernfs_node to search under
* @name: name to look for
* @ns: the namespace tag to use
*
* Look for kernfs_node with name @name under @parent and get a reference
* if found. This function may sleep and returns pointer to the found
* kernfs_node on success, %NULL on failure.
*/
struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
const char *name, const void *ns)
{
struct kernfs_node *kn;
struct kernfs_root *root = kernfs_root(parent);
down_read(&root->kernfs_rwsem);
kn = kernfs_find_ns(parent, name, ns);
kernfs_get(kn);
up_read(&root->kernfs_rwsem);
return kn;
}
EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
/**
* kernfs_walk_and_get_ns - find and get kernfs_node with the given path
* @parent: kernfs_node to search under
* @path: path to look for
* @ns: the namespace tag to use
*
* Look for kernfs_node with path @path under @parent and get a reference
* if found. This function may sleep and returns pointer to the found
* kernfs_node on success, %NULL on failure.
*/
struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
const char *path, const void *ns)
{
struct kernfs_node *kn;
struct kernfs_root *root = kernfs_root(parent);
down_read(&root->kernfs_rwsem);
kn = kernfs_walk_ns(parent, path, ns);
kernfs_get(kn);
up_read(&root->kernfs_rwsem);
return kn;
}
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
/**
* kernfs_create_root - create a new kernfs hierarchy
* @scops: optional syscall operations for the hierarchy
* @flags: KERNFS_ROOT_* flags
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
* @priv: opaque data associated with the new directory
*
* Returns the root of the new hierarchy on success, ERR_PTR() value on
* failure.
*/
struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
unsigned int flags, void *priv)
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
{
struct kernfs_root *root;
struct kernfs_node *kn;
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
root = kzalloc(sizeof(*root), GFP_KERNEL);
if (!root)
return ERR_PTR(-ENOMEM);
idr_init(&root->ino_idr);
init_rwsem(&root->kernfs_rwsem);
INIT_LIST_HEAD(&root->supers);
/*
* On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
* High bits generation. The starting value for both ino and
* genenration is 1. Initialize upper 32bit allocation
* accordingly.
*/
if (sizeof(ino_t) >= sizeof(u64))
root->id_highbits = 0;
else
root->id_highbits = 1;
kernfs: initialize security of newly created nodes Use the new security_kernfs_init_security() hook to allow LSMs to possibly assign a non-default security context to a newly created kernfs node based on the attributes of the new node and also its parent node. This fixes an issue with cgroupfs under SELinux, where newly created cgroup subdirectories/files would not inherit its parent's context if it had been set explicitly to a non-default value (other than the genfs context specified by the policy). This can be reproduced as follows (on Fedora/RHEL): # mkdir /sys/fs/cgroup/unified/test # # Need permissive to change the label under Fedora policy: # setenforce 0 # chcon -t container_file_t /sys/fs/cgroup/unified/test # ls -lZ /sys/fs/cgroup/unified total 0 -r--r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.controllers -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.max.depth -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.max.descendants -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.procs -r--r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.stat -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.subtree_control -rw-r--r--. 1 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 cgroup.threads drwxr-xr-x. 2 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 init.scope drwxr-xr-x. 26 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:21 system.slice drwxr-xr-x. 3 root root system_u:object_r:container_file_t:s0 0 Jan 29 03:15 test drwxr-xr-x. 3 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:06 user.slice # mkdir /sys/fs/cgroup/unified/test/subdir Actual result: # ls -ldZ /sys/fs/cgroup/unified/test/subdir drwxr-xr-x. 2 root root system_u:object_r:cgroup_t:s0 0 Jan 29 03:15 /sys/fs/cgroup/unified/test/subdir Expected result: # ls -ldZ /sys/fs/cgroup/unified/test/subdir drwxr-xr-x. 2 root root unconfined_u:object_r:container_file_t:s0 0 Jan 29 03:15 /sys/fs/cgroup/unified/test/subdir Link: https://github.com/SELinuxProject/selinux-kernel/issues/39 Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-02-22 22:57:18 +08:00
kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
KERNFS_DIR);
if (!kn) {
idr_destroy(&root->ino_idr);
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
kfree(root);
return ERR_PTR(-ENOMEM);
}
kn->priv = priv;
kn->dir.root = root;
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
root->syscall_ops = scops;
root->flags = flags;
root->kn = kn;
init_waitqueue_head(&root->deactivate_waitq);
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
kernfs_activate(kn);
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
return root;
}
/**
* kernfs_destroy_root - destroy a kernfs hierarchy
* @root: root of the hierarchy to destroy
*
* Destroy the hierarchy anchored at @root by removing all existing
* directories and destroying @root.
*/
void kernfs_destroy_root(struct kernfs_root *root)
{
kernfs: prevent early freeing of root node Marek reported the warning below. ========================= WARNING: held lock freed! 5.16.0-rc2+ #10984 Not tainted ------------------------- kworker/1:0/18 is freeing memory ffff00004034e200-ffff00004034e3ff, with a lock still held there! ffff00004034e348 (&root->kernfs_rwsem){++++}-{3:3}, at: __kernfs_remove+0x310/0x37c 3 locks held by kworker/1:0/18: #0: ffff000040107938 ((wq_completion)cgroup_destroy){+.+.}-{0:0}, at: process_one_work+0x1f0/0x6f0 #1: ffff80000b55bdc0 ((work_completion)(&(&css->destroy_rwork)->work)){+.+.}-{0:0}, at: process_one_work+0x1f0/0x6f0 #2: ffff00004034e348 (&root->kernfs_rwsem){++++}-{3:3}, at: __kernfs_remove+0x310/0x37c stack backtrace: CPU: 1 PID: 18 Comm: kworker/1:0 Not tainted 5.16.0-rc2+ #10984 Hardware name: Raspberry Pi 4 Model B (DT) Workqueue: cgroup_destroy css_free_rwork_fn Call trace: dump_backtrace+0x0/0x1ac show_stack+0x18/0x24 dump_stack_lvl+0x8c/0xb8 dump_stack+0x18/0x34 debug_check_no_locks_freed+0x124/0x140 kfree+0xf0/0x3a4 kernfs_put+0x1f8/0x224 __kernfs_remove+0x1b8/0x37c kernfs_destroy_root+0x38/0x50 css_free_rwork_fn+0x288/0x3d4 process_one_work+0x288/0x6f0 worker_thread+0x74/0x470 kthread+0x188/0x194 ret_from_fork+0x10/0x20 Since kernfs moves the kernfs_rwsem lock into root, it couldn't hold the lock when the root node is tearing down. Thus, get the refcount of root node. Fixes: 393c3714081a ("kernfs: switch global kernfs_rwsem lock to per-fs lock") Reported-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Minchan Kim <minchan@kernel.org> Link: https://lore.kernel.org/r/20211201231648.1027165-1-minchan@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-02 07:16:48 +08:00
/*
* kernfs_remove holds kernfs_rwsem from the root so the root
* shouldn't be freed during the operation.
*/
kernfs_get(root->kn);
kernfs_remove(root->kn);
kernfs_put(root->kn); /* will also free @root */
sysfs, kernfs: implement kernfs_create/destroy_root() There currently is single kernfs hierarchy in the whole system which is used for sysfs. kernfs needs to support multiple hierarchies to allow other users. This patch introduces struct kernfs_root which serves as the root of each kernfs hierarchy and implements kernfs_create/destroy_root(). * Each kernfs_root is associated with a root sd (sysfs_dentry). The root is freed when the root sd is released and kernfs_destory_root() simply invokes kernfs_remove() on the root sd. sysfs_remove_one() is updated to handle release of the root sd. Note that ps_iattr update in sysfs_remove_one() is trivially updated for readability. * Root sd's are now dynamically allocated using sysfs_new_dirent(). Update sysfs_alloc_ino() so that it gives out ino from 1 so that the root sd still gets ino 1. * While kernfs currently only points to the root sd, it'll soon grow fields which are specific to each hierarchy. As determining a given sd's root will be necessary, sd->s_dir.root is added. This backlink fits better as a separate field in sd; however, sd->s_dir is inside union with space to spare, so use it to save space and provide kernfs_root() accessor to determine the root sd. * As hierarchies may be destroyed now, each mount needs to hold onto the hierarchy it's attached to. Update sysfs_fill_super() and sysfs_kill_sb() so that they get and put the kernfs_root respectively. * sysfs_root is replaced with kernfs_root which is dynamically created by invoking kernfs_create_root() from sysfs_init(). This patch doesn't introduce any visible behavior changes. v2: kernfs_create_root() forgot to set @sd->priv. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-29 03:54:40 +08:00
}
/**
* kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
* @root: root to use to lookup
*/
struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
{
return root->kn;
}
/**
* kernfs_create_dir_ns - create a directory
* @parent: parent in which to create a new directory
* @name: name of the new directory
* @mode: mode of the new directory
* @uid: uid of the new directory
* @gid: gid of the new directory
* @priv: opaque data associated with the new directory
* @ns: optional namespace tag of the directory
*
* Returns the created node on success, ERR_PTR() value on failure.
*/
struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
const char *name, umode_t mode,
kuid_t uid, kgid_t gid,
void *priv, const void *ns)
{
struct kernfs_node *kn;
int rc;
/* allocate */
kn = kernfs_new_node(parent, name, mode | S_IFDIR,
uid, gid, KERNFS_DIR);
if (!kn)
return ERR_PTR(-ENOMEM);
kn->dir.root = parent->dir.root;
kn->ns = ns;
kn->priv = priv;
/* link in */
rc = kernfs_add_one(kn);
if (!rc)
return kn;
kernfs_put(kn);
return ERR_PTR(rc);
}
/**
* kernfs_create_empty_dir - create an always empty directory
* @parent: parent in which to create a new directory
* @name: name of the new directory
*
* Returns the created node on success, ERR_PTR() value on failure.
*/
struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
const char *name)
{
struct kernfs_node *kn;
int rc;
/* allocate */
kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
if (!kn)
return ERR_PTR(-ENOMEM);
kn->flags |= KERNFS_EMPTY_DIR;
kn->dir.root = parent->dir.root;
kn->ns = NULL;
kn->priv = NULL;
/* link in */
rc = kernfs_add_one(kn);
if (!rc)
return kn;
kernfs_put(kn);
return ERR_PTR(rc);
}
static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
{
struct kernfs_node *kn;
struct kernfs_root *root;
if (flags & LOOKUP_RCU)
return -ECHILD;
/* Negative hashed dentry? */
if (d_really_is_negative(dentry)) {
struct kernfs_node *parent;
/* If the kernfs parent node has changed discard and
* proceed to ->lookup.
*/
spin_lock(&dentry->d_lock);
parent = kernfs_dentry_node(dentry->d_parent);
if (parent) {
spin_unlock(&dentry->d_lock);
root = kernfs_root(parent);
down_read(&root->kernfs_rwsem);
if (kernfs_dir_changed(parent, dentry)) {
up_read(&root->kernfs_rwsem);
return 0;
}
up_read(&root->kernfs_rwsem);
} else
spin_unlock(&dentry->d_lock);
/* The kernfs parent node hasn't changed, leave the
* dentry negative and return success.
*/
return 1;
}
kn = kernfs_dentry_node(dentry);
root = kernfs_root(kn);
down_read(&root->kernfs_rwsem);
/* The kernfs node has been deactivated */
if (!kernfs_active(kn))
goto out_bad;
/* The kernfs node has been moved? */
if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
goto out_bad;
/* The kernfs node has been renamed */
if (strcmp(dentry->d_name.name, kn->name) != 0)
goto out_bad;
/* The kernfs node has been moved to a different namespace */
if (kn->parent && kernfs_ns_enabled(kn->parent) &&
kernfs_info(dentry->d_sb)->ns != kn->ns)
goto out_bad;
up_read(&root->kernfs_rwsem);
return 1;
out_bad:
up_read(&root->kernfs_rwsem);
return 0;
}
const struct dentry_operations kernfs_dops = {
.d_revalidate = kernfs_dop_revalidate,
};
static struct dentry *kernfs_iop_lookup(struct inode *dir,
struct dentry *dentry,
unsigned int flags)
{
struct kernfs_node *parent = dir->i_private;
struct kernfs_node *kn;
struct kernfs_root *root;
struct inode *inode = NULL;
const void *ns = NULL;
root = kernfs_root(parent);
down_read(&root->kernfs_rwsem);
if (kernfs_ns_enabled(parent))
ns = kernfs_info(dir->i_sb)->ns;
kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
/* attach dentry and inode */
2021-10-04 09:03:53 +08:00
if (kn) {
/* Inactive nodes are invisible to the VFS so don't
* create a negative.
*/
if (!kernfs_active(kn)) {
up_read(&root->kernfs_rwsem);
2021-10-04 09:03:53 +08:00
return NULL;
}
inode = kernfs_get_inode(dir->i_sb, kn);
if (!inode)
inode = ERR_PTR(-ENOMEM);
}
kernfs: also call kernfs_set_rev() for positive dentry A KMSAN warning is reported by Alexander Potapenko: BUG: KMSAN: uninit-value in kernfs_dop_revalidate+0x61f/0x840 fs/kernfs/dir.c:1053 kernfs_dop_revalidate+0x61f/0x840 fs/kernfs/dir.c:1053 d_revalidate fs/namei.c:854 lookup_dcache fs/namei.c:1522 __lookup_hash+0x3a6/0x590 fs/namei.c:1543 filename_create+0x312/0x7c0 fs/namei.c:3657 do_mkdirat+0x103/0x930 fs/namei.c:3900 __do_sys_mkdir fs/namei.c:3931 __se_sys_mkdir fs/namei.c:3929 __x64_sys_mkdir+0xda/0x120 fs/namei.c:3929 do_syscall_x64 arch/x86/entry/common.c:51 It seems a positive dentry in kernfs becomes a negative dentry directly through d_delete() in vfs_rmdir(). dentry->d_time is uninitialized when accessing it in kernfs_dop_revalidate(), because it is only initialized when created as negative dentry in kernfs_iop_lookup(). The problem can be reproduced by the following command: cd /sys/fs/cgroup/pids && mkdir hi && stat hi && rmdir hi && stat hi A simple fixes seems to be initializing d->d_time for positive dentry in kernfs_iop_lookup() as well. The downside is the negative dentry will be revalidated again after it becomes negative in d_delete(), because the revison of its parent must have been increased due to its removal. Alternative solution is implement .d_iput for kernfs, and assign d_time for the newly-generated negative dentry in it. But we may need to take kernfs_rwsem to protect again the concurrent kernfs_link_sibling() on the parent directory, it is a little over-killing. Now the simple fix is chosen. Link: https://marc.info/?l=linux-fsdevel&m=163249838610499 Fixes: c7e7c04274b1 ("kernfs: use VFS negative dentry caching") Reported-by: Alexander Potapenko <glider@google.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20210928140750.1274441-1-houtao1@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-28 22:07:50 +08:00
/*
* Needed for negative dentry validation.
* The negative dentry can be created in kernfs_iop_lookup()
* or transforms from positive dentry in dentry_unlink_inode()
* called from vfs_rmdir().
*/
if (!IS_ERR(inode))
kernfs_set_rev(parent, dentry);
up_read(&root->kernfs_rwsem);
/* instantiate and hash (possibly negative) dentry */
return d_splice_alias(inode, dentry);
}
static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
struct inode *dir, struct dentry *dentry,
umode_t mode)
{
struct kernfs_node *parent = dir->i_private;
struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
int ret;
if (!scops || !scops->mkdir)
return -EPERM;
if (!kernfs_get_active(parent))
return -ENODEV;
ret = scops->mkdir(parent, dentry->d_name.name, mode);
kernfs_put_active(parent);
return ret;
}
static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
{
struct kernfs_node *kn = kernfs_dentry_node(dentry);
struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
int ret;
if (!scops || !scops->rmdir)
return -EPERM;
if (!kernfs_get_active(kn))
return -ENODEV;
ret = scops->rmdir(kn);
kernfs_put_active(kn);
return ret;
}
static int kernfs_iop_rename(struct user_namespace *mnt_userns,
struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
struct kernfs_node *new_parent = new_dir->i_private;
struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
int ret;
if (flags)
return -EINVAL;
if (!scops || !scops->rename)
return -EPERM;
if (!kernfs_get_active(kn))
return -ENODEV;
if (!kernfs_get_active(new_parent)) {
kernfs_put_active(kn);
return -ENODEV;
}
ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
kernfs_put_active(new_parent);
kernfs_put_active(kn);
return ret;
}
const struct inode_operations kernfs_dir_iops = {
.lookup = kernfs_iop_lookup,
.permission = kernfs_iop_permission,
.setattr = kernfs_iop_setattr,
.getattr = kernfs_iop_getattr,
.listxattr = kernfs_iop_listxattr,
.mkdir = kernfs_iop_mkdir,
.rmdir = kernfs_iop_rmdir,
.rename = kernfs_iop_rename,
};
static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
{
struct kernfs_node *last;
while (true) {
struct rb_node *rbn;
last = pos;
if (kernfs_type(pos) != KERNFS_DIR)
break;
rbn = rb_first(&pos->dir.children);
if (!rbn)
break;
pos = rb_to_kn(rbn);
}
return last;
}
/**
* kernfs_next_descendant_post - find the next descendant for post-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: kernfs_node whose descendants to walk
*
* Find the next descendant to visit for post-order traversal of @root's
* descendants. @root is included in the iteration and the last node to be
* visited.
*/
static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
struct kernfs_node *root)
{
struct rb_node *rbn;
lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
/* if first iteration, visit leftmost descendant which may be root */
if (!pos)
return kernfs_leftmost_descendant(root);
/* if we visited @root, we're done */
if (pos == root)
return NULL;
/* if there's an unvisited sibling, visit its leftmost descendant */
rbn = rb_next(&pos->rb);
if (rbn)
return kernfs_leftmost_descendant(rb_to_kn(rbn));
/* no sibling left, visit parent */
return pos->parent;
}
/**
* kernfs_activate - activate a node which started deactivated
* @kn: kernfs_node whose subtree is to be activated
*
* If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
* needs to be explicitly activated. A node which hasn't been activated
* isn't visible to userland and deactivation is skipped during its
* removal. This is useful to construct atomic init sequences where
* creation of multiple nodes should either succeed or fail atomically.
*
* The caller is responsible for ensuring that this function is not called
* after kernfs_remove*() is invoked on @kn.
*/
void kernfs_activate(struct kernfs_node *kn)
{
struct kernfs_node *pos;
struct kernfs_root *root = kernfs_root(kn);
down_write(&root->kernfs_rwsem);
pos = NULL;
while ((pos = kernfs_next_descendant_post(pos, kn))) {
if (pos->flags & KERNFS_ACTIVATED)
continue;
WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
pos->flags |= KERNFS_ACTIVATED;
}
up_write(&root->kernfs_rwsem);
}
static void __kernfs_remove(struct kernfs_node *kn)
{
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
struct kernfs_node *pos;
lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
/*
* Short-circuit if non-root @kn has already finished removal.
* This is for kernfs_remove_self() which plays with active ref
* after removal.
*/
if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
return;
pr_debug("kernfs %s: removing\n", kn->name);
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
/* prevent any new usage under @kn by deactivating all nodes */
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
pos = NULL;
while ((pos = kernfs_next_descendant_post(pos, kn)))
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
if (kernfs_active(pos))
atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
/* deactivate and unlink the subtree node-by-node */
do {
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
pos = kernfs_leftmost_descendant(kn);
/*
* kernfs_drain() drops kernfs_rwsem temporarily and @pos's
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
* base ref could have been put by someone else by the time
* the function returns. Make sure it doesn't go away
* underneath us.
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
*/
kernfs_get(pos);
/*
* Drain iff @kn was activated. This avoids draining and
* its lockdep annotations for nodes which have never been
* activated and allows embedding kernfs_remove() in create
* error paths without worrying about draining.
*/
if (kn->flags & KERNFS_ACTIVATED)
kernfs_drain(pos);
else
WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
/*
* kernfs_unlink_sibling() succeeds once per node. Use it
* to decide who's responsible for cleanups.
*/
if (!pos->parent || kernfs_unlink_sibling(pos)) {
struct kernfs_iattrs *ps_iattr =
pos->parent ? pos->parent->iattr : NULL;
/* update timestamps on the parent */
if (ps_iattr) {
ktime_get_real_ts64(&ps_iattr->ia_ctime);
ps_iattr->ia_mtime = ps_iattr->ia_ctime;
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
}
kernfs_put(pos);
kernfs: restructure removal path to fix possible premature return The recursive nature of kernfs_remove() means that, even if kernfs_remove() is not allowed to be called multiple times on the same node, there may be race conditions between removal of parent and its descendants. While we can claim that kernfs_remove() shouldn't be called on one of the descendants while the removal of an ancestor is in progress, such rule is unnecessarily restrictive and very difficult to enforce. It's better to simply allow invoking kernfs_remove() as the caller sees fit as long as the caller ensures that the node is accessible. The current behavior in such situations is broken. Whoever enters removal path first takes the node off the hierarchy and then deactivates. Following removers either return as soon as it notices that it's not the first one or can't even find the target node as it has already been removed from the hierarchy. In both cases, the following removers may finish prematurely while the nodes which should be removed and drained are still being processed by the first one. This patch restructures so that multiple removers, whether through recursion or direction invocation, always follow the following rules. * When there are multiple concurrent removers, only one puts the base ref. * Regardless of which one puts the base ref, all removers are blocked until the target node is fully deactivated and removed. To achieve the above, removal path now first marks all descendants including self REMOVED and then deactivates and unlinks leftmost descendant one-by-one. kernfs_deactivate() is called directly from __kernfs_removal() and drops and regrabs kernfs_mutex for each descendant to drain active refs. As this means that multiple removers can enter kernfs_deactivate() for the same node, the function is updated so that it can handle multiple deactivators of the same node - only one actually deactivates but all wait till drain completion. The restructured removal path guarantees that a removed node gets unlinked only after the node is deactivated and drained. Combined with proper multiple deactivator handling, this guarantees that any invocation of kernfs_remove() returns only after the node itself and all its descendants are deactivated, drained and removed. v2: Draining separated into a separate loop (used to be in the same loop as unlink) and done from __kernfs_deactivate(). This is to allow exposing deactivation as a separate interface later. Root node removal was broken in v1 patch. Fixed. v3: Revert most of v2 except for root node removal fix and simplification of KERNFS_REMOVED setting loop. v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor KERNFS_LOCKDEP flag"). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:02:56 +08:00
}
kernfs_put(pos);
} while (pos != kn);
}
/**
* kernfs_remove - remove a kernfs_node recursively
* @kn: the kernfs_node to remove
*
* Remove @kn along with all its subdirectories and files.
*/
void kernfs_remove(struct kernfs_node *kn)
{
kernfs: fix NULL dereferencing in kernfs_remove kernfs_remove supported NULL kernfs_node param to bail out but revent per-fs lock change introduced regression that dereferencing the param without NULL check so kernel goes crash. This patch checks the NULL kernfs_node in kernfs_remove and if so, just return. Quote from bug report by Jirka ``` The bug is triggered by running NAS Parallel benchmark suite on SuperMicro servers with 2x Xeon(R) Gold 6126 CPU. Here is the error log: [ 247.035564] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 247.036009] #PF: supervisor read access in kernel mode [ 247.036009] #PF: error_code(0x0000) - not-present page [ 247.036009] PGD 0 P4D 0 [ 247.036009] Oops: 0000 [#1] PREEMPT SMP PTI [ 247.058060] CPU: 1 PID: 6546 Comm: umount Not tainted 5.16.0393c3714081a53795bbff0e985d24146def6f57f+ #16 [ 247.058060] Hardware name: Supermicro Super Server/X11DDW-L, BIOS 2.0b 03/07/2018 [ 247.058060] RIP: 0010:kernfs_remove+0x8/0x50 [ 247.058060] Code: 4c 89 e0 5b 5d 41 5c 41 5d 41 5e c3 49 c7 c4 f4 ff ff ff eb b2 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 1f 44 00 00 41 54 55 <48> 8b 47 08 48 89 fd 48 85 c0 48 0f 44 c7 4c 8b 60 50 49 83 c4 60 [ 247.058060] RSP: 0018:ffffbbfa48a27e48 EFLAGS: 00010246 [ 247.058060] RAX: 0000000000000001 RBX: ffffffff89e31f98 RCX: 0000000080200018 [ 247.058060] RDX: 0000000080200019 RSI: fffff6760786c900 RDI: 0000000000000000 [ 247.058060] RBP: ffffffff89e31f98 R08: ffff926b61b24d00 R09: 0000000080200018 [ 247.122048] R10: ffff926b61b24d00 R11: ffff926a8040c000 R12: ffff927bd09a2000 [ 247.122048] R13: ffffffff89e31fa0 R14: dead000000000122 R15: dead000000000100 [ 247.122048] FS: 00007f01be0a8c40(0000) GS:ffff926fa8e40000(0000) knlGS:0000000000000000 [ 247.122048] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 247.122048] CR2: 0000000000000008 CR3: 00000001145c6003 CR4: 00000000007706e0 [ 247.122048] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 247.122048] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 247.122048] PKRU: 55555554 [ 247.122048] Call Trace: [ 247.122048] <TASK> [ 247.122048] rdt_kill_sb+0x29d/0x350 [ 247.122048] deactivate_locked_super+0x36/0xa0 [ 247.122048] cleanup_mnt+0x131/0x190 [ 247.122048] task_work_run+0x5c/0x90 [ 247.122048] exit_to_user_mode_prepare+0x229/0x230 [ 247.122048] syscall_exit_to_user_mode+0x18/0x40 [ 247.122048] do_syscall_64+0x48/0x90 [ 247.122048] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 247.122048] RIP: 0033:0x7f01be2d735b ``` Link: https://bugzilla.kernel.org/show_bug.cgi?id=215696 Link: https://lore.kernel.org/lkml/CAE4VaGDZr_4wzRn2___eDYRtmdPaGGJdzu_LCSkJYuY9BEO3cw@mail.gmail.com/ Fixes: 393c3714081a (kernfs: switch global kernfs_rwsem lock to per-fs lock) Cc: stable@vger.kernel.org Reported-by: Jirka Hladky <jhladky@redhat.com> Tested-by: Jirka Hladky <jhladky@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Minchan Kim <minchan@kernel.org> Link: https://lore.kernel.org/r/20220427172152.3505364-1-minchan@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-28 01:21:51 +08:00
struct kernfs_root *root;
if (!kn)
return;
root = kernfs_root(kn);
down_write(&root->kernfs_rwsem);
__kernfs_remove(kn);
up_write(&root->kernfs_rwsem);
}
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
/**
* kernfs_break_active_protection - break out of active protection
* @kn: the self kernfs_node
*
* The caller must be running off of a kernfs operation which is invoked
* with an active reference - e.g. one of kernfs_ops. Each invocation of
* this function must also be matched with an invocation of
* kernfs_unbreak_active_protection().
*
* This function releases the active reference of @kn the caller is
* holding. Once this function is called, @kn may be removed at any point
* and the caller is solely responsible for ensuring that the objects it
* dereferences are accessible.
*/
void kernfs_break_active_protection(struct kernfs_node *kn)
{
/*
* Take out ourself out of the active ref dependency chain. If
* we're called without an active ref, lockdep will complain.
*/
kernfs_put_active(kn);
}
/**
* kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
* @kn: the self kernfs_node
*
* If kernfs_break_active_protection() was called, this function must be
* invoked before finishing the kernfs operation. Note that while this
* function restores the active reference, it doesn't and can't actually
* restore the active protection - @kn may already or be in the process of
* being removed. Once kernfs_break_active_protection() is invoked, that
* protection is irreversibly gone for the kernfs operation instance.
*
* While this function may be called at any point after
* kernfs_break_active_protection() is invoked, its most useful location
* would be right before the enclosing kernfs operation returns.
*/
void kernfs_unbreak_active_protection(struct kernfs_node *kn)
{
/*
* @kn->active could be in any state; however, the increment we do
* here will be undone as soon as the enclosing kernfs operation
* finishes and this temporary bump can't break anything. If @kn
* is alive, nothing changes. If @kn is being deactivated, the
* soon-to-follow put will either finish deactivation or restore
* deactivated state. If @kn is already removed, the temporary
* bump is guaranteed to be gone before @kn is released.
*/
atomic_inc(&kn->active);
if (kernfs_lockdep(kn))
rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
}
/**
* kernfs_remove_self - remove a kernfs_node from its own method
* @kn: the self kernfs_node to remove
*
* The caller must be running off of a kernfs operation which is invoked
* with an active reference - e.g. one of kernfs_ops. This can be used to
* implement a file operation which deletes itself.
*
* For example, the "delete" file for a sysfs device directory can be
* implemented by invoking kernfs_remove_self() on the "delete" file
* itself. This function breaks the circular dependency of trying to
* deactivate self while holding an active ref itself. It isn't necessary
* to modify the usual removal path to use kernfs_remove_self(). The
* "delete" implementation can simply invoke kernfs_remove_self() on self
* before proceeding with the usual removal path. kernfs will ignore later
* kernfs_remove() on self.
*
* kernfs_remove_self() can be called multiple times concurrently on the
* same kernfs_node. Only the first one actually performs removal and
* returns %true. All others will wait until the kernfs operation which
* won self-removal finishes and return %false. Note that the losers wait
* for the completion of not only the winning kernfs_remove_self() but also
* the whole kernfs_ops which won the arbitration. This can be used to
* guarantee, for example, all concurrent writes to a "delete" file to
* finish only after the whole operation is complete.
*/
bool kernfs_remove_self(struct kernfs_node *kn)
{
bool ret;
struct kernfs_root *root = kernfs_root(kn);
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
down_write(&root->kernfs_rwsem);
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
kernfs_break_active_protection(kn);
/*
* SUICIDAL is used to arbitrate among competing invocations. Only
* the first one will actually perform removal. When the removal
* is complete, SUICIDED is set and the active ref is restored
* while kernfs_rwsem for held exclusive. The ones which lost
* arbitration waits for SUICIDED && drained which can happen only
* after the enclosing kernfs operation which executed the winning
* instance of kernfs_remove_self() finished.
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
*/
if (!(kn->flags & KERNFS_SUICIDAL)) {
kn->flags |= KERNFS_SUICIDAL;
__kernfs_remove(kn);
kn->flags |= KERNFS_SUICIDED;
ret = true;
} else {
wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
DEFINE_WAIT(wait);
while (true) {
prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
if ((kn->flags & KERNFS_SUICIDED) &&
atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
break;
up_write(&root->kernfs_rwsem);
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
schedule();
down_write(&root->kernfs_rwsem);
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
}
finish_wait(waitq, &wait);
WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
ret = false;
}
/*
* This must be done while kernfs_rwsem held exclusive; otherwise,
* waiting for SUICIDED && deactivated could finish prematurely.
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
*/
kernfs_unbreak_active_protection(kn);
up_write(&root->kernfs_rwsem);
kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappers Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:01 +08:00
return ret;
}
/**
* kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
* @parent: parent of the target
* @name: name of the kernfs_node to remove
* @ns: namespace tag of the kernfs_node to remove
*
* Look for the kernfs_node with @name and @ns under @parent and remove it.
* Returns 0 on success, -ENOENT if such entry doesn't exist.
*/
int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
const void *ns)
{
struct kernfs_node *kn;
struct kernfs_root *root;
if (!parent) {
WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
name);
return -ENOENT;
}
root = kernfs_root(parent);
down_write(&root->kernfs_rwsem);
kn = kernfs_find_ns(parent, name, ns);
if (kn)
__kernfs_remove(kn);
up_write(&root->kernfs_rwsem);
if (kn)
return 0;
else
return -ENOENT;
}
/**
* kernfs_rename_ns - move and rename a kernfs_node
* @kn: target node
* @new_parent: new parent to put @sd under
* @new_name: new name
* @new_ns: new namespace tag
*/
int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name, const void *new_ns)
{
struct kernfs_node *old_parent;
struct kernfs_root *root;
const char *old_name = NULL;
int error;
/* can't move or rename root */
if (!kn->parent)
return -EINVAL;
root = kernfs_root(kn);
down_write(&root->kernfs_rwsem);
error = -ENOENT;
if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
(new_parent->flags & KERNFS_EMPTY_DIR))
goto out;
error = 0;
if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
(strcmp(kn->name, new_name) == 0))
goto out; /* nothing to rename */
error = -EEXIST;
if (kernfs_find_ns(new_parent, new_name, new_ns))
goto out;
/* rename kernfs_node */
if (strcmp(kn->name, new_name) != 0) {
error = -ENOMEM;
new_name = kstrdup_const(new_name, GFP_KERNEL);
if (!new_name)
goto out;
} else {
new_name = NULL;
}
/*
* Move to the appropriate place in the appropriate directories rbtree.
*/
kernfs_unlink_sibling(kn);
kernfs_get(new_parent);
/* rename_lock protects ->parent and ->name accessors */
spin_lock_irq(&kernfs_rename_lock);
old_parent = kn->parent;
kn->parent = new_parent;
kn->ns = new_ns;
if (new_name) {
old_name = kn->name;
kn->name = new_name;
}
spin_unlock_irq(&kernfs_rename_lock);
kn->hash = kernfs_name_hash(kn->name, kn->ns);
kernfs_link_sibling(kn);
kernfs_put(old_parent);
kfree_const(old_name);
error = 0;
out:
up_write(&root->kernfs_rwsem);
return error;
}
/* Relationship between mode and the DT_xxx types */
static inline unsigned char dt_type(struct kernfs_node *kn)
{
return (kn->mode >> 12) & 15;
}
static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
{
kernfs_put(filp->private_data);
return 0;
}
static struct kernfs_node *kernfs_dir_pos(const void *ns,
struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
{
if (pos) {
kernfs: remove KERNFS_REMOVED KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-04 03:03:00 +08:00
int valid = kernfs_active(pos) &&
pos->parent == parent && hash == pos->hash;
kernfs_put(pos);
if (!valid)
pos = NULL;
}
if (!pos && (hash > 1) && (hash < INT_MAX)) {
struct rb_node *node = parent->dir.children.rb_node;
while (node) {
pos = rb_to_kn(node);
if (hash < pos->hash)
node = node->rb_left;
else if (hash > pos->hash)
node = node->rb_right;
else
break;
}
}
/* Skip over entries which are dying/dead or in the wrong namespace */
while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
struct rb_node *node = rb_next(&pos->rb);
if (!node)
pos = NULL;
else
pos = rb_to_kn(node);
}
return pos;
}
static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
{
pos = kernfs_dir_pos(ns, parent, ino, pos);
if (pos) {
do {
struct rb_node *node = rb_next(&pos->rb);
if (!node)
pos = NULL;
else
pos = rb_to_kn(node);
} while (pos && (!kernfs_active(pos) || pos->ns != ns));
}
return pos;
}
static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
{
struct dentry *dentry = file->f_path.dentry;
struct kernfs_node *parent = kernfs_dentry_node(dentry);
struct kernfs_node *pos = file->private_data;
struct kernfs_root *root;
const void *ns = NULL;
if (!dir_emit_dots(file, ctx))
return 0;
root = kernfs_root(parent);
down_read(&root->kernfs_rwsem);
if (kernfs_ns_enabled(parent))
ns = kernfs_info(dentry->d_sb)->ns;
for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
pos;
pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
const char *name = pos->name;
unsigned int type = dt_type(pos);
int len = strlen(name);
ino_t ino = kernfs_ino(pos);
ctx->pos = pos->hash;
file->private_data = pos;
kernfs_get(pos);
up_read(&root->kernfs_rwsem);
if (!dir_emit(ctx, name, len, ino, type))
return 0;
down_read(&root->kernfs_rwsem);
}
up_read(&root->kernfs_rwsem);
file->private_data = NULL;
ctx->pos = INT_MAX;
return 0;
}
const struct file_operations kernfs_dir_fops = {
.read = generic_read_dir,
.iterate_shared = kernfs_fop_readdir,
.release = kernfs_dir_fop_release,
.llseek = generic_file_llseek,
};