linux/drivers/clk/ti/divider.c

562 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* TI Divider Clock
*
* Copyright (C) 2013 Texas Instruments, Inc.
*
* Tero Kristo <t-kristo@ti.com>
*/
#include <linux/clk-provider.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/clk/ti.h>
#include "clock.h"
#undef pr_fmt
#define pr_fmt(fmt) "%s: " fmt, __func__
static unsigned int _get_table_div(const struct clk_div_table *table,
unsigned int val)
{
const struct clk_div_table *clkt;
for (clkt = table; clkt->div; clkt++)
if (clkt->val == val)
return clkt->div;
return 0;
}
static void _setup_mask(struct clk_omap_divider *divider)
{
u16 mask;
u32 max_val;
const struct clk_div_table *clkt;
if (divider->table) {
max_val = 0;
for (clkt = divider->table; clkt->div; clkt++)
if (clkt->val > max_val)
max_val = clkt->val;
} else {
max_val = divider->max;
if (!(divider->flags & CLK_DIVIDER_ONE_BASED) &&
!(divider->flags & CLK_DIVIDER_POWER_OF_TWO))
max_val--;
}
if (divider->flags & CLK_DIVIDER_POWER_OF_TWO)
mask = fls(max_val) - 1;
else
mask = max_val;
divider->mask = (1 << fls(mask)) - 1;
}
static unsigned int _get_div(struct clk_omap_divider *divider, unsigned int val)
{
if (divider->flags & CLK_DIVIDER_ONE_BASED)
return val;
if (divider->flags & CLK_DIVIDER_POWER_OF_TWO)
return 1 << val;
if (divider->table)
return _get_table_div(divider->table, val);
return val + 1;
}
static unsigned int _get_table_val(const struct clk_div_table *table,
unsigned int div)
{
const struct clk_div_table *clkt;
for (clkt = table; clkt->div; clkt++)
if (clkt->div == div)
return clkt->val;
return 0;
}
static unsigned int _get_val(struct clk_omap_divider *divider, u8 div)
{
if (divider->flags & CLK_DIVIDER_ONE_BASED)
return div;
if (divider->flags & CLK_DIVIDER_POWER_OF_TWO)
return __ffs(div);
if (divider->table)
return _get_table_val(divider->table, div);
return div - 1;
}
static unsigned long ti_clk_divider_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_omap_divider *divider = to_clk_omap_divider(hw);
unsigned int div, val;
val = ti_clk_ll_ops->clk_readl(&divider->reg) >> divider->shift;
val &= divider->mask;
div = _get_div(divider, val);
if (!div) {
WARN(!(divider->flags & CLK_DIVIDER_ALLOW_ZERO),
"%s: Zero divisor and CLK_DIVIDER_ALLOW_ZERO not set\n",
clk_hw_get_name(hw));
return parent_rate;
}
return DIV_ROUND_UP(parent_rate, div);
}
/*
* The reverse of DIV_ROUND_UP: The maximum number which
* divided by m is r
*/
#define MULT_ROUND_UP(r, m) ((r) * (m) + (m) - 1)
static bool _is_valid_table_div(const struct clk_div_table *table,
unsigned int div)
{
const struct clk_div_table *clkt;
for (clkt = table; clkt->div; clkt++)
if (clkt->div == div)
return true;
return false;
}
static bool _is_valid_div(struct clk_omap_divider *divider, unsigned int div)
{
if (divider->flags & CLK_DIVIDER_POWER_OF_TWO)
return is_power_of_2(div);
if (divider->table)
return _is_valid_table_div(divider->table, div);
return true;
}
static int _div_round_up(const struct clk_div_table *table,
unsigned long parent_rate, unsigned long rate)
{
const struct clk_div_table *clkt;
int up = INT_MAX;
int div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
for (clkt = table; clkt->div; clkt++) {
if (clkt->div == div)
return clkt->div;
else if (clkt->div < div)
continue;
if ((clkt->div - div) < (up - div))
up = clkt->div;
}
return up;
}
static int _div_round(const struct clk_div_table *table,
unsigned long parent_rate, unsigned long rate)
{
if (!table)
return DIV_ROUND_UP(parent_rate, rate);
return _div_round_up(table, parent_rate, rate);
}
static int ti_clk_divider_bestdiv(struct clk_hw *hw, unsigned long rate,
unsigned long *best_parent_rate)
{
struct clk_omap_divider *divider = to_clk_omap_divider(hw);
int i, bestdiv = 0;
unsigned long parent_rate, best = 0, now, maxdiv;
unsigned long parent_rate_saved = *best_parent_rate;
if (!rate)
rate = 1;
maxdiv = divider->max;
if (!(clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)) {
parent_rate = *best_parent_rate;
bestdiv = _div_round(divider->table, parent_rate, rate);
bestdiv = bestdiv == 0 ? 1 : bestdiv;
bestdiv = bestdiv > maxdiv ? maxdiv : bestdiv;
return bestdiv;
}
/*
* The maximum divider we can use without overflowing
* unsigned long in rate * i below
*/
maxdiv = min(ULONG_MAX / rate, maxdiv);
for (i = 1; i <= maxdiv; i++) {
if (!_is_valid_div(divider, i))
continue;
if (rate * i == parent_rate_saved) {
/*
* It's the most ideal case if the requested rate can be
* divided from parent clock without needing to change
* parent rate, so return the divider immediately.
*/
*best_parent_rate = parent_rate_saved;
return i;
}
parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
MULT_ROUND_UP(rate, i));
now = DIV_ROUND_UP(parent_rate, i);
if (now <= rate && now > best) {
bestdiv = i;
best = now;
*best_parent_rate = parent_rate;
}
}
if (!bestdiv) {
bestdiv = divider->max;
*best_parent_rate =
clk_hw_round_rate(clk_hw_get_parent(hw), 1);
}
return bestdiv;
}
static long ti_clk_divider_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
int div;
div = ti_clk_divider_bestdiv(hw, rate, prate);
return DIV_ROUND_UP(*prate, div);
}
static int ti_clk_divider_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_omap_divider *divider;
unsigned int div, value;
u32 val;
if (!hw || !rate)
return -EINVAL;
divider = to_clk_omap_divider(hw);
div = DIV_ROUND_UP(parent_rate, rate);
if (div > divider->max)
div = divider->max;
if (div < divider->min)
div = divider->min;
value = _get_val(divider, div);
val = ti_clk_ll_ops->clk_readl(&divider->reg);
val &= ~(divider->mask << divider->shift);
val |= value << divider->shift;
ti_clk_ll_ops->clk_writel(val, &divider->reg);
ti_clk_latch(&divider->reg, divider->latch);
return 0;
}
/**
* clk_divider_save_context - Save the divider value
* @hw: pointer struct clk_hw
*
* Save the divider value
*/
static int clk_divider_save_context(struct clk_hw *hw)
{
struct clk_omap_divider *divider = to_clk_omap_divider(hw);
u32 val;
val = ti_clk_ll_ops->clk_readl(&divider->reg) >> divider->shift;
divider->context = val & divider->mask;
return 0;
}
/**
* clk_divider_restore_context - restore the saved the divider value
* @hw: pointer struct clk_hw
*
* Restore the saved the divider value
*/
static void clk_divider_restore_context(struct clk_hw *hw)
{
struct clk_omap_divider *divider = to_clk_omap_divider(hw);
u32 val;
val = ti_clk_ll_ops->clk_readl(&divider->reg);
val &= ~(divider->mask << divider->shift);
val |= divider->context << divider->shift;
ti_clk_ll_ops->clk_writel(val, &divider->reg);
}
const struct clk_ops ti_clk_divider_ops = {
.recalc_rate = ti_clk_divider_recalc_rate,
.round_rate = ti_clk_divider_round_rate,
.set_rate = ti_clk_divider_set_rate,
.save_context = clk_divider_save_context,
.restore_context = clk_divider_restore_context,
};
static struct clk *_register_divider(struct device_node *node,
u32 flags,
struct clk_omap_divider *div)
{
struct clk_init_data init;
const char *parent_name;
const char *name;
parent_name = of_clk_get_parent_name(node, 0);
name = ti_dt_clk_name(node);
init.name = name;
init.ops = &ti_clk_divider_ops;
init.flags = flags;
init.parent_names = (parent_name ? &parent_name : NULL);
init.num_parents = (parent_name ? 1 : 0);
div->hw.init = &init;
/* register the clock */
return of_ti_clk_register(node, &div->hw, name);
}
int ti_clk_parse_divider_data(int *div_table, int num_dividers, int max_div,
u8 flags, struct clk_omap_divider *divider)
{
int valid_div = 0;
int i;
struct clk_div_table *tmp;
u16 min_div = 0;
if (!div_table) {
divider->min = 1;
divider->max = max_div;
_setup_mask(divider);
return 0;
}
i = 0;
while (!num_dividers || i < num_dividers) {
if (div_table[i] == -1)
break;
if (div_table[i])
valid_div++;
i++;
}
num_dividers = i;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
tmp = kcalloc(valid_div + 1, sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return -ENOMEM;
valid_div = 0;
for (i = 0; i < num_dividers; i++)
if (div_table[i] > 0) {
tmp[valid_div].div = div_table[i];
tmp[valid_div].val = i;
valid_div++;
if (div_table[i] > max_div)
max_div = div_table[i];
if (!min_div || div_table[i] < min_div)
min_div = div_table[i];
}
divider->min = min_div;
divider->max = max_div;
divider->table = tmp;
_setup_mask(divider);
return 0;
}
static int __init ti_clk_get_div_table(struct device_node *node,
struct clk_omap_divider *div)
{
struct clk_div_table *table;
const __be32 *divspec;
u32 val;
u32 num_div;
u32 valid_div;
int i;
divspec = of_get_property(node, "ti,dividers", &num_div);
if (!divspec)
return 0;
num_div /= 4;
valid_div = 0;
/* Determine required size for divider table */
for (i = 0; i < num_div; i++) {
of_property_read_u32_index(node, "ti,dividers", i, &val);
if (val)
valid_div++;
}
if (!valid_div) {
pr_err("no valid dividers for %pOFn table\n", node);
return -EINVAL;
}
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
table = kcalloc(valid_div + 1, sizeof(*table), GFP_KERNEL);
if (!table)
return -ENOMEM;
valid_div = 0;
for (i = 0; i < num_div; i++) {
of_property_read_u32_index(node, "ti,dividers", i, &val);
if (val) {
table[valid_div].div = val;
table[valid_div].val = i;
valid_div++;
}
}
div->table = table;
return 0;
}
static int _populate_divider_min_max(struct device_node *node,
struct clk_omap_divider *divider)
{
u32 min_div = 0;
u32 max_div = 0;
u32 val;
const struct clk_div_table *clkt;
if (!divider->table) {
/* Clk divider table not provided, determine min/max divs */
if (of_property_read_u32(node, "ti,min-div", &min_div))
min_div = 1;
if (of_property_read_u32(node, "ti,max-div", &max_div)) {
pr_err("no max-div for %pOFn!\n", node);
return -EINVAL;
}
} else {
for (clkt = divider->table; clkt->div; clkt++) {
val = clkt->div;
if (val > max_div)
max_div = val;
if (!min_div || val < min_div)
min_div = val;
}
}
divider->min = min_div;
divider->max = max_div;
_setup_mask(divider);
return 0;
}
static int __init ti_clk_divider_populate(struct device_node *node,
struct clk_omap_divider *div,
u32 *flags)
{
u32 val;
int ret;
ret = ti_clk_get_reg_addr(node, 0, &div->reg);
if (ret)
return ret;
if (!of_property_read_u32(node, "ti,bit-shift", &val))
div->shift = val;
else
div->shift = 0;
if (!of_property_read_u32(node, "ti,latch-bit", &val))
div->latch = val;
else
div->latch = -EINVAL;
*flags = 0;
div->flags = 0;
if (of_property_read_bool(node, "ti,index-starts-at-one"))
div->flags |= CLK_DIVIDER_ONE_BASED;
if (of_property_read_bool(node, "ti,index-power-of-two"))
div->flags |= CLK_DIVIDER_POWER_OF_TWO;
if (of_property_read_bool(node, "ti,set-rate-parent"))
*flags |= CLK_SET_RATE_PARENT;
ret = ti_clk_get_div_table(node, div);
if (ret)
return ret;
return _populate_divider_min_max(node, div);
}
/**
* of_ti_divider_clk_setup - Setup function for simple div rate clock
* @node: device node for this clock
*
* Sets up a basic divider clock.
*/
static void __init of_ti_divider_clk_setup(struct device_node *node)
{
struct clk *clk;
u32 flags = 0;
struct clk_omap_divider *div;
div = kzalloc(sizeof(*div), GFP_KERNEL);
if (!div)
return;
if (ti_clk_divider_populate(node, div, &flags))
goto cleanup;
clk = _register_divider(node, flags, div);
if (!IS_ERR(clk)) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
of_ti_clk_autoidle_setup(node);
return;
}
cleanup:
kfree(div->table);
kfree(div);
}
CLK_OF_DECLARE(divider_clk, "ti,divider-clock", of_ti_divider_clk_setup);
static void __init of_ti_composite_divider_clk_setup(struct device_node *node)
{
struct clk_omap_divider *div;
u32 tmp;
div = kzalloc(sizeof(*div), GFP_KERNEL);
if (!div)
return;
if (ti_clk_divider_populate(node, div, &tmp))
goto cleanup;
if (!ti_clk_add_component(node, &div->hw, CLK_COMPONENT_TYPE_DIVIDER))
return;
cleanup:
kfree(div->table);
kfree(div);
}
CLK_OF_DECLARE(ti_composite_divider_clk, "ti,composite-divider-clock",
of_ti_composite_divider_clk_setup);