linux/tools/lib/bpf/btf.c

3081 lines
79 KiB
C
Raw Normal View History

// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/* Copyright (c) 2018 Facebook */
#include <endian.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/utsname.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/btf.h>
#include <gelf.h>
#include "btf.h"
#include "bpf.h"
#include "libbpf.h"
#include "libbpf_internal.h"
#include "hashmap.h"
/* make sure libbpf doesn't use kernel-only integer typedefs */
#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
#define BTF_MAX_NR_TYPES 0x7fffffffU
#define BTF_MAX_STR_OFFSET 0x7fffffffU
static struct btf_type btf_void;
struct btf {
union {
struct btf_header *hdr;
void *data;
};
struct btf_type **types;
const char *strings;
void *nohdr_data;
__u32 nr_types;
__u32 types_size;
__u32 data_size;
int fd;
};
static inline __u64 ptr_to_u64(const void *ptr)
{
return (__u64) (unsigned long) ptr;
}
static int btf_add_type(struct btf *btf, struct btf_type *t)
{
if (btf->types_size - btf->nr_types < 2) {
struct btf_type **new_types;
__u32 expand_by, new_size;
if (btf->types_size == BTF_MAX_NR_TYPES)
return -E2BIG;
expand_by = max(btf->types_size >> 2, 16U);
new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
new_types = realloc(btf->types, sizeof(*new_types) * new_size);
if (!new_types)
return -ENOMEM;
if (btf->nr_types == 0)
new_types[0] = &btf_void;
btf->types = new_types;
btf->types_size = new_size;
}
btf->types[++(btf->nr_types)] = t;
return 0;
}
static int btf_parse_hdr(struct btf *btf)
{
const struct btf_header *hdr = btf->hdr;
__u32 meta_left;
if (btf->data_size < sizeof(struct btf_header)) {
pr_debug("BTF header not found\n");
return -EINVAL;
}
if (hdr->magic != BTF_MAGIC) {
pr_debug("Invalid BTF magic:%x\n", hdr->magic);
return -EINVAL;
}
if (hdr->version != BTF_VERSION) {
pr_debug("Unsupported BTF version:%u\n", hdr->version);
return -ENOTSUP;
}
if (hdr->flags) {
pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
return -ENOTSUP;
}
meta_left = btf->data_size - sizeof(*hdr);
if (!meta_left) {
pr_debug("BTF has no data\n");
return -EINVAL;
}
if (meta_left < hdr->type_off) {
pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
return -EINVAL;
}
if (meta_left < hdr->str_off) {
pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
return -EINVAL;
}
if (hdr->type_off >= hdr->str_off) {
pr_debug("BTF type section offset >= string section offset. No type?\n");
return -EINVAL;
}
if (hdr->type_off & 0x02) {
pr_debug("BTF type section is not aligned to 4 bytes\n");
return -EINVAL;
}
btf->nohdr_data = btf->hdr + 1;
return 0;
}
static int btf_parse_str_sec(struct btf *btf)
{
const struct btf_header *hdr = btf->hdr;
const char *start = btf->nohdr_data + hdr->str_off;
const char *end = start + btf->hdr->str_len;
if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
start[0] || end[-1]) {
pr_debug("Invalid BTF string section\n");
return -EINVAL;
}
btf->strings = start;
return 0;
}
static int btf_type_size(struct btf_type *t)
{
int base_size = sizeof(struct btf_type);
__u16 vlen = btf_vlen(t);
switch (btf_kind(t)) {
case BTF_KIND_FWD:
case BTF_KIND_CONST:
case BTF_KIND_VOLATILE:
case BTF_KIND_RESTRICT:
case BTF_KIND_PTR:
case BTF_KIND_TYPEDEF:
case BTF_KIND_FUNC:
return base_size;
case BTF_KIND_INT:
return base_size + sizeof(__u32);
case BTF_KIND_ENUM:
return base_size + vlen * sizeof(struct btf_enum);
case BTF_KIND_ARRAY:
return base_size + sizeof(struct btf_array);
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
return base_size + vlen * sizeof(struct btf_member);
case BTF_KIND_FUNC_PROTO:
return base_size + vlen * sizeof(struct btf_param);
case BTF_KIND_VAR:
return base_size + sizeof(struct btf_var);
case BTF_KIND_DATASEC:
return base_size + vlen * sizeof(struct btf_var_secinfo);
default:
pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
return -EINVAL;
}
}
static int btf_parse_type_sec(struct btf *btf)
{
struct btf_header *hdr = btf->hdr;
void *nohdr_data = btf->nohdr_data;
void *next_type = nohdr_data + hdr->type_off;
void *end_type = nohdr_data + hdr->str_off;
while (next_type < end_type) {
struct btf_type *t = next_type;
int type_size;
int err;
type_size = btf_type_size(t);
if (type_size < 0)
return type_size;
next_type += type_size;
err = btf_add_type(btf, t);
if (err)
return err;
}
return 0;
}
__u32 btf__get_nr_types(const struct btf *btf)
{
return btf->nr_types;
}
const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
{
if (type_id > btf->nr_types)
return NULL;
return btf->types[type_id];
}
static bool btf_type_is_void(const struct btf_type *t)
{
return t == &btf_void || btf_is_fwd(t);
}
static bool btf_type_is_void_or_null(const struct btf_type *t)
{
return !t || btf_type_is_void(t);
}
#define MAX_RESOLVE_DEPTH 32
__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
{
const struct btf_array *array;
const struct btf_type *t;
__u32 nelems = 1;
__s64 size = -1;
int i;
t = btf__type_by_id(btf, type_id);
for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
i++) {
switch (btf_kind(t)) {
case BTF_KIND_INT:
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
case BTF_KIND_ENUM:
case BTF_KIND_DATASEC:
size = t->size;
goto done;
case BTF_KIND_PTR:
size = sizeof(void *);
goto done;
case BTF_KIND_TYPEDEF:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
case BTF_KIND_VAR:
type_id = t->type;
break;
case BTF_KIND_ARRAY:
array = btf_array(t);
if (nelems && array->nelems > UINT32_MAX / nelems)
return -E2BIG;
nelems *= array->nelems;
type_id = array->type;
break;
default:
return -EINVAL;
}
t = btf__type_by_id(btf, type_id);
}
done:
if (size < 0)
return -EINVAL;
if (nelems && size > UINT32_MAX / nelems)
return -E2BIG;
return nelems * size;
}
int btf__align_of(const struct btf *btf, __u32 id)
{
const struct btf_type *t = btf__type_by_id(btf, id);
__u16 kind = btf_kind(t);
switch (kind) {
case BTF_KIND_INT:
case BTF_KIND_ENUM:
return min(sizeof(void *), (size_t)t->size);
case BTF_KIND_PTR:
return sizeof(void *);
case BTF_KIND_TYPEDEF:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
return btf__align_of(btf, t->type);
case BTF_KIND_ARRAY:
return btf__align_of(btf, btf_array(t)->type);
case BTF_KIND_STRUCT:
case BTF_KIND_UNION: {
const struct btf_member *m = btf_members(t);
__u16 vlen = btf_vlen(t);
int i, max_align = 1, align;
for (i = 0; i < vlen; i++, m++) {
align = btf__align_of(btf, m->type);
if (align <= 0)
return align;
max_align = max(max_align, align);
}
return max_align;
}
default:
pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
return 0;
}
}
int btf__resolve_type(const struct btf *btf, __u32 type_id)
{
const struct btf_type *t;
int depth = 0;
t = btf__type_by_id(btf, type_id);
while (depth < MAX_RESOLVE_DEPTH &&
!btf_type_is_void_or_null(t) &&
(btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
type_id = t->type;
t = btf__type_by_id(btf, type_id);
depth++;
}
if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
return -EINVAL;
return type_id;
}
__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
{
__u32 i;
if (!strcmp(type_name, "void"))
return 0;
for (i = 1; i <= btf->nr_types; i++) {
const struct btf_type *t = btf->types[i];
const char *name = btf__name_by_offset(btf, t->name_off);
if (name && !strcmp(type_name, name))
return i;
}
return -ENOENT;
}
__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
__u32 kind)
{
__u32 i;
if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
return 0;
for (i = 1; i <= btf->nr_types; i++) {
const struct btf_type *t = btf->types[i];
const char *name;
if (btf_kind(t) != kind)
continue;
name = btf__name_by_offset(btf, t->name_off);
if (name && !strcmp(type_name, name))
return i;
}
return -ENOENT;
}
void btf__free(struct btf *btf)
{
if (IS_ERR_OR_NULL(btf))
return;
if (btf->fd >= 0)
close(btf->fd);
free(btf->data);
free(btf->types);
free(btf);
}
struct btf *btf__new(const void *data, __u32 size)
{
struct btf *btf;
int err;
btf = calloc(1, sizeof(struct btf));
if (!btf)
return ERR_PTR(-ENOMEM);
btf->fd = -1;
btf->data = malloc(size);
if (!btf->data) {
err = -ENOMEM;
goto done;
}
memcpy(btf->data, data, size);
btf->data_size = size;
err = btf_parse_hdr(btf);
if (err)
goto done;
err = btf_parse_str_sec(btf);
if (err)
goto done;
err = btf_parse_type_sec(btf);
done:
if (err) {
btf__free(btf);
return ERR_PTR(err);
}
return btf;
}
static bool btf_check_endianness(const GElf_Ehdr *ehdr)
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
#elif __BYTE_ORDER == __BIG_ENDIAN
return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
#else
# error "Unrecognized __BYTE_ORDER__"
#endif
}
struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
{
Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
int err = 0, fd = -1, idx = 0;
struct btf *btf = NULL;
Elf_Scn *scn = NULL;
Elf *elf = NULL;
GElf_Ehdr ehdr;
if (elf_version(EV_CURRENT) == EV_NONE) {
pr_warn("failed to init libelf for %s\n", path);
return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
}
fd = open(path, O_RDONLY);
if (fd < 0) {
err = -errno;
pr_warn("failed to open %s: %s\n", path, strerror(errno));
return ERR_PTR(err);
}
err = -LIBBPF_ERRNO__FORMAT;
elf = elf_begin(fd, ELF_C_READ, NULL);
if (!elf) {
pr_warn("failed to open %s as ELF file\n", path);
goto done;
}
if (!gelf_getehdr(elf, &ehdr)) {
pr_warn("failed to get EHDR from %s\n", path);
goto done;
}
if (!btf_check_endianness(&ehdr)) {
pr_warn("non-native ELF endianness is not supported\n");
goto done;
}
if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
pr_warn("failed to get e_shstrndx from %s\n", path);
goto done;
}
while ((scn = elf_nextscn(elf, scn)) != NULL) {
GElf_Shdr sh;
char *name;
idx++;
if (gelf_getshdr(scn, &sh) != &sh) {
pr_warn("failed to get section(%d) header from %s\n",
idx, path);
goto done;
}
name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
if (!name) {
pr_warn("failed to get section(%d) name from %s\n",
idx, path);
goto done;
}
if (strcmp(name, BTF_ELF_SEC) == 0) {
btf_data = elf_getdata(scn, 0);
if (!btf_data) {
pr_warn("failed to get section(%d, %s) data from %s\n",
idx, name, path);
goto done;
}
continue;
} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
btf_ext_data = elf_getdata(scn, 0);
if (!btf_ext_data) {
pr_warn("failed to get section(%d, %s) data from %s\n",
idx, name, path);
goto done;
}
continue;
}
}
err = 0;
if (!btf_data) {
err = -ENOENT;
goto done;
}
btf = btf__new(btf_data->d_buf, btf_data->d_size);
if (IS_ERR(btf))
goto done;
if (btf_ext && btf_ext_data) {
*btf_ext = btf_ext__new(btf_ext_data->d_buf,
btf_ext_data->d_size);
if (IS_ERR(*btf_ext))
goto done;
} else if (btf_ext) {
*btf_ext = NULL;
}
done:
if (elf)
elf_end(elf);
close(fd);
if (err)
return ERR_PTR(err);
/*
* btf is always parsed before btf_ext, so no need to clean up
* btf_ext, if btf loading failed
*/
if (IS_ERR(btf))
return btf;
if (btf_ext && IS_ERR(*btf_ext)) {
btf__free(btf);
err = PTR_ERR(*btf_ext);
return ERR_PTR(err);
}
return btf;
}
struct btf *btf__parse_raw(const char *path)
{
struct btf *btf = NULL;
void *data = NULL;
FILE *f = NULL;
__u16 magic;
int err = 0;
long sz;
f = fopen(path, "rb");
if (!f) {
err = -errno;
goto err_out;
}
/* check BTF magic */
if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
err = -EIO;
goto err_out;
}
if (magic != BTF_MAGIC) {
/* definitely not a raw BTF */
err = -EPROTO;
goto err_out;
}
/* get file size */
if (fseek(f, 0, SEEK_END)) {
err = -errno;
goto err_out;
}
sz = ftell(f);
if (sz < 0) {
err = -errno;
goto err_out;
}
/* rewind to the start */
if (fseek(f, 0, SEEK_SET)) {
err = -errno;
goto err_out;
}
/* pre-alloc memory and read all of BTF data */
data = malloc(sz);
if (!data) {
err = -ENOMEM;
goto err_out;
}
if (fread(data, 1, sz, f) < sz) {
err = -EIO;
goto err_out;
}
/* finally parse BTF data */
btf = btf__new(data, sz);
err_out:
free(data);
if (f)
fclose(f);
return err ? ERR_PTR(err) : btf;
}
struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
{
struct btf *btf;
if (btf_ext)
*btf_ext = NULL;
btf = btf__parse_raw(path);
if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
return btf;
return btf__parse_elf(path, btf_ext);
}
static int compare_vsi_off(const void *_a, const void *_b)
{
const struct btf_var_secinfo *a = _a;
const struct btf_var_secinfo *b = _b;
return a->offset - b->offset;
}
static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
struct btf_type *t)
{
__u32 size = 0, off = 0, i, vars = btf_vlen(t);
const char *name = btf__name_by_offset(btf, t->name_off);
const struct btf_type *t_var;
struct btf_var_secinfo *vsi;
const struct btf_var *var;
int ret;
if (!name) {
pr_debug("No name found in string section for DATASEC kind.\n");
return -ENOENT;
}
libbpf: Support libbpf-provided extern variables Add support for extern variables, provided to BPF program by libbpf. Currently the following extern variables are supported: - LINUX_KERNEL_VERSION; version of a kernel in which BPF program is executing, follows KERNEL_VERSION() macro convention, can be 4- and 8-byte long; - CONFIG_xxx values; a set of values of actual kernel config. Tristate, boolean, strings, and integer values are supported. Set of possible values is determined by declared type of extern variable. Supported types of variables are: - Tristate values. Are represented as `enum libbpf_tristate`. Accepted values are **strictly** 'y', 'n', or 'm', which are represented as TRI_YES, TRI_NO, or TRI_MODULE, respectively. - Boolean values. Are represented as bool (_Bool) types. Accepted values are 'y' and 'n' only, turning into true/false values, respectively. - Single-character values. Can be used both as a substritute for bool/tristate, or as a small-range integer: - 'y'/'n'/'m' are represented as is, as characters 'y', 'n', or 'm'; - integers in a range [-128, 127] or [0, 255] (depending on signedness of char in target architecture) are recognized and represented with respective values of char type. - Strings. String values are declared as fixed-length char arrays. String of up to that length will be accepted and put in first N bytes of char array, with the rest of bytes zeroed out. If config string value is longer than space alloted, it will be truncated and warning message emitted. Char array is always zero terminated. String literals in config have to be enclosed in double quotes, just like C-style string literals. - Integers. 8-, 16-, 32-, and 64-bit integers are supported, both signed and unsigned variants. Libbpf enforces parsed config value to be in the supported range of corresponding integer type. Integers values in config can be: - decimal integers, with optional + and - signs; - hexadecimal integers, prefixed with 0x or 0X; - octal integers, starting with 0. Config file itself is searched in /boot/config-$(uname -r) location with fallback to /proc/config.gz, unless config path is specified explicitly through bpf_object_open_opts' kernel_config_path option. Both gzipped and plain text formats are supported. Libbpf adds explicit dependency on zlib because of this, but this shouldn't be a problem, given libelf already depends on zlib. All detected extern variables, are put into a separate .extern internal map. It, similarly to .rodata map, is marked as read-only from BPF program side, as well as is frozen on load. This allows BPF verifier to track extern values as constants and perform enhanced branch prediction and dead code elimination. This can be relied upon for doing kernel version/feature detection and using potentially unsupported field relocations or BPF helpers in a CO-RE-based BPF program, while still having a single version of BPF program running on old and new kernels. Selftests are validating this explicitly for unexisting BPF helper. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20191214014710.3449601-3-andriin@fb.com
2019-12-14 09:47:08 +08:00
/* .extern datasec size and var offsets were set correctly during
* extern collection step, so just skip straight to sorting variables
*/
if (t->size)
goto sort_vars;
ret = bpf_object__section_size(obj, name, &size);
if (ret || !size || (t->size && t->size != size)) {
pr_debug("Invalid size for section %s: %u bytes\n", name, size);
return -ENOENT;
}
t->size = size;
for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
t_var = btf__type_by_id(btf, vsi->type);
var = btf_var(t_var);
if (!btf_is_var(t_var)) {
pr_debug("Non-VAR type seen in section %s\n", name);
return -EINVAL;
}
if (var->linkage == BTF_VAR_STATIC)
continue;
name = btf__name_by_offset(btf, t_var->name_off);
if (!name) {
pr_debug("No name found in string section for VAR kind\n");
return -ENOENT;
}
ret = bpf_object__variable_offset(obj, name, &off);
if (ret) {
pr_debug("No offset found in symbol table for VAR %s\n",
name);
return -ENOENT;
}
vsi->offset = off;
}
libbpf: Support libbpf-provided extern variables Add support for extern variables, provided to BPF program by libbpf. Currently the following extern variables are supported: - LINUX_KERNEL_VERSION; version of a kernel in which BPF program is executing, follows KERNEL_VERSION() macro convention, can be 4- and 8-byte long; - CONFIG_xxx values; a set of values of actual kernel config. Tristate, boolean, strings, and integer values are supported. Set of possible values is determined by declared type of extern variable. Supported types of variables are: - Tristate values. Are represented as `enum libbpf_tristate`. Accepted values are **strictly** 'y', 'n', or 'm', which are represented as TRI_YES, TRI_NO, or TRI_MODULE, respectively. - Boolean values. Are represented as bool (_Bool) types. Accepted values are 'y' and 'n' only, turning into true/false values, respectively. - Single-character values. Can be used both as a substritute for bool/tristate, or as a small-range integer: - 'y'/'n'/'m' are represented as is, as characters 'y', 'n', or 'm'; - integers in a range [-128, 127] or [0, 255] (depending on signedness of char in target architecture) are recognized and represented with respective values of char type. - Strings. String values are declared as fixed-length char arrays. String of up to that length will be accepted and put in first N bytes of char array, with the rest of bytes zeroed out. If config string value is longer than space alloted, it will be truncated and warning message emitted. Char array is always zero terminated. String literals in config have to be enclosed in double quotes, just like C-style string literals. - Integers. 8-, 16-, 32-, and 64-bit integers are supported, both signed and unsigned variants. Libbpf enforces parsed config value to be in the supported range of corresponding integer type. Integers values in config can be: - decimal integers, with optional + and - signs; - hexadecimal integers, prefixed with 0x or 0X; - octal integers, starting with 0. Config file itself is searched in /boot/config-$(uname -r) location with fallback to /proc/config.gz, unless config path is specified explicitly through bpf_object_open_opts' kernel_config_path option. Both gzipped and plain text formats are supported. Libbpf adds explicit dependency on zlib because of this, but this shouldn't be a problem, given libelf already depends on zlib. All detected extern variables, are put into a separate .extern internal map. It, similarly to .rodata map, is marked as read-only from BPF program side, as well as is frozen on load. This allows BPF verifier to track extern values as constants and perform enhanced branch prediction and dead code elimination. This can be relied upon for doing kernel version/feature detection and using potentially unsupported field relocations or BPF helpers in a CO-RE-based BPF program, while still having a single version of BPF program running on old and new kernels. Selftests are validating this explicitly for unexisting BPF helper. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20191214014710.3449601-3-andriin@fb.com
2019-12-14 09:47:08 +08:00
sort_vars:
qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
return 0;
}
int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
{
int err = 0;
__u32 i;
for (i = 1; i <= btf->nr_types; i++) {
struct btf_type *t = btf->types[i];
/* Loader needs to fix up some of the things compiler
* couldn't get its hands on while emitting BTF. This
* is section size and global variable offset. We use
* the info from the ELF itself for this purpose.
*/
if (btf_is_datasec(t)) {
err = btf_fixup_datasec(obj, btf, t);
if (err)
break;
}
}
return err;
}
int btf__load(struct btf *btf)
{
__u32 log_buf_size = 0;
char *log_buf = NULL;
int err = 0;
if (btf->fd >= 0)
return -EEXIST;
retry_load:
if (log_buf_size) {
log_buf = malloc(log_buf_size);
if (!log_buf)
return -ENOMEM;
*log_buf = 0;
}
btf->fd = bpf_load_btf(btf->data, btf->data_size,
log_buf, log_buf_size, false);
if (btf->fd < 0) {
if (!log_buf || errno == ENOSPC) {
log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
log_buf_size << 1);
free(log_buf);
goto retry_load;
}
err = -errno;
pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
if (*log_buf)
pr_warn("%s\n", log_buf);
goto done;
}
done:
free(log_buf);
return err;
}
int btf__fd(const struct btf *btf)
{
return btf->fd;
}
void btf__set_fd(struct btf *btf, int fd)
{
btf->fd = fd;
}
const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
{
*size = btf->data_size;
return btf->data;
}
const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
{
if (offset < btf->hdr->str_len)
return &btf->strings[offset];
else
return NULL;
}
int btf__get_from_id(__u32 id, struct btf **btf)
{
struct bpf_btf_info btf_info = { 0 };
__u32 len = sizeof(btf_info);
__u32 last_size;
int btf_fd;
void *ptr;
int err;
err = 0;
*btf = NULL;
btf_fd = bpf_btf_get_fd_by_id(id);
if (btf_fd < 0)
return 0;
/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
* let's start with a sane default - 4KiB here - and resize it only if
* bpf_obj_get_info_by_fd() needs a bigger buffer.
*/
btf_info.btf_size = 4096;
last_size = btf_info.btf_size;
ptr = malloc(last_size);
if (!ptr) {
err = -ENOMEM;
goto exit_free;
}
memset(ptr, 0, last_size);
btf_info.btf = ptr_to_u64(ptr);
err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
if (!err && btf_info.btf_size > last_size) {
void *temp_ptr;
last_size = btf_info.btf_size;
temp_ptr = realloc(ptr, last_size);
if (!temp_ptr) {
err = -ENOMEM;
goto exit_free;
}
ptr = temp_ptr;
memset(ptr, 0, last_size);
btf_info.btf = ptr_to_u64(ptr);
err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
}
if (err || btf_info.btf_size > last_size) {
err = errno;
goto exit_free;
}
*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
if (IS_ERR(*btf)) {
err = PTR_ERR(*btf);
*btf = NULL;
}
exit_free:
close(btf_fd);
free(ptr);
return err;
}
int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
__u32 expected_key_size, __u32 expected_value_size,
__u32 *key_type_id, __u32 *value_type_id)
{
const struct btf_type *container_type;
const struct btf_member *key, *value;
const size_t max_name = 256;
char container_name[max_name];
__s64 key_size, value_size;
__s32 container_id;
if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
max_name) {
pr_warn("map:%s length of '____btf_map_%s' is too long\n",
map_name, map_name);
return -EINVAL;
}
container_id = btf__find_by_name(btf, container_name);
if (container_id < 0) {
pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
map_name, container_name);
return container_id;
}
container_type = btf__type_by_id(btf, container_id);
if (!container_type) {
pr_warn("map:%s cannot find BTF type for container_id:%u\n",
map_name, container_id);
return -EINVAL;
}
if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
pr_warn("map:%s container_name:%s is an invalid container struct\n",
map_name, container_name);
return -EINVAL;
}
key = btf_members(container_type);
value = key + 1;
key_size = btf__resolve_size(btf, key->type);
if (key_size < 0) {
pr_warn("map:%s invalid BTF key_type_size\n", map_name);
return key_size;
}
if (expected_key_size != key_size) {
pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
map_name, (__u32)key_size, expected_key_size);
return -EINVAL;
}
value_size = btf__resolve_size(btf, value->type);
if (value_size < 0) {
pr_warn("map:%s invalid BTF value_type_size\n", map_name);
return value_size;
}
if (expected_value_size != value_size) {
pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
map_name, (__u32)value_size, expected_value_size);
return -EINVAL;
}
*key_type_id = key->type;
*value_type_id = value->type;
return 0;
}
struct btf_ext_sec_setup_param {
__u32 off;
__u32 len;
__u32 min_rec_size;
struct btf_ext_info *ext_info;
const char *desc;
};
static int btf_ext_setup_info(struct btf_ext *btf_ext,
struct btf_ext_sec_setup_param *ext_sec)
{
const struct btf_ext_info_sec *sinfo;
struct btf_ext_info *ext_info;
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
__u32 info_left, record_size;
/* The start of the info sec (including the __u32 record_size). */
void *info;
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
if (ext_sec->len == 0)
return 0;
if (ext_sec->off & 0x03) {
pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
ext_sec->desc);
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
return -EINVAL;
}
info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
info_left = ext_sec->len;
if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
ext_sec->desc, ext_sec->off, ext_sec->len);
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
return -EINVAL;
}
/* At least a record size */
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
if (info_left < sizeof(__u32)) {
pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
return -EINVAL;
}
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
/* The record size needs to meet the minimum standard */
record_size = *(__u32 *)info;
if (record_size < ext_sec->min_rec_size ||
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
record_size & 0x03) {
pr_debug("%s section in .BTF.ext has invalid record size %u\n",
ext_sec->desc, record_size);
return -EINVAL;
}
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
sinfo = info + sizeof(__u32);
info_left -= sizeof(__u32);
/* If no records, return failure now so .BTF.ext won't be used. */
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
if (!info_left) {
pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
return -EINVAL;
}
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
while (info_left) {
unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
__u64 total_record_size;
__u32 num_records;
if (info_left < sec_hdrlen) {
pr_debug("%s section header is not found in .BTF.ext\n",
ext_sec->desc);
return -EINVAL;
}
num_records = sinfo->num_info;
if (num_records == 0) {
pr_debug("%s section has incorrect num_records in .BTF.ext\n",
ext_sec->desc);
return -EINVAL;
}
total_record_size = sec_hdrlen +
(__u64)num_records * record_size;
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
if (info_left < total_record_size) {
pr_debug("%s section has incorrect num_records in .BTF.ext\n",
ext_sec->desc);
return -EINVAL;
}
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
info_left -= total_record_size;
sinfo = (void *)sinfo + total_record_size;
}
ext_info = ext_sec->ext_info;
ext_info->len = ext_sec->len - sizeof(__u32);
ext_info->rec_size = record_size;
ext_info->info = info + sizeof(__u32);
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
return 0;
}
static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
{
struct btf_ext_sec_setup_param param = {
.off = btf_ext->hdr->func_info_off,
.len = btf_ext->hdr->func_info_len,
.min_rec_size = sizeof(struct bpf_func_info_min),
.ext_info = &btf_ext->func_info,
.desc = "func_info"
};
return btf_ext_setup_info(btf_ext, &param);
}
static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
{
struct btf_ext_sec_setup_param param = {
.off = btf_ext->hdr->line_info_off,
.len = btf_ext->hdr->line_info_len,
.min_rec_size = sizeof(struct bpf_line_info_min),
.ext_info = &btf_ext->line_info,
.desc = "line_info",
};
return btf_ext_setup_info(btf_ext, &param);
}
static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext)
{
struct btf_ext_sec_setup_param param = {
.off = btf_ext->hdr->field_reloc_off,
.len = btf_ext->hdr->field_reloc_len,
.min_rec_size = sizeof(struct bpf_field_reloc),
.ext_info = &btf_ext->field_reloc_info,
.desc = "field_reloc",
};
return btf_ext_setup_info(btf_ext, &param);
}
static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
{
const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
data_size < hdr->hdr_len) {
pr_debug("BTF.ext header not found");
return -EINVAL;
}
if (hdr->magic != BTF_MAGIC) {
pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
return -EINVAL;
}
if (hdr->version != BTF_VERSION) {
pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
return -ENOTSUP;
}
if (hdr->flags) {
pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
return -ENOTSUP;
}
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
if (data_size == hdr->hdr_len) {
pr_debug("BTF.ext has no data\n");
return -EINVAL;
}
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
return 0;
}
void btf_ext__free(struct btf_ext *btf_ext)
{
if (IS_ERR_OR_NULL(btf_ext))
return;
free(btf_ext->data);
free(btf_ext);
}
struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
{
struct btf_ext *btf_ext;
int err;
err = btf_ext_parse_hdr(data, size);
if (err)
return ERR_PTR(err);
btf_ext = calloc(1, sizeof(struct btf_ext));
if (!btf_ext)
return ERR_PTR(-ENOMEM);
btf_ext->data_size = size;
btf_ext->data = malloc(size);
if (!btf_ext->data) {
err = -ENOMEM;
goto done;
}
memcpy(btf_ext->data, data, size);
if (btf_ext->hdr->hdr_len <
offsetofend(struct btf_ext_header, line_info_len))
goto done;
err = btf_ext_setup_func_info(btf_ext);
if (err)
goto done;
err = btf_ext_setup_line_info(btf_ext);
if (err)
goto done;
if (btf_ext->hdr->hdr_len <
offsetofend(struct btf_ext_header, field_reloc_len))
goto done;
err = btf_ext_setup_field_reloc(btf_ext);
if (err)
goto done;
done:
if (err) {
btf_ext__free(btf_ext);
return ERR_PTR(err);
}
return btf_ext;
}
const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
{
*size = btf_ext->data_size;
return btf_ext->data;
}
static int btf_ext_reloc_info(const struct btf *btf,
const struct btf_ext_info *ext_info,
const char *sec_name, __u32 insns_cnt,
void **info, __u32 *cnt)
{
__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
__u32 i, record_size, existing_len, records_len;
struct btf_ext_info_sec *sinfo;
const char *info_sec_name;
__u64 remain_len;
void *data;
record_size = ext_info->rec_size;
sinfo = ext_info->info;
remain_len = ext_info->len;
while (remain_len > 0) {
records_len = sinfo->num_info * record_size;
info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
if (strcmp(info_sec_name, sec_name)) {
remain_len -= sec_hdrlen + records_len;
sinfo = (void *)sinfo + sec_hdrlen + records_len;
continue;
}
existing_len = (*cnt) * record_size;
data = realloc(*info, existing_len + records_len);
if (!data)
return -ENOMEM;
memcpy(data + existing_len, sinfo->data, records_len);
/* adjust insn_off only, the rest data will be passed
* to the kernel.
*/
for (i = 0; i < sinfo->num_info; i++) {
__u32 *insn_off;
insn_off = data + existing_len + (i * record_size);
*insn_off = *insn_off / sizeof(struct bpf_insn) +
insns_cnt;
}
*info = data;
*cnt += sinfo->num_info;
return 0;
}
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
return -ENOENT;
}
int btf_ext__reloc_func_info(const struct btf *btf,
const struct btf_ext *btf_ext,
const char *sec_name, __u32 insns_cnt,
void **func_info, __u32 *cnt)
{
return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
insns_cnt, func_info, cnt);
}
int btf_ext__reloc_line_info(const struct btf *btf,
const struct btf_ext *btf_ext,
const char *sec_name, __u32 insns_cnt,
void **line_info, __u32 *cnt)
{
return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
insns_cnt, line_info, cnt);
}
bpf: libbpf: Refactor and bug fix on the bpf_func_info loading logic This patch refactor and fix a bug in the libbpf's bpf_func_info loading logic. The bug fix and refactoring are targeting the same commit 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") which is in the bpf-next branch. 1) In bpf_load_program_xattr(), it should retry when errno == E2BIG regardless of log_buf and log_buf_sz. This patch fixes it. 2) btf_ext__reloc_init() and btf_ext__reloc() are essentially the same except btf_ext__reloc_init() always has insns_cnt == 0. Hence, btf_ext__reloc_init() is removed. btf_ext__reloc() is also renamed to btf_ext__reloc_func_info() to get ready for the line_info support in the next patch. 3) Consolidate func_info section logic from "btf_ext_parse_hdr()", "btf_ext_validate_func_info()" and "btf_ext__new()" to a new function "btf_ext_copy_func_info()" such that similar logic can be reused by the later libbpf's line_info patch. 4) The next line_info patch will store line_info_cnt instead of line_info_len in the bpf_program because the kernel is taking line_info_cnt also. It will save a few "len" to "cnt" conversions and will also save some function args. Hence, this patch also makes bpf_program to store func_info_cnt instead of func_info_len. 5) btf_ext depends on btf. e.g. the func_info's type_id in ".BTF.ext" is not useful when ".BTF" is absent. This patch only init the obj->btf_ext pointer after it has successfully init the obj->btf pointer. This can avoid always checking "obj->btf && obj->btf_ext" together for accessing ".BTF.ext". Checking "obj->btf_ext" alone will do. 6) Move "struct btf_sec_func_info" from btf.h to btf.c. There is no external usage outside btf.c. Fixes: 2993e0515bb4 ("tools/bpf: add support to read .BTF.ext sections") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:29 +08:00
__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
{
return btf_ext->func_info.rec_size;
}
__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
{
return btf_ext->line_info.rec_size;
}
struct btf_dedup;
static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
const struct btf_dedup_opts *opts);
static void btf_dedup_free(struct btf_dedup *d);
static int btf_dedup_strings(struct btf_dedup *d);
static int btf_dedup_prim_types(struct btf_dedup *d);
static int btf_dedup_struct_types(struct btf_dedup *d);
static int btf_dedup_ref_types(struct btf_dedup *d);
static int btf_dedup_compact_types(struct btf_dedup *d);
static int btf_dedup_remap_types(struct btf_dedup *d);
/*
* Deduplicate BTF types and strings.
*
* BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
* section with all BTF type descriptors and string data. It overwrites that
* memory in-place with deduplicated types and strings without any loss of
* information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
* is provided, all the strings referenced from .BTF.ext section are honored
* and updated to point to the right offsets after deduplication.
*
* If function returns with error, type/string data might be garbled and should
* be discarded.
*
* More verbose and detailed description of both problem btf_dedup is solving,
* as well as solution could be found at:
* https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
*
* Problem description and justification
* =====================================
*
* BTF type information is typically emitted either as a result of conversion
* from DWARF to BTF or directly by compiler. In both cases, each compilation
* unit contains information about a subset of all the types that are used
* in an application. These subsets are frequently overlapping and contain a lot
* of duplicated information when later concatenated together into a single
* binary. This algorithm ensures that each unique type is represented by single
* BTF type descriptor, greatly reducing resulting size of BTF data.
*
* Compilation unit isolation and subsequent duplication of data is not the only
* problem. The same type hierarchy (e.g., struct and all the type that struct
* references) in different compilation units can be represented in BTF to
* various degrees of completeness (or, rather, incompleteness) due to
* struct/union forward declarations.
*
* Let's take a look at an example, that we'll use to better understand the
* problem (and solution). Suppose we have two compilation units, each using
* same `struct S`, but each of them having incomplete type information about
* struct's fields:
*
* // CU #1:
* struct S;
* struct A {
* int a;
* struct A* self;
* struct S* parent;
* };
* struct B;
* struct S {
* struct A* a_ptr;
* struct B* b_ptr;
* };
*
* // CU #2:
* struct S;
* struct A;
* struct B {
* int b;
* struct B* self;
* struct S* parent;
* };
* struct S {
* struct A* a_ptr;
* struct B* b_ptr;
* };
*
* In case of CU #1, BTF data will know only that `struct B` exist (but no
* more), but will know the complete type information about `struct A`. While
* for CU #2, it will know full type information about `struct B`, but will
* only know about forward declaration of `struct A` (in BTF terms, it will
* have `BTF_KIND_FWD` type descriptor with name `B`).
*
* This compilation unit isolation means that it's possible that there is no
* single CU with complete type information describing structs `S`, `A`, and
* `B`. Also, we might get tons of duplicated and redundant type information.
*
* Additional complication we need to keep in mind comes from the fact that
* types, in general, can form graphs containing cycles, not just DAGs.
*
* While algorithm does deduplication, it also merges and resolves type
* information (unless disabled throught `struct btf_opts`), whenever possible.
* E.g., in the example above with two compilation units having partial type
* information for structs `A` and `B`, the output of algorithm will emit
* a single copy of each BTF type that describes structs `A`, `B`, and `S`
* (as well as type information for `int` and pointers), as if they were defined
* in a single compilation unit as:
*
* struct A {
* int a;
* struct A* self;
* struct S* parent;
* };
* struct B {
* int b;
* struct B* self;
* struct S* parent;
* };
* struct S {
* struct A* a_ptr;
* struct B* b_ptr;
* };
*
* Algorithm summary
* =================
*
* Algorithm completes its work in 6 separate passes:
*
* 1. Strings deduplication.
* 2. Primitive types deduplication (int, enum, fwd).
* 3. Struct/union types deduplication.
* 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
* protos, and const/volatile/restrict modifiers).
* 5. Types compaction.
* 6. Types remapping.
*
* Algorithm determines canonical type descriptor, which is a single
* representative type for each truly unique type. This canonical type is the
* one that will go into final deduplicated BTF type information. For
* struct/unions, it is also the type that algorithm will merge additional type
* information into (while resolving FWDs), as it discovers it from data in
* other CUs. Each input BTF type eventually gets either mapped to itself, if
* that type is canonical, or to some other type, if that type is equivalent
* and was chosen as canonical representative. This mapping is stored in
* `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
* FWD type got resolved to.
*
* To facilitate fast discovery of canonical types, we also maintain canonical
* index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
* (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
* that match that signature. With sufficiently good choice of type signature
* hashing function, we can limit number of canonical types for each unique type
* signature to a very small number, allowing to find canonical type for any
* duplicated type very quickly.
*
* Struct/union deduplication is the most critical part and algorithm for
* deduplicating structs/unions is described in greater details in comments for
* `btf_dedup_is_equiv` function.
*/
int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
const struct btf_dedup_opts *opts)
{
struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
int err;
if (IS_ERR(d)) {
pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
return -EINVAL;
}
err = btf_dedup_strings(d);
if (err < 0) {
pr_debug("btf_dedup_strings failed:%d\n", err);
goto done;
}
err = btf_dedup_prim_types(d);
if (err < 0) {
pr_debug("btf_dedup_prim_types failed:%d\n", err);
goto done;
}
err = btf_dedup_struct_types(d);
if (err < 0) {
pr_debug("btf_dedup_struct_types failed:%d\n", err);
goto done;
}
err = btf_dedup_ref_types(d);
if (err < 0) {
pr_debug("btf_dedup_ref_types failed:%d\n", err);
goto done;
}
err = btf_dedup_compact_types(d);
if (err < 0) {
pr_debug("btf_dedup_compact_types failed:%d\n", err);
goto done;
}
err = btf_dedup_remap_types(d);
if (err < 0) {
pr_debug("btf_dedup_remap_types failed:%d\n", err);
goto done;
}
done:
btf_dedup_free(d);
return err;
}
#define BTF_UNPROCESSED_ID ((__u32)-1)
#define BTF_IN_PROGRESS_ID ((__u32)-2)
struct btf_dedup {
/* .BTF section to be deduped in-place */
struct btf *btf;
/*
* Optional .BTF.ext section. When provided, any strings referenced
* from it will be taken into account when deduping strings
*/
struct btf_ext *btf_ext;
/*
* This is a map from any type's signature hash to a list of possible
* canonical representative type candidates. Hash collisions are
* ignored, so even types of various kinds can share same list of
* candidates, which is fine because we rely on subsequent
* btf_xxx_equal() checks to authoritatively verify type equality.
*/
struct hashmap *dedup_table;
/* Canonical types map */
__u32 *map;
/* Hypothetical mapping, used during type graph equivalence checks */
__u32 *hypot_map;
__u32 *hypot_list;
size_t hypot_cnt;
size_t hypot_cap;
/* Various option modifying behavior of algorithm */
struct btf_dedup_opts opts;
};
struct btf_str_ptr {
const char *str;
__u32 new_off;
bool used;
};
struct btf_str_ptrs {
struct btf_str_ptr *ptrs;
const char *data;
__u32 cnt;
__u32 cap;
};
static long hash_combine(long h, long value)
{
return h * 31 + value;
}
#define for_each_dedup_cand(d, node, hash) \
hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
{
return hashmap__append(d->dedup_table,
(void *)hash, (void *)(long)type_id);
}
static int btf_dedup_hypot_map_add(struct btf_dedup *d,
__u32 from_id, __u32 to_id)
{
if (d->hypot_cnt == d->hypot_cap) {
__u32 *new_list;
d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
if (!new_list)
return -ENOMEM;
d->hypot_list = new_list;
}
d->hypot_list[d->hypot_cnt++] = from_id;
d->hypot_map[from_id] = to_id;
return 0;
}
static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
{
int i;
for (i = 0; i < d->hypot_cnt; i++)
d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
d->hypot_cnt = 0;
}
static void btf_dedup_free(struct btf_dedup *d)
{
hashmap__free(d->dedup_table);
d->dedup_table = NULL;
free(d->map);
d->map = NULL;
free(d->hypot_map);
d->hypot_map = NULL;
free(d->hypot_list);
d->hypot_list = NULL;
free(d);
}
static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
{
return (size_t)key;
}
static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
{
return 0;
}
static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
{
return k1 == k2;
}
static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
const struct btf_dedup_opts *opts)
{
struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
int i, err = 0;
if (!d)
return ERR_PTR(-ENOMEM);
d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
/* dedup_table_size is now used only to force collisions in tests */
if (opts && opts->dedup_table_size == 1)
hash_fn = btf_dedup_collision_hash_fn;
d->btf = btf;
d->btf_ext = btf_ext;
d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
if (IS_ERR(d->dedup_table)) {
err = PTR_ERR(d->dedup_table);
d->dedup_table = NULL;
goto done;
}
d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
if (!d->map) {
err = -ENOMEM;
goto done;
}
/* special BTF "void" type is made canonical immediately */
d->map[0] = 0;
for (i = 1; i <= btf->nr_types; i++) {
struct btf_type *t = d->btf->types[i];
/* VAR and DATASEC are never deduped and are self-canonical */
if (btf_is_var(t) || btf_is_datasec(t))
d->map[i] = i;
else
d->map[i] = BTF_UNPROCESSED_ID;
}
d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
if (!d->hypot_map) {
err = -ENOMEM;
goto done;
}
for (i = 0; i <= btf->nr_types; i++)
d->hypot_map[i] = BTF_UNPROCESSED_ID;
done:
if (err) {
btf_dedup_free(d);
return ERR_PTR(err);
}
return d;
}
typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
/*
* Iterate over all possible places in .BTF and .BTF.ext that can reference
* string and pass pointer to it to a provided callback `fn`.
*/
static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
{
void *line_data_cur, *line_data_end;
int i, j, r, rec_size;
struct btf_type *t;
for (i = 1; i <= d->btf->nr_types; i++) {
t = d->btf->types[i];
r = fn(&t->name_off, ctx);
if (r)
return r;
switch (btf_kind(t)) {
case BTF_KIND_STRUCT:
case BTF_KIND_UNION: {
struct btf_member *m = btf_members(t);
__u16 vlen = btf_vlen(t);
for (j = 0; j < vlen; j++) {
r = fn(&m->name_off, ctx);
if (r)
return r;
m++;
}
break;
}
case BTF_KIND_ENUM: {
struct btf_enum *m = btf_enum(t);
__u16 vlen = btf_vlen(t);
for (j = 0; j < vlen; j++) {
r = fn(&m->name_off, ctx);
if (r)
return r;
m++;
}
break;
}
case BTF_KIND_FUNC_PROTO: {
struct btf_param *m = btf_params(t);
__u16 vlen = btf_vlen(t);
for (j = 0; j < vlen; j++) {
r = fn(&m->name_off, ctx);
if (r)
return r;
m++;
}
break;
}
default:
break;
}
}
if (!d->btf_ext)
return 0;
line_data_cur = d->btf_ext->line_info.info;
line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
rec_size = d->btf_ext->line_info.rec_size;
while (line_data_cur < line_data_end) {
struct btf_ext_info_sec *sec = line_data_cur;
struct bpf_line_info_min *line_info;
__u32 num_info = sec->num_info;
r = fn(&sec->sec_name_off, ctx);
if (r)
return r;
line_data_cur += sizeof(struct btf_ext_info_sec);
for (i = 0; i < num_info; i++) {
line_info = line_data_cur;
r = fn(&line_info->file_name_off, ctx);
if (r)
return r;
r = fn(&line_info->line_off, ctx);
if (r)
return r;
line_data_cur += rec_size;
}
}
return 0;
}
static int str_sort_by_content(const void *a1, const void *a2)
{
const struct btf_str_ptr *p1 = a1;
const struct btf_str_ptr *p2 = a2;
return strcmp(p1->str, p2->str);
}
static int str_sort_by_offset(const void *a1, const void *a2)
{
const struct btf_str_ptr *p1 = a1;
const struct btf_str_ptr *p2 = a2;
if (p1->str != p2->str)
return p1->str < p2->str ? -1 : 1;
return 0;
}
static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
{
const struct btf_str_ptr *p = pelem;
if (str_ptr != p->str)
return (const char *)str_ptr < p->str ? -1 : 1;
return 0;
}
static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
{
struct btf_str_ptrs *strs;
struct btf_str_ptr *s;
if (*str_off_ptr == 0)
return 0;
strs = ctx;
s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
if (!s)
return -EINVAL;
s->used = true;
return 0;
}
static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
{
struct btf_str_ptrs *strs;
struct btf_str_ptr *s;
if (*str_off_ptr == 0)
return 0;
strs = ctx;
s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
if (!s)
return -EINVAL;
*str_off_ptr = s->new_off;
return 0;
}
/*
* Dedup string and filter out those that are not referenced from either .BTF
* or .BTF.ext (if provided) sections.
*
* This is done by building index of all strings in BTF's string section,
* then iterating over all entities that can reference strings (e.g., type
* names, struct field names, .BTF.ext line info, etc) and marking corresponding
* strings as used. After that all used strings are deduped and compacted into
* sequential blob of memory and new offsets are calculated. Then all the string
* references are iterated again and rewritten using new offsets.
*/
static int btf_dedup_strings(struct btf_dedup *d)
{
const struct btf_header *hdr = d->btf->hdr;
char *start = (char *)d->btf->nohdr_data + hdr->str_off;
char *end = start + d->btf->hdr->str_len;
char *p = start, *tmp_strs = NULL;
struct btf_str_ptrs strs = {
.cnt = 0,
.cap = 0,
.ptrs = NULL,
.data = start,
};
int i, j, err = 0, grp_idx;
bool grp_used;
/* build index of all strings */
while (p < end) {
if (strs.cnt + 1 > strs.cap) {
struct btf_str_ptr *new_ptrs;
strs.cap += max(strs.cnt / 2, 16U);
new_ptrs = realloc(strs.ptrs,
sizeof(strs.ptrs[0]) * strs.cap);
if (!new_ptrs) {
err = -ENOMEM;
goto done;
}
strs.ptrs = new_ptrs;
}
strs.ptrs[strs.cnt].str = p;
strs.ptrs[strs.cnt].used = false;
p += strlen(p) + 1;
strs.cnt++;
}
/* temporary storage for deduplicated strings */
tmp_strs = malloc(d->btf->hdr->str_len);
if (!tmp_strs) {
err = -ENOMEM;
goto done;
}
/* mark all used strings */
strs.ptrs[0].used = true;
err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
if (err)
goto done;
/* sort strings by context, so that we can identify duplicates */
qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
/*
* iterate groups of equal strings and if any instance in a group was
* referenced, emit single instance and remember new offset
*/
p = tmp_strs;
grp_idx = 0;
grp_used = strs.ptrs[0].used;
/* iterate past end to avoid code duplication after loop */
for (i = 1; i <= strs.cnt; i++) {
/*
* when i == strs.cnt, we want to skip string comparison and go
* straight to handling last group of strings (otherwise we'd
* need to handle last group after the loop w/ duplicated code)
*/
if (i < strs.cnt &&
!strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
grp_used = grp_used || strs.ptrs[i].used;
continue;
}
/*
* this check would have been required after the loop to handle
* last group of strings, but due to <= condition in a loop
* we avoid that duplication
*/
if (grp_used) {
int new_off = p - tmp_strs;
__u32 len = strlen(strs.ptrs[grp_idx].str);
memmove(p, strs.ptrs[grp_idx].str, len + 1);
for (j = grp_idx; j < i; j++)
strs.ptrs[j].new_off = new_off;
p += len + 1;
}
if (i < strs.cnt) {
grp_idx = i;
grp_used = strs.ptrs[i].used;
}
}
/* replace original strings with deduped ones */
d->btf->hdr->str_len = p - tmp_strs;
memmove(start, tmp_strs, d->btf->hdr->str_len);
end = start + d->btf->hdr->str_len;
/* restore original order for further binary search lookups */
qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
/* remap string offsets */
err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
if (err)
goto done;
d->btf->hdr->str_len = end - start;
done:
free(tmp_strs);
free(strs.ptrs);
return err;
}
static long btf_hash_common(struct btf_type *t)
{
long h;
h = hash_combine(0, t->name_off);
h = hash_combine(h, t->info);
h = hash_combine(h, t->size);
return h;
}
static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
{
return t1->name_off == t2->name_off &&
t1->info == t2->info &&
t1->size == t2->size;
}
/* Calculate type signature hash of INT. */
static long btf_hash_int(struct btf_type *t)
{
__u32 info = *(__u32 *)(t + 1);
long h;
h = btf_hash_common(t);
h = hash_combine(h, info);
return h;
}
/* Check structural equality of two INTs. */
static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
{
__u32 info1, info2;
if (!btf_equal_common(t1, t2))
return false;
info1 = *(__u32 *)(t1 + 1);
info2 = *(__u32 *)(t2 + 1);
return info1 == info2;
}
/* Calculate type signature hash of ENUM. */
static long btf_hash_enum(struct btf_type *t)
{
long h;
/* don't hash vlen and enum members to support enum fwd resolving */
h = hash_combine(0, t->name_off);
h = hash_combine(h, t->info & ~0xffff);
h = hash_combine(h, t->size);
return h;
}
/* Check structural equality of two ENUMs. */
static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
{
const struct btf_enum *m1, *m2;
__u16 vlen;
int i;
if (!btf_equal_common(t1, t2))
return false;
vlen = btf_vlen(t1);
m1 = btf_enum(t1);
m2 = btf_enum(t2);
for (i = 0; i < vlen; i++) {
if (m1->name_off != m2->name_off || m1->val != m2->val)
return false;
m1++;
m2++;
}
return true;
}
static inline bool btf_is_enum_fwd(struct btf_type *t)
{
return btf_is_enum(t) && btf_vlen(t) == 0;
}
static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
{
if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
return btf_equal_enum(t1, t2);
/* ignore vlen when comparing */
return t1->name_off == t2->name_off &&
(t1->info & ~0xffff) == (t2->info & ~0xffff) &&
t1->size == t2->size;
}
/*
* Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
* as referenced type IDs equivalence is established separately during type
* graph equivalence check algorithm.
*/
static long btf_hash_struct(struct btf_type *t)
{
const struct btf_member *member = btf_members(t);
__u32 vlen = btf_vlen(t);
long h = btf_hash_common(t);
int i;
for (i = 0; i < vlen; i++) {
h = hash_combine(h, member->name_off);
h = hash_combine(h, member->offset);
/* no hashing of referenced type ID, it can be unresolved yet */
member++;
}
return h;
}
/*
* Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
* IDs. This check is performed during type graph equivalence check and
* referenced types equivalence is checked separately.
*/
static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
{
const struct btf_member *m1, *m2;
__u16 vlen;
int i;
if (!btf_equal_common(t1, t2))
return false;
vlen = btf_vlen(t1);
m1 = btf_members(t1);
m2 = btf_members(t2);
for (i = 0; i < vlen; i++) {
if (m1->name_off != m2->name_off || m1->offset != m2->offset)
return false;
m1++;
m2++;
}
return true;
}
/*
* Calculate type signature hash of ARRAY, including referenced type IDs,
* under assumption that they were already resolved to canonical type IDs and
* are not going to change.
*/
static long btf_hash_array(struct btf_type *t)
{
const struct btf_array *info = btf_array(t);
long h = btf_hash_common(t);
h = hash_combine(h, info->type);
h = hash_combine(h, info->index_type);
h = hash_combine(h, info->nelems);
return h;
}
/*
* Check exact equality of two ARRAYs, taking into account referenced
* type IDs, under assumption that they were already resolved to canonical
* type IDs and are not going to change.
* This function is called during reference types deduplication to compare
* ARRAY to potential canonical representative.
*/
static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
{
const struct btf_array *info1, *info2;
if (!btf_equal_common(t1, t2))
return false;
info1 = btf_array(t1);
info2 = btf_array(t2);
return info1->type == info2->type &&
info1->index_type == info2->index_type &&
info1->nelems == info2->nelems;
}
/*
* Check structural compatibility of two ARRAYs, ignoring referenced type
* IDs. This check is performed during type graph equivalence check and
* referenced types equivalence is checked separately.
*/
static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
{
if (!btf_equal_common(t1, t2))
return false;
return btf_array(t1)->nelems == btf_array(t2)->nelems;
}
/*
* Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
* under assumption that they were already resolved to canonical type IDs and
* are not going to change.
*/
static long btf_hash_fnproto(struct btf_type *t)
{
const struct btf_param *member = btf_params(t);
__u16 vlen = btf_vlen(t);
long h = btf_hash_common(t);
int i;
for (i = 0; i < vlen; i++) {
h = hash_combine(h, member->name_off);
h = hash_combine(h, member->type);
member++;
}
return h;
}
/*
* Check exact equality of two FUNC_PROTOs, taking into account referenced
* type IDs, under assumption that they were already resolved to canonical
* type IDs and are not going to change.
* This function is called during reference types deduplication to compare
* FUNC_PROTO to potential canonical representative.
*/
static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
{
const struct btf_param *m1, *m2;
__u16 vlen;
int i;
if (!btf_equal_common(t1, t2))
return false;
vlen = btf_vlen(t1);
m1 = btf_params(t1);
m2 = btf_params(t2);
for (i = 0; i < vlen; i++) {
if (m1->name_off != m2->name_off || m1->type != m2->type)
return false;
m1++;
m2++;
}
return true;
}
/*
* Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
* IDs. This check is performed during type graph equivalence check and
* referenced types equivalence is checked separately.
*/
static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
{
const struct btf_param *m1, *m2;
__u16 vlen;
int i;
/* skip return type ID */
if (t1->name_off != t2->name_off || t1->info != t2->info)
return false;
vlen = btf_vlen(t1);
m1 = btf_params(t1);
m2 = btf_params(t2);
for (i = 0; i < vlen; i++) {
if (m1->name_off != m2->name_off)
return false;
m1++;
m2++;
}
return true;
}
/*
* Deduplicate primitive types, that can't reference other types, by calculating
* their type signature hash and comparing them with any possible canonical
* candidate. If no canonical candidate matches, type itself is marked as
* canonical and is added into `btf_dedup->dedup_table` as another candidate.
*/
static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
{
struct btf_type *t = d->btf->types[type_id];
struct hashmap_entry *hash_entry;
struct btf_type *cand;
/* if we don't find equivalent type, then we are canonical */
__u32 new_id = type_id;
__u32 cand_id;
long h;
switch (btf_kind(t)) {
case BTF_KIND_CONST:
case BTF_KIND_VOLATILE:
case BTF_KIND_RESTRICT:
case BTF_KIND_PTR:
case BTF_KIND_TYPEDEF:
case BTF_KIND_ARRAY:
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
case BTF_KIND_FUNC:
case BTF_KIND_FUNC_PROTO:
case BTF_KIND_VAR:
case BTF_KIND_DATASEC:
return 0;
case BTF_KIND_INT:
h = btf_hash_int(t);
for_each_dedup_cand(d, hash_entry, h) {
cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_int(t, cand)) {
new_id = cand_id;
break;
}
}
break;
case BTF_KIND_ENUM:
h = btf_hash_enum(t);
for_each_dedup_cand(d, hash_entry, h) {
cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_enum(t, cand)) {
new_id = cand_id;
break;
}
if (d->opts.dont_resolve_fwds)
continue;
if (btf_compat_enum(t, cand)) {
if (btf_is_enum_fwd(t)) {
/* resolve fwd to full enum */
new_id = cand_id;
break;
}
/* resolve canonical enum fwd to full enum */
d->map[cand_id] = type_id;
}
}
break;
case BTF_KIND_FWD:
h = btf_hash_common(t);
for_each_dedup_cand(d, hash_entry, h) {
cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_common(t, cand)) {
new_id = cand_id;
break;
}
}
break;
default:
return -EINVAL;
}
d->map[type_id] = new_id;
if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
return -ENOMEM;
return 0;
}
static int btf_dedup_prim_types(struct btf_dedup *d)
{
int i, err;
for (i = 1; i <= d->btf->nr_types; i++) {
err = btf_dedup_prim_type(d, i);
if (err)
return err;
}
return 0;
}
/*
* Check whether type is already mapped into canonical one (could be to itself).
*/
static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
{
return d->map[type_id] <= BTF_MAX_NR_TYPES;
}
/*
* Resolve type ID into its canonical type ID, if any; otherwise return original
* type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
* STRUCT/UNION link and resolve it into canonical type ID as well.
*/
static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
{
while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
type_id = d->map[type_id];
return type_id;
}
/*
* Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
* type ID.
*/
static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
{
__u32 orig_type_id = type_id;
if (!btf_is_fwd(d->btf->types[type_id]))
return type_id;
while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
type_id = d->map[type_id];
if (!btf_is_fwd(d->btf->types[type_id]))
return type_id;
return orig_type_id;
}
static inline __u16 btf_fwd_kind(struct btf_type *t)
{
return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
}
/*
* Check equivalence of BTF type graph formed by candidate struct/union (we'll
* call it "candidate graph" in this description for brevity) to a type graph
* formed by (potential) canonical struct/union ("canonical graph" for brevity
* here, though keep in mind that not all types in canonical graph are
* necessarily canonical representatives themselves, some of them might be
* duplicates or its uniqueness might not have been established yet).
* Returns:
* - >0, if type graphs are equivalent;
* - 0, if not equivalent;
* - <0, on error.
*
* Algorithm performs side-by-side DFS traversal of both type graphs and checks
* equivalence of BTF types at each step. If at any point BTF types in candidate
* and canonical graphs are not compatible structurally, whole graphs are
* incompatible. If types are structurally equivalent (i.e., all information
* except referenced type IDs is exactly the same), a mapping from `canon_id` to
* a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
* If a type references other types, then those referenced types are checked
* for equivalence recursively.
*
* During DFS traversal, if we find that for current `canon_id` type we
* already have some mapping in hypothetical map, we check for two possible
* situations:
* - `canon_id` is mapped to exactly the same type as `cand_id`. This will
* happen when type graphs have cycles. In this case we assume those two
* types are equivalent.
* - `canon_id` is mapped to different type. This is contradiction in our
* hypothetical mapping, because same graph in canonical graph corresponds
* to two different types in candidate graph, which for equivalent type
* graphs shouldn't happen. This condition terminates equivalence check
* with negative result.
*
* If type graphs traversal exhausts types to check and find no contradiction,
* then type graphs are equivalent.
*
* When checking types for equivalence, there is one special case: FWD types.
* If FWD type resolution is allowed and one of the types (either from canonical
* or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
* flag) and their names match, hypothetical mapping is updated to point from
* FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
* this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
*
* Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
* if there are two exactly named (or anonymous) structs/unions that are
* compatible structurally, one of which has FWD field, while other is concrete
* STRUCT/UNION, but according to C sources they are different structs/unions
* that are referencing different types with the same name. This is extremely
* unlikely to happen, but btf_dedup API allows to disable FWD resolution if
* this logic is causing problems.
*
* Doing FWD resolution means that both candidate and/or canonical graphs can
* consists of portions of the graph that come from multiple compilation units.
* This is due to the fact that types within single compilation unit are always
* deduplicated and FWDs are already resolved, if referenced struct/union
* definiton is available. So, if we had unresolved FWD and found corresponding
* STRUCT/UNION, they will be from different compilation units. This
* consequently means that when we "link" FWD to corresponding STRUCT/UNION,
* type graph will likely have at least two different BTF types that describe
* same type (e.g., most probably there will be two different BTF types for the
* same 'int' primitive type) and could even have "overlapping" parts of type
* graph that describe same subset of types.
*
* This in turn means that our assumption that each type in canonical graph
* must correspond to exactly one type in candidate graph might not hold
* anymore and will make it harder to detect contradictions using hypothetical
* map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
* resolution only in canonical graph. FWDs in candidate graphs are never
* resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
* that can occur:
* - Both types in canonical and candidate graphs are FWDs. If they are
* structurally equivalent, then they can either be both resolved to the
* same STRUCT/UNION or not resolved at all. In both cases they are
* equivalent and there is no need to resolve FWD on candidate side.
* - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
* so nothing to resolve as well, algorithm will check equivalence anyway.
* - Type in canonical graph is FWD, while type in candidate is concrete
* STRUCT/UNION. In this case candidate graph comes from single compilation
* unit, so there is exactly one BTF type for each unique C type. After
* resolving FWD into STRUCT/UNION, there might be more than one BTF type
* in canonical graph mapping to single BTF type in candidate graph, but
* because hypothetical mapping maps from canonical to candidate types, it's
* alright, and we still maintain the property of having single `canon_id`
* mapping to single `cand_id` (there could be two different `canon_id`
* mapped to the same `cand_id`, but it's not contradictory).
* - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
* graph is FWD. In this case we are just going to check compatibility of
* STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
* assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
* a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
* turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
* canonical graph.
*/
static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
__u32 canon_id)
{
struct btf_type *cand_type;
struct btf_type *canon_type;
__u32 hypot_type_id;
__u16 cand_kind;
__u16 canon_kind;
int i, eq;
/* if both resolve to the same canonical, they must be equivalent */
if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
return 1;
canon_id = resolve_fwd_id(d, canon_id);
hypot_type_id = d->hypot_map[canon_id];
if (hypot_type_id <= BTF_MAX_NR_TYPES)
return hypot_type_id == cand_id;
if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
return -ENOMEM;
cand_type = d->btf->types[cand_id];
canon_type = d->btf->types[canon_id];
cand_kind = btf_kind(cand_type);
canon_kind = btf_kind(canon_type);
if (cand_type->name_off != canon_type->name_off)
return 0;
/* FWD <--> STRUCT/UNION equivalence check, if enabled */
if (!d->opts.dont_resolve_fwds
&& (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
&& cand_kind != canon_kind) {
__u16 real_kind;
__u16 fwd_kind;
if (cand_kind == BTF_KIND_FWD) {
real_kind = canon_kind;
fwd_kind = btf_fwd_kind(cand_type);
} else {
real_kind = cand_kind;
fwd_kind = btf_fwd_kind(canon_type);
}
return fwd_kind == real_kind;
}
if (cand_kind != canon_kind)
return 0;
switch (cand_kind) {
case BTF_KIND_INT:
return btf_equal_int(cand_type, canon_type);
case BTF_KIND_ENUM:
if (d->opts.dont_resolve_fwds)
return btf_equal_enum(cand_type, canon_type);
else
return btf_compat_enum(cand_type, canon_type);
case BTF_KIND_FWD:
return btf_equal_common(cand_type, canon_type);
case BTF_KIND_CONST:
case BTF_KIND_VOLATILE:
case BTF_KIND_RESTRICT:
case BTF_KIND_PTR:
case BTF_KIND_TYPEDEF:
case BTF_KIND_FUNC:
if (cand_type->info != canon_type->info)
return 0;
return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
case BTF_KIND_ARRAY: {
const struct btf_array *cand_arr, *canon_arr;
if (!btf_compat_array(cand_type, canon_type))
return 0;
cand_arr = btf_array(cand_type);
canon_arr = btf_array(canon_type);
eq = btf_dedup_is_equiv(d,
cand_arr->index_type, canon_arr->index_type);
if (eq <= 0)
return eq;
return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
}
case BTF_KIND_STRUCT:
case BTF_KIND_UNION: {
const struct btf_member *cand_m, *canon_m;
__u16 vlen;
if (!btf_shallow_equal_struct(cand_type, canon_type))
return 0;
vlen = btf_vlen(cand_type);
cand_m = btf_members(cand_type);
canon_m = btf_members(canon_type);
for (i = 0; i < vlen; i++) {
eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
if (eq <= 0)
return eq;
cand_m++;
canon_m++;
}
return 1;
}
case BTF_KIND_FUNC_PROTO: {
const struct btf_param *cand_p, *canon_p;
__u16 vlen;
if (!btf_compat_fnproto(cand_type, canon_type))
return 0;
eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
if (eq <= 0)
return eq;
vlen = btf_vlen(cand_type);
cand_p = btf_params(cand_type);
canon_p = btf_params(canon_type);
for (i = 0; i < vlen; i++) {
eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
if (eq <= 0)
return eq;
cand_p++;
canon_p++;
}
return 1;
}
default:
return -EINVAL;
}
return 0;
}
/*
* Use hypothetical mapping, produced by successful type graph equivalence
* check, to augment existing struct/union canonical mapping, where possible.
*
* If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
* FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
* it doesn't matter if FWD type was part of canonical graph or candidate one,
* we are recording the mapping anyway. As opposed to carefulness required
* for struct/union correspondence mapping (described below), for FWD resolution
* it's not important, as by the time that FWD type (reference type) will be
* deduplicated all structs/unions will be deduped already anyway.
*
* Recording STRUCT/UNION mapping is purely a performance optimization and is
* not required for correctness. It needs to be done carefully to ensure that
* struct/union from candidate's type graph is not mapped into corresponding
* struct/union from canonical type graph that itself hasn't been resolved into
* canonical representative. The only guarantee we have is that canonical
* struct/union was determined as canonical and that won't change. But any
* types referenced through that struct/union fields could have been not yet
* resolved, so in case like that it's too early to establish any kind of
* correspondence between structs/unions.
*
* No canonical correspondence is derived for primitive types (they are already
* deduplicated completely already anyway) or reference types (they rely on
* stability of struct/union canonical relationship for equivalence checks).
*/
static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
{
__u32 cand_type_id, targ_type_id;
__u16 t_kind, c_kind;
__u32 t_id, c_id;
int i;
for (i = 0; i < d->hypot_cnt; i++) {
cand_type_id = d->hypot_list[i];
targ_type_id = d->hypot_map[cand_type_id];
t_id = resolve_type_id(d, targ_type_id);
c_id = resolve_type_id(d, cand_type_id);
t_kind = btf_kind(d->btf->types[t_id]);
c_kind = btf_kind(d->btf->types[c_id]);
/*
* Resolve FWD into STRUCT/UNION.
* It's ok to resolve FWD into STRUCT/UNION that's not yet
* mapped to canonical representative (as opposed to
* STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
* eventually that struct is going to be mapped and all resolved
* FWDs will automatically resolve to correct canonical
* representative. This will happen before ref type deduping,
* which critically depends on stability of these mapping. This
* stability is not a requirement for STRUCT/UNION equivalence
* checks, though.
*/
if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
d->map[c_id] = t_id;
else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
d->map[t_id] = c_id;
if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
c_kind != BTF_KIND_FWD &&
is_type_mapped(d, c_id) &&
!is_type_mapped(d, t_id)) {
/*
* as a perf optimization, we can map struct/union
* that's part of type graph we just verified for
* equivalence. We can do that for struct/union that has
* canonical representative only, though.
*/
d->map[t_id] = c_id;
}
}
}
/*
* Deduplicate struct/union types.
*
* For each struct/union type its type signature hash is calculated, taking
* into account type's name, size, number, order and names of fields, but
* ignoring type ID's referenced from fields, because they might not be deduped
* completely until after reference types deduplication phase. This type hash
* is used to iterate over all potential canonical types, sharing same hash.
* For each canonical candidate we check whether type graphs that they form
* (through referenced types in fields and so on) are equivalent using algorithm
* implemented in `btf_dedup_is_equiv`. If such equivalence is found and
* BTF_KIND_FWD resolution is allowed, then hypothetical mapping
* (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
* algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
* potentially map other structs/unions to their canonical representatives,
* if such relationship hasn't yet been established. This speeds up algorithm
* by eliminating some of the duplicate work.
*
* If no matching canonical representative was found, struct/union is marked
* as canonical for itself and is added into btf_dedup->dedup_table hash map
* for further look ups.
*/
static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
{
struct btf_type *cand_type, *t;
struct hashmap_entry *hash_entry;
/* if we don't find equivalent type, then we are canonical */
__u32 new_id = type_id;
__u16 kind;
long h;
/* already deduped or is in process of deduping (loop detected) */
if (d->map[type_id] <= BTF_MAX_NR_TYPES)
return 0;
t = d->btf->types[type_id];
kind = btf_kind(t);
if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
return 0;
h = btf_hash_struct(t);
for_each_dedup_cand(d, hash_entry, h) {
__u32 cand_id = (__u32)(long)hash_entry->value;
int eq;
/*
* Even though btf_dedup_is_equiv() checks for
* btf_shallow_equal_struct() internally when checking two
* structs (unions) for equivalence, we need to guard here
* from picking matching FWD type as a dedup candidate.
* This can happen due to hash collision. In such case just
* relying on btf_dedup_is_equiv() would lead to potentially
* creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
* FWD and compatible STRUCT/UNION are considered equivalent.
*/
cand_type = d->btf->types[cand_id];
if (!btf_shallow_equal_struct(t, cand_type))
continue;
btf_dedup_clear_hypot_map(d);
eq = btf_dedup_is_equiv(d, type_id, cand_id);
if (eq < 0)
return eq;
if (!eq)
continue;
new_id = cand_id;
btf_dedup_merge_hypot_map(d);
break;
}
d->map[type_id] = new_id;
if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
return -ENOMEM;
return 0;
}
static int btf_dedup_struct_types(struct btf_dedup *d)
{
int i, err;
for (i = 1; i <= d->btf->nr_types; i++) {
err = btf_dedup_struct_type(d, i);
if (err)
return err;
}
return 0;
}
/*
* Deduplicate reference type.
*
* Once all primitive and struct/union types got deduplicated, we can easily
* deduplicate all other (reference) BTF types. This is done in two steps:
*
* 1. Resolve all referenced type IDs into their canonical type IDs. This
* resolution can be done either immediately for primitive or struct/union types
* (because they were deduped in previous two phases) or recursively for
* reference types. Recursion will always terminate at either primitive or
* struct/union type, at which point we can "unwind" chain of reference types
* one by one. There is no danger of encountering cycles because in C type
* system the only way to form type cycle is through struct/union, so any chain
* of reference types, even those taking part in a type cycle, will inevitably
* reach struct/union at some point.
*
* 2. Once all referenced type IDs are resolved into canonical ones, BTF type
* becomes "stable", in the sense that no further deduplication will cause
* any changes to it. With that, it's now possible to calculate type's signature
* hash (this time taking into account referenced type IDs) and loop over all
* potential canonical representatives. If no match was found, current type
* will become canonical representative of itself and will be added into
* btf_dedup->dedup_table as another possible canonical representative.
*/
static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
{
struct hashmap_entry *hash_entry;
__u32 new_id = type_id, cand_id;
struct btf_type *t, *cand;
/* if we don't find equivalent type, then we are representative type */
int ref_type_id;
long h;
if (d->map[type_id] == BTF_IN_PROGRESS_ID)
return -ELOOP;
if (d->map[type_id] <= BTF_MAX_NR_TYPES)
return resolve_type_id(d, type_id);
t = d->btf->types[type_id];
d->map[type_id] = BTF_IN_PROGRESS_ID;
switch (btf_kind(t)) {
case BTF_KIND_CONST:
case BTF_KIND_VOLATILE:
case BTF_KIND_RESTRICT:
case BTF_KIND_PTR:
case BTF_KIND_TYPEDEF:
case BTF_KIND_FUNC:
ref_type_id = btf_dedup_ref_type(d, t->type);
if (ref_type_id < 0)
return ref_type_id;
t->type = ref_type_id;
h = btf_hash_common(t);
for_each_dedup_cand(d, hash_entry, h) {
cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_common(t, cand)) {
new_id = cand_id;
break;
}
}
break;
case BTF_KIND_ARRAY: {
struct btf_array *info = btf_array(t);
ref_type_id = btf_dedup_ref_type(d, info->type);
if (ref_type_id < 0)
return ref_type_id;
info->type = ref_type_id;
ref_type_id = btf_dedup_ref_type(d, info->index_type);
if (ref_type_id < 0)
return ref_type_id;
info->index_type = ref_type_id;
h = btf_hash_array(t);
for_each_dedup_cand(d, hash_entry, h) {
cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_array(t, cand)) {
new_id = cand_id;
break;
}
}
break;
}
case BTF_KIND_FUNC_PROTO: {
struct btf_param *param;
__u16 vlen;
int i;
ref_type_id = btf_dedup_ref_type(d, t->type);
if (ref_type_id < 0)
return ref_type_id;
t->type = ref_type_id;
vlen = btf_vlen(t);
param = btf_params(t);
for (i = 0; i < vlen; i++) {
ref_type_id = btf_dedup_ref_type(d, param->type);
if (ref_type_id < 0)
return ref_type_id;
param->type = ref_type_id;
param++;
}
h = btf_hash_fnproto(t);
for_each_dedup_cand(d, hash_entry, h) {
cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_fnproto(t, cand)) {
new_id = cand_id;
break;
}
}
break;
}
default:
return -EINVAL;
}
d->map[type_id] = new_id;
if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
return -ENOMEM;
return new_id;
}
static int btf_dedup_ref_types(struct btf_dedup *d)
{
int i, err;
for (i = 1; i <= d->btf->nr_types; i++) {
err = btf_dedup_ref_type(d, i);
if (err < 0)
return err;
}
/* we won't need d->dedup_table anymore */
hashmap__free(d->dedup_table);
d->dedup_table = NULL;
return 0;
}
/*
* Compact types.
*
* After we established for each type its corresponding canonical representative
* type, we now can eliminate types that are not canonical and leave only
* canonical ones layed out sequentially in memory by copying them over
* duplicates. During compaction btf_dedup->hypot_map array is reused to store
* a map from original type ID to a new compacted type ID, which will be used
* during next phase to "fix up" type IDs, referenced from struct/union and
* reference types.
*/
static int btf_dedup_compact_types(struct btf_dedup *d)
{
struct btf_type **new_types;
__u32 next_type_id = 1;
char *types_start, *p;
int i, len;
/* we are going to reuse hypot_map to store compaction remapping */
d->hypot_map[0] = 0;
for (i = 1; i <= d->btf->nr_types; i++)
d->hypot_map[i] = BTF_UNPROCESSED_ID;
types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
p = types_start;
for (i = 1; i <= d->btf->nr_types; i++) {
if (d->map[i] != i)
continue;
len = btf_type_size(d->btf->types[i]);
if (len < 0)
return len;
memmove(p, d->btf->types[i], len);
d->hypot_map[i] = next_type_id;
d->btf->types[next_type_id] = (struct btf_type *)p;
p += len;
next_type_id++;
}
/* shrink struct btf's internal types index and update btf_header */
d->btf->nr_types = next_type_id - 1;
d->btf->types_size = d->btf->nr_types;
d->btf->hdr->type_len = p - types_start;
new_types = realloc(d->btf->types,
(1 + d->btf->nr_types) * sizeof(struct btf_type *));
if (!new_types)
return -ENOMEM;
d->btf->types = new_types;
/* make sure string section follows type information without gaps */
d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
memmove(p, d->btf->strings, d->btf->hdr->str_len);
d->btf->strings = p;
p += d->btf->hdr->str_len;
d->btf->data_size = p - (char *)d->btf->data;
return 0;
}
/*
* Figure out final (deduplicated and compacted) type ID for provided original
* `type_id` by first resolving it into corresponding canonical type ID and
* then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
* which is populated during compaction phase.
*/
static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
{
__u32 resolved_type_id, new_type_id;
resolved_type_id = resolve_type_id(d, type_id);
new_type_id = d->hypot_map[resolved_type_id];
if (new_type_id > BTF_MAX_NR_TYPES)
return -EINVAL;
return new_type_id;
}
/*
* Remap referenced type IDs into deduped type IDs.
*
* After BTF types are deduplicated and compacted, their final type IDs may
* differ from original ones. The map from original to a corresponding
* deduped type ID is stored in btf_dedup->hypot_map and is populated during
* compaction phase. During remapping phase we are rewriting all type IDs
* referenced from any BTF type (e.g., struct fields, func proto args, etc) to
* their final deduped type IDs.
*/
static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
{
struct btf_type *t = d->btf->types[type_id];
int i, r;
switch (btf_kind(t)) {
case BTF_KIND_INT:
case BTF_KIND_ENUM:
break;
case BTF_KIND_FWD:
case BTF_KIND_CONST:
case BTF_KIND_VOLATILE:
case BTF_KIND_RESTRICT:
case BTF_KIND_PTR:
case BTF_KIND_TYPEDEF:
case BTF_KIND_FUNC:
case BTF_KIND_VAR:
r = btf_dedup_remap_type_id(d, t->type);
if (r < 0)
return r;
t->type = r;
break;
case BTF_KIND_ARRAY: {
struct btf_array *arr_info = btf_array(t);
r = btf_dedup_remap_type_id(d, arr_info->type);
if (r < 0)
return r;
arr_info->type = r;
r = btf_dedup_remap_type_id(d, arr_info->index_type);
if (r < 0)
return r;
arr_info->index_type = r;
break;
}
case BTF_KIND_STRUCT:
case BTF_KIND_UNION: {
struct btf_member *member = btf_members(t);
__u16 vlen = btf_vlen(t);
for (i = 0; i < vlen; i++) {
r = btf_dedup_remap_type_id(d, member->type);
if (r < 0)
return r;
member->type = r;
member++;
}
break;
}
case BTF_KIND_FUNC_PROTO: {
struct btf_param *param = btf_params(t);
__u16 vlen = btf_vlen(t);
r = btf_dedup_remap_type_id(d, t->type);
if (r < 0)
return r;
t->type = r;
for (i = 0; i < vlen; i++) {
r = btf_dedup_remap_type_id(d, param->type);
if (r < 0)
return r;
param->type = r;
param++;
}
break;
}
case BTF_KIND_DATASEC: {
struct btf_var_secinfo *var = btf_var_secinfos(t);
__u16 vlen = btf_vlen(t);
for (i = 0; i < vlen; i++) {
r = btf_dedup_remap_type_id(d, var->type);
if (r < 0)
return r;
var->type = r;
var++;
}
break;
}
default:
return -EINVAL;
}
return 0;
}
static int btf_dedup_remap_types(struct btf_dedup *d)
{
int i, r;
for (i = 1; i <= d->btf->nr_types; i++) {
r = btf_dedup_remap_type(d, i);
if (r < 0)
return r;
}
return 0;
}
/*
* Probe few well-known locations for vmlinux kernel image and try to load BTF
* data out of it to use for target BTF.
*/
struct btf *libbpf_find_kernel_btf(void)
{
struct {
const char *path_fmt;
bool raw_btf;
} locations[] = {
/* try canonical vmlinux BTF through sysfs first */
{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
/* fall back to trying to find vmlinux ELF on disk otherwise */
{ "/boot/vmlinux-%1$s" },
{ "/lib/modules/%1$s/vmlinux-%1$s" },
{ "/lib/modules/%1$s/build/vmlinux" },
{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
{ "/usr/lib/debug/boot/vmlinux-%1$s" },
{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
};
char path[PATH_MAX + 1];
struct utsname buf;
struct btf *btf;
int i;
uname(&buf);
for (i = 0; i < ARRAY_SIZE(locations); i++) {
snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
if (access(path, R_OK))
continue;
if (locations[i].raw_btf)
btf = btf__parse_raw(path);
else
btf = btf__parse_elf(path, NULL);
pr_debug("loading kernel BTF '%s': %ld\n",
path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
if (IS_ERR(btf))
continue;
return btf;
}
pr_warn("failed to find valid kernel BTF\n");
return ERR_PTR(-ESRCH);
}