linux/arch/x86/lib/retpoline.S

234 lines
5.6 KiB
ArmAsm
Raw Normal View History

x86/retpoline: Add initial retpoline support Enable the use of -mindirect-branch=thunk-extern in newer GCC, and provide the corresponding thunks. Provide assembler macros for invoking the thunks in the same way that GCC does, from native and inline assembler. This adds X86_FEATURE_RETPOLINE and sets it by default on all CPUs. In some circumstances, IBRS microcode features may be used instead, and the retpoline can be disabled. On AMD CPUs if lfence is serialising, the retpoline can be dramatically simplified to a simple "lfence; jmp *\reg". A future patch, after it has been verified that lfence really is serialising in all circumstances, can enable this by setting the X86_FEATURE_RETPOLINE_AMD feature bit in addition to X86_FEATURE_RETPOLINE. Do not align the retpoline in the altinstr section, because there is no guarantee that it stays aligned when it's copied over the oldinstr during alternative patching. [ Andi Kleen: Rename the macros, add CONFIG_RETPOLINE option, export thunks] [ tglx: Put actual function CALL/JMP in front of the macros, convert to symbolic labels ] [ dwmw2: Convert back to numeric labels, merge objtool fixes ] Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515707194-20531-4-git-send-email-dwmw@amazon.co.uk
2018-01-12 05:46:25 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#include <linux/stringify.h>
#include <linux/linkage.h>
#include <asm/dwarf2.h>
#include <asm/cpufeatures.h>
#include <asm/alternative.h>
x86/retbleed: Add SKL return thunk To address the Intel SKL RSB underflow issue in software it's required to do call depth tracking. Provide a return thunk for call depth tracking on Intel SKL CPUs. The tracking does not use a counter. It uses uses arithmetic shift right on call entry and logical shift left on return. The depth tracking variable is initialized to 0x8000.... when the call depth is zero. The arithmetic shift right sign extends the MSB and saturates after the 12th call. The shift count is 5 so the tracking covers 12 nested calls. On return the variable is shifted left logically so it becomes zero again. CALL RET 0: 0x8000000000000000 0x0000000000000000 1: 0xfc00000000000000 0xf000000000000000 ... 11: 0xfffffffffffffff8 0xfffffffffffffc00 12: 0xffffffffffffffff 0xffffffffffffffe0 After a return buffer fill the depth is credited 12 calls before the next stuffing has to take place. There is a inaccuracy for situations like this: 10 calls 5 returns 3 calls 4 returns 3 calls .... The shift count might cause this to be off by one in either direction, but there is still a cushion vs. the RSB depth. The algorithm does not claim to be perfect, but it should obfuscate the problem enough to make exploitation extremly difficult. The theory behind this is: RSB is a stack with depth 16 which is filled on every call. On the return path speculation "pops" entries to speculate down the call chain. Once the speculative RSB is empty it switches to other predictors, e.g. the Branch History Buffer, which can be mistrained by user space and misguide the speculation path to a gadget. Call depth tracking is designed to break this speculation path by stuffing speculation trap calls into the RSB which are never getting a corresponding return executed. This stalls the prediction path until it gets resteered, The assumption is that stuffing at the 12th return is sufficient to break the speculation before it hits the underflow and the fallback to the other predictors. Testing confirms that it works. Johannes, one of the retbleed researchers. tried to attack this approach but failed. There is obviously no scientific proof that this will withstand future research progress, but all we can do right now is to speculate about it. The SAR/SHL usage was suggested by Andi Kleen. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111147.890071690@infradead.org
2022-09-15 19:11:27 +08:00
#include <asm/asm-offsets.h>
x86/retpoline: Add initial retpoline support Enable the use of -mindirect-branch=thunk-extern in newer GCC, and provide the corresponding thunks. Provide assembler macros for invoking the thunks in the same way that GCC does, from native and inline assembler. This adds X86_FEATURE_RETPOLINE and sets it by default on all CPUs. In some circumstances, IBRS microcode features may be used instead, and the retpoline can be disabled. On AMD CPUs if lfence is serialising, the retpoline can be dramatically simplified to a simple "lfence; jmp *\reg". A future patch, after it has been verified that lfence really is serialising in all circumstances, can enable this by setting the X86_FEATURE_RETPOLINE_AMD feature bit in addition to X86_FEATURE_RETPOLINE. Do not align the retpoline in the altinstr section, because there is no guarantee that it stays aligned when it's copied over the oldinstr during alternative patching. [ Andi Kleen: Rename the macros, add CONFIG_RETPOLINE option, export thunks] [ tglx: Put actual function CALL/JMP in front of the macros, convert to symbolic labels ] [ dwmw2: Convert back to numeric labels, merge objtool fixes ] Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515707194-20531-4-git-send-email-dwmw@amazon.co.uk
2018-01-12 05:46:25 +08:00
#include <asm/export.h>
#include <asm/nospec-branch.h>
#include <asm/unwind_hints.h>
x86/retbleed: Add SKL return thunk To address the Intel SKL RSB underflow issue in software it's required to do call depth tracking. Provide a return thunk for call depth tracking on Intel SKL CPUs. The tracking does not use a counter. It uses uses arithmetic shift right on call entry and logical shift left on return. The depth tracking variable is initialized to 0x8000.... when the call depth is zero. The arithmetic shift right sign extends the MSB and saturates after the 12th call. The shift count is 5 so the tracking covers 12 nested calls. On return the variable is shifted left logically so it becomes zero again. CALL RET 0: 0x8000000000000000 0x0000000000000000 1: 0xfc00000000000000 0xf000000000000000 ... 11: 0xfffffffffffffff8 0xfffffffffffffc00 12: 0xffffffffffffffff 0xffffffffffffffe0 After a return buffer fill the depth is credited 12 calls before the next stuffing has to take place. There is a inaccuracy for situations like this: 10 calls 5 returns 3 calls 4 returns 3 calls .... The shift count might cause this to be off by one in either direction, but there is still a cushion vs. the RSB depth. The algorithm does not claim to be perfect, but it should obfuscate the problem enough to make exploitation extremly difficult. The theory behind this is: RSB is a stack with depth 16 which is filled on every call. On the return path speculation "pops" entries to speculate down the call chain. Once the speculative RSB is empty it switches to other predictors, e.g. the Branch History Buffer, which can be mistrained by user space and misguide the speculation path to a gadget. Call depth tracking is designed to break this speculation path by stuffing speculation trap calls into the RSB which are never getting a corresponding return executed. This stalls the prediction path until it gets resteered, The assumption is that stuffing at the 12th return is sufficient to break the speculation before it hits the underflow and the fallback to the other predictors. Testing confirms that it works. Johannes, one of the retbleed researchers. tried to attack this approach but failed. There is obviously no scientific proof that this will withstand future research progress, but all we can do right now is to speculate about it. The SAR/SHL usage was suggested by Andi Kleen. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111147.890071690@infradead.org
2022-09-15 19:11:27 +08:00
#include <asm/percpu.h>
#include <asm/frame.h>
x86/retpoline: Add initial retpoline support Enable the use of -mindirect-branch=thunk-extern in newer GCC, and provide the corresponding thunks. Provide assembler macros for invoking the thunks in the same way that GCC does, from native and inline assembler. This adds X86_FEATURE_RETPOLINE and sets it by default on all CPUs. In some circumstances, IBRS microcode features may be used instead, and the retpoline can be disabled. On AMD CPUs if lfence is serialising, the retpoline can be dramatically simplified to a simple "lfence; jmp *\reg". A future patch, after it has been verified that lfence really is serialising in all circumstances, can enable this by setting the X86_FEATURE_RETPOLINE_AMD feature bit in addition to X86_FEATURE_RETPOLINE. Do not align the retpoline in the altinstr section, because there is no guarantee that it stays aligned when it's copied over the oldinstr during alternative patching. [ Andi Kleen: Rename the macros, add CONFIG_RETPOLINE option, export thunks] [ tglx: Put actual function CALL/JMP in front of the macros, convert to symbolic labels ] [ dwmw2: Convert back to numeric labels, merge objtool fixes ] Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515707194-20531-4-git-send-email-dwmw@amazon.co.uk
2018-01-12 05:46:25 +08:00
.section .text.__x86.indirect_thunk
.macro POLINE reg
ANNOTATE_INTRA_FUNCTION_CALL
x86/retpoline: Simplify retpolines Due to: c9c324dc22aa ("objtool: Support stack layout changes in alternatives") it is now possible to simplify the retpolines. Currently our retpolines consist of 2 symbols: - __x86_indirect_thunk_\reg: the compiler target - __x86_retpoline_\reg: the actual retpoline. Both are consecutive in code and aligned such that for any one register they both live in the same cacheline: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 0000000000000005 <__x86_retpoline_rax>: 5: e8 07 00 00 00 callq 11 <__x86_retpoline_rax+0xc> a: f3 90 pause c: 0f ae e8 lfence f: eb f9 jmp a <__x86_retpoline_rax+0x5> 11: 48 89 04 24 mov %rax,(%rsp) 15: c3 retq 16: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1) The thunk is an alternative_2, where one option is a JMP to the retpoline. This was done so that objtool didn't need to deal with alternatives with stack ops. But that problem has been solved, so now it is possible to fold the entire retpoline into the alternative to simplify and consolidate unused bytes: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 5: 90 nop 6: 90 nop 7: 90 nop 8: 90 nop 9: 90 nop a: 90 nop b: 90 nop c: 90 nop d: 90 nop e: 90 nop f: 90 nop 10: 90 nop 11: 66 66 2e 0f 1f 84 00 00 00 00 00 data16 nopw %cs:0x0(%rax,%rax,1) 1c: 0f 1f 40 00 nopl 0x0(%rax) Notice that since the longest alternative sequence is now: 0: e8 07 00 00 00 callq c <.altinstr_replacement+0xc> 5: f3 90 pause 7: 0f ae e8 lfence a: eb f9 jmp 5 <.altinstr_replacement+0x5> c: 48 89 04 24 mov %rax,(%rsp) 10: c3 retq 17 bytes, we have 15 bytes NOP at the end of our 32 byte slot. (IOW, if we can shrink the retpoline by 1 byte we can pack it more densely). [ bp: Massage commit message. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210326151259.506071949@infradead.org
2021-03-26 23:12:02 +08:00
call .Ldo_rop_\@
int3
.Ldo_rop_\@:
x86/retpoline: Simplify retpolines Due to: c9c324dc22aa ("objtool: Support stack layout changes in alternatives") it is now possible to simplify the retpolines. Currently our retpolines consist of 2 symbols: - __x86_indirect_thunk_\reg: the compiler target - __x86_retpoline_\reg: the actual retpoline. Both are consecutive in code and aligned such that for any one register they both live in the same cacheline: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 0000000000000005 <__x86_retpoline_rax>: 5: e8 07 00 00 00 callq 11 <__x86_retpoline_rax+0xc> a: f3 90 pause c: 0f ae e8 lfence f: eb f9 jmp a <__x86_retpoline_rax+0x5> 11: 48 89 04 24 mov %rax,(%rsp) 15: c3 retq 16: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1) The thunk is an alternative_2, where one option is a JMP to the retpoline. This was done so that objtool didn't need to deal with alternatives with stack ops. But that problem has been solved, so now it is possible to fold the entire retpoline into the alternative to simplify and consolidate unused bytes: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 5: 90 nop 6: 90 nop 7: 90 nop 8: 90 nop 9: 90 nop a: 90 nop b: 90 nop c: 90 nop d: 90 nop e: 90 nop f: 90 nop 10: 90 nop 11: 66 66 2e 0f 1f 84 00 00 00 00 00 data16 nopw %cs:0x0(%rax,%rax,1) 1c: 0f 1f 40 00 nopl 0x0(%rax) Notice that since the longest alternative sequence is now: 0: e8 07 00 00 00 callq c <.altinstr_replacement+0xc> 5: f3 90 pause 7: 0f ae e8 lfence a: eb f9 jmp 5 <.altinstr_replacement+0x5> c: 48 89 04 24 mov %rax,(%rsp) 10: c3 retq 17 bytes, we have 15 bytes NOP at the end of our 32 byte slot. (IOW, if we can shrink the retpoline by 1 byte we can pack it more densely). [ bp: Massage commit message. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210326151259.506071949@infradead.org
2021-03-26 23:12:02 +08:00
mov %\reg, (%_ASM_SP)
UNWIND_HINT_FUNC
.endm
.macro RETPOLINE reg
POLINE \reg
RET
x86/retpoline: Simplify retpolines Due to: c9c324dc22aa ("objtool: Support stack layout changes in alternatives") it is now possible to simplify the retpolines. Currently our retpolines consist of 2 symbols: - __x86_indirect_thunk_\reg: the compiler target - __x86_retpoline_\reg: the actual retpoline. Both are consecutive in code and aligned such that for any one register they both live in the same cacheline: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 0000000000000005 <__x86_retpoline_rax>: 5: e8 07 00 00 00 callq 11 <__x86_retpoline_rax+0xc> a: f3 90 pause c: 0f ae e8 lfence f: eb f9 jmp a <__x86_retpoline_rax+0x5> 11: 48 89 04 24 mov %rax,(%rsp) 15: c3 retq 16: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1) The thunk is an alternative_2, where one option is a JMP to the retpoline. This was done so that objtool didn't need to deal with alternatives with stack ops. But that problem has been solved, so now it is possible to fold the entire retpoline into the alternative to simplify and consolidate unused bytes: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 5: 90 nop 6: 90 nop 7: 90 nop 8: 90 nop 9: 90 nop a: 90 nop b: 90 nop c: 90 nop d: 90 nop e: 90 nop f: 90 nop 10: 90 nop 11: 66 66 2e 0f 1f 84 00 00 00 00 00 data16 nopw %cs:0x0(%rax,%rax,1) 1c: 0f 1f 40 00 nopl 0x0(%rax) Notice that since the longest alternative sequence is now: 0: e8 07 00 00 00 callq c <.altinstr_replacement+0xc> 5: f3 90 pause 7: 0f ae e8 lfence a: eb f9 jmp 5 <.altinstr_replacement+0x5> c: 48 89 04 24 mov %rax,(%rsp) 10: c3 retq 17 bytes, we have 15 bytes NOP at the end of our 32 byte slot. (IOW, if we can shrink the retpoline by 1 byte we can pack it more densely). [ bp: Massage commit message. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210326151259.506071949@infradead.org
2021-03-26 23:12:02 +08:00
.endm
.macro THUNK reg
.align RETPOLINE_THUNK_SIZE
SYM_INNER_LABEL(__x86_indirect_thunk_\reg, SYM_L_GLOBAL)
UNWIND_HINT_UNDEFINED
ANNOTATE_NOENDBR
x86/retpoline: Simplify retpolines Due to: c9c324dc22aa ("objtool: Support stack layout changes in alternatives") it is now possible to simplify the retpolines. Currently our retpolines consist of 2 symbols: - __x86_indirect_thunk_\reg: the compiler target - __x86_retpoline_\reg: the actual retpoline. Both are consecutive in code and aligned such that for any one register they both live in the same cacheline: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 0000000000000005 <__x86_retpoline_rax>: 5: e8 07 00 00 00 callq 11 <__x86_retpoline_rax+0xc> a: f3 90 pause c: 0f ae e8 lfence f: eb f9 jmp a <__x86_retpoline_rax+0x5> 11: 48 89 04 24 mov %rax,(%rsp) 15: c3 retq 16: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1) The thunk is an alternative_2, where one option is a JMP to the retpoline. This was done so that objtool didn't need to deal with alternatives with stack ops. But that problem has been solved, so now it is possible to fold the entire retpoline into the alternative to simplify and consolidate unused bytes: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 5: 90 nop 6: 90 nop 7: 90 nop 8: 90 nop 9: 90 nop a: 90 nop b: 90 nop c: 90 nop d: 90 nop e: 90 nop f: 90 nop 10: 90 nop 11: 66 66 2e 0f 1f 84 00 00 00 00 00 data16 nopw %cs:0x0(%rax,%rax,1) 1c: 0f 1f 40 00 nopl 0x0(%rax) Notice that since the longest alternative sequence is now: 0: e8 07 00 00 00 callq c <.altinstr_replacement+0xc> 5: f3 90 pause 7: 0f ae e8 lfence a: eb f9 jmp 5 <.altinstr_replacement+0x5> c: 48 89 04 24 mov %rax,(%rsp) 10: c3 retq 17 bytes, we have 15 bytes NOP at the end of our 32 byte slot. (IOW, if we can shrink the retpoline by 1 byte we can pack it more densely). [ bp: Massage commit message. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210326151259.506071949@infradead.org
2021-03-26 23:12:02 +08:00
ALTERNATIVE_2 __stringify(RETPOLINE \reg), \
__stringify(lfence; ANNOTATE_RETPOLINE_SAFE; jmp *%\reg; int3), X86_FEATURE_RETPOLINE_LFENCE, \
__stringify(ANNOTATE_RETPOLINE_SAFE; jmp *%\reg), ALT_NOT(X86_FEATURE_RETPOLINE)
x86/retpoline: Simplify retpolines Due to: c9c324dc22aa ("objtool: Support stack layout changes in alternatives") it is now possible to simplify the retpolines. Currently our retpolines consist of 2 symbols: - __x86_indirect_thunk_\reg: the compiler target - __x86_retpoline_\reg: the actual retpoline. Both are consecutive in code and aligned such that for any one register they both live in the same cacheline: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 0000000000000005 <__x86_retpoline_rax>: 5: e8 07 00 00 00 callq 11 <__x86_retpoline_rax+0xc> a: f3 90 pause c: 0f ae e8 lfence f: eb f9 jmp a <__x86_retpoline_rax+0x5> 11: 48 89 04 24 mov %rax,(%rsp) 15: c3 retq 16: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1) The thunk is an alternative_2, where one option is a JMP to the retpoline. This was done so that objtool didn't need to deal with alternatives with stack ops. But that problem has been solved, so now it is possible to fold the entire retpoline into the alternative to simplify and consolidate unused bytes: 0000000000000000 <__x86_indirect_thunk_rax>: 0: ff e0 jmpq *%rax 2: 90 nop 3: 90 nop 4: 90 nop 5: 90 nop 6: 90 nop 7: 90 nop 8: 90 nop 9: 90 nop a: 90 nop b: 90 nop c: 90 nop d: 90 nop e: 90 nop f: 90 nop 10: 90 nop 11: 66 66 2e 0f 1f 84 00 00 00 00 00 data16 nopw %cs:0x0(%rax,%rax,1) 1c: 0f 1f 40 00 nopl 0x0(%rax) Notice that since the longest alternative sequence is now: 0: e8 07 00 00 00 callq c <.altinstr_replacement+0xc> 5: f3 90 pause 7: 0f ae e8 lfence a: eb f9 jmp 5 <.altinstr_replacement+0x5> c: 48 89 04 24 mov %rax,(%rsp) 10: c3 retq 17 bytes, we have 15 bytes NOP at the end of our 32 byte slot. (IOW, if we can shrink the retpoline by 1 byte we can pack it more densely). [ bp: Massage commit message. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210326151259.506071949@infradead.org
2021-03-26 23:12:02 +08:00
x86/retpoline: Add initial retpoline support Enable the use of -mindirect-branch=thunk-extern in newer GCC, and provide the corresponding thunks. Provide assembler macros for invoking the thunks in the same way that GCC does, from native and inline assembler. This adds X86_FEATURE_RETPOLINE and sets it by default on all CPUs. In some circumstances, IBRS microcode features may be used instead, and the retpoline can be disabled. On AMD CPUs if lfence is serialising, the retpoline can be dramatically simplified to a simple "lfence; jmp *\reg". A future patch, after it has been verified that lfence really is serialising in all circumstances, can enable this by setting the X86_FEATURE_RETPOLINE_AMD feature bit in addition to X86_FEATURE_RETPOLINE. Do not align the retpoline in the altinstr section, because there is no guarantee that it stays aligned when it's copied over the oldinstr during alternative patching. [ Andi Kleen: Rename the macros, add CONFIG_RETPOLINE option, export thunks] [ tglx: Put actual function CALL/JMP in front of the macros, convert to symbolic labels ] [ dwmw2: Convert back to numeric labels, merge objtool fixes ] Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515707194-20531-4-git-send-email-dwmw@amazon.co.uk
2018-01-12 05:46:25 +08:00
.endm
/*
* Despite being an assembler file we can't just use .irp here
* because __KSYM_DEPS__ only uses the C preprocessor and would
* only see one instance of "__x86_indirect_thunk_\reg" rather
* than one per register with the correct names. So we do it
* the simple and nasty way...
*
* Worse, you can only have a single EXPORT_SYMBOL per line,
* and CPP can't insert newlines, so we have to repeat everything
* at least twice.
x86/retpoline: Add initial retpoline support Enable the use of -mindirect-branch=thunk-extern in newer GCC, and provide the corresponding thunks. Provide assembler macros for invoking the thunks in the same way that GCC does, from native and inline assembler. This adds X86_FEATURE_RETPOLINE and sets it by default on all CPUs. In some circumstances, IBRS microcode features may be used instead, and the retpoline can be disabled. On AMD CPUs if lfence is serialising, the retpoline can be dramatically simplified to a simple "lfence; jmp *\reg". A future patch, after it has been verified that lfence really is serialising in all circumstances, can enable this by setting the X86_FEATURE_RETPOLINE_AMD feature bit in addition to X86_FEATURE_RETPOLINE. Do not align the retpoline in the altinstr section, because there is no guarantee that it stays aligned when it's copied over the oldinstr during alternative patching. [ Andi Kleen: Rename the macros, add CONFIG_RETPOLINE option, export thunks] [ tglx: Put actual function CALL/JMP in front of the macros, convert to symbolic labels ] [ dwmw2: Convert back to numeric labels, merge objtool fixes ] Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: gnomes@lxorguk.ukuu.org.uk Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: thomas.lendacky@amd.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: https://lkml.kernel.org/r/1515707194-20531-4-git-send-email-dwmw@amazon.co.uk
2018-01-12 05:46:25 +08:00
*/
#define __EXPORT_THUNK(sym) _ASM_NOKPROBE(sym); EXPORT_SYMBOL(sym)
.align RETPOLINE_THUNK_SIZE
SYM_CODE_START(__x86_indirect_thunk_array)
#define GEN(reg) THUNK reg
#include <asm/GEN-for-each-reg.h>
#undef GEN
.align RETPOLINE_THUNK_SIZE
SYM_CODE_END(__x86_indirect_thunk_array)
#define GEN(reg) __EXPORT_THUNK(__x86_indirect_thunk_ ## reg)
#include <asm/GEN-for-each-reg.h>
#undef GEN
#ifdef CONFIG_CALL_DEPTH_TRACKING
.macro CALL_THUNK reg
.align RETPOLINE_THUNK_SIZE
SYM_INNER_LABEL(__x86_indirect_call_thunk_\reg, SYM_L_GLOBAL)
UNWIND_HINT_UNDEFINED
ANNOTATE_NOENDBR
CALL_DEPTH_ACCOUNT
POLINE \reg
ANNOTATE_UNRET_SAFE
ret
int3
.endm
.align RETPOLINE_THUNK_SIZE
SYM_CODE_START(__x86_indirect_call_thunk_array)
#define GEN(reg) CALL_THUNK reg
#include <asm/GEN-for-each-reg.h>
#undef GEN
.align RETPOLINE_THUNK_SIZE
SYM_CODE_END(__x86_indirect_call_thunk_array)
#define GEN(reg) __EXPORT_THUNK(__x86_indirect_call_thunk_ ## reg)
#include <asm/GEN-for-each-reg.h>
#undef GEN
.macro JUMP_THUNK reg
.align RETPOLINE_THUNK_SIZE
SYM_INNER_LABEL(__x86_indirect_jump_thunk_\reg, SYM_L_GLOBAL)
UNWIND_HINT_UNDEFINED
ANNOTATE_NOENDBR
POLINE \reg
ANNOTATE_UNRET_SAFE
ret
int3
.endm
.align RETPOLINE_THUNK_SIZE
SYM_CODE_START(__x86_indirect_jump_thunk_array)
#define GEN(reg) JUMP_THUNK reg
#include <asm/GEN-for-each-reg.h>
#undef GEN
.align RETPOLINE_THUNK_SIZE
SYM_CODE_END(__x86_indirect_jump_thunk_array)
#define GEN(reg) __EXPORT_THUNK(__x86_indirect_jump_thunk_ ## reg)
#include <asm/GEN-for-each-reg.h>
#undef GEN
#endif
/*
* This function name is magical and is used by -mfunction-return=thunk-extern
* for the compiler to generate JMPs to it.
*/
#ifdef CONFIG_RETHUNK
.section .text.__x86.return_thunk
/*
* Safety details here pertain to the AMD Zen{1,2} microarchitecture:
* 1) The RET at __x86_return_thunk must be on a 64 byte boundary, for
* alignment within the BTB.
* 2) The instruction at zen_untrain_ret must contain, and not
* end with, the 0xc3 byte of the RET.
* 3) STIBP must be enabled, or SMT disabled, to prevent the sibling thread
* from re-poisioning the BTB prediction.
*/
.align 64
.skip 63, 0xcc
SYM_START(zen_untrain_ret, SYM_L_GLOBAL, SYM_A_NONE)
ANNOTATE_NOENDBR
/*
* As executed from zen_untrain_ret, this is:
*
* TEST $0xcc, %bl
* LFENCE
* JMP __x86_return_thunk
*
* Executing the TEST instruction has a side effect of evicting any BTB
* prediction (potentially attacker controlled) attached to the RET, as
* __x86_return_thunk + 1 isn't an instruction boundary at the moment.
*/
.byte 0xf6
/*
* As executed from __x86_return_thunk, this is a plain RET.
*
* As part of the TEST above, RET is the ModRM byte, and INT3 the imm8.
*
* We subsequently jump backwards and architecturally execute the RET.
* This creates a correct BTB prediction (type=ret), but in the
* meantime we suffer Straight Line Speculation (because the type was
* no branch) which is halted by the INT3.
*
* With SMT enabled and STIBP active, a sibling thread cannot poison
* RET's prediction to a type of its choice, but can evict the
* prediction due to competitive sharing. If the prediction is
* evicted, __x86_return_thunk will suffer Straight Line Speculation
* which will be contained safely by the INT3.
*/
SYM_INNER_LABEL(__x86_return_thunk, SYM_L_GLOBAL)
ret
int3
SYM_CODE_END(__x86_return_thunk)
/*
* Ensure the TEST decoding / BTB invalidation is complete.
*/
lfence
/*
* Jump back and execute the RET in the middle of the TEST instruction.
* INT3 is for SLS protection.
*/
jmp __x86_return_thunk
int3
SYM_FUNC_END(zen_untrain_ret)
__EXPORT_THUNK(zen_untrain_ret)
EXPORT_SYMBOL(__x86_return_thunk)
#endif /* CONFIG_RETHUNK */
x86/retbleed: Add SKL return thunk To address the Intel SKL RSB underflow issue in software it's required to do call depth tracking. Provide a return thunk for call depth tracking on Intel SKL CPUs. The tracking does not use a counter. It uses uses arithmetic shift right on call entry and logical shift left on return. The depth tracking variable is initialized to 0x8000.... when the call depth is zero. The arithmetic shift right sign extends the MSB and saturates after the 12th call. The shift count is 5 so the tracking covers 12 nested calls. On return the variable is shifted left logically so it becomes zero again. CALL RET 0: 0x8000000000000000 0x0000000000000000 1: 0xfc00000000000000 0xf000000000000000 ... 11: 0xfffffffffffffff8 0xfffffffffffffc00 12: 0xffffffffffffffff 0xffffffffffffffe0 After a return buffer fill the depth is credited 12 calls before the next stuffing has to take place. There is a inaccuracy for situations like this: 10 calls 5 returns 3 calls 4 returns 3 calls .... The shift count might cause this to be off by one in either direction, but there is still a cushion vs. the RSB depth. The algorithm does not claim to be perfect, but it should obfuscate the problem enough to make exploitation extremly difficult. The theory behind this is: RSB is a stack with depth 16 which is filled on every call. On the return path speculation "pops" entries to speculate down the call chain. Once the speculative RSB is empty it switches to other predictors, e.g. the Branch History Buffer, which can be mistrained by user space and misguide the speculation path to a gadget. Call depth tracking is designed to break this speculation path by stuffing speculation trap calls into the RSB which are never getting a corresponding return executed. This stalls the prediction path until it gets resteered, The assumption is that stuffing at the 12th return is sufficient to break the speculation before it hits the underflow and the fallback to the other predictors. Testing confirms that it works. Johannes, one of the retbleed researchers. tried to attack this approach but failed. There is obviously no scientific proof that this will withstand future research progress, but all we can do right now is to speculate about it. The SAR/SHL usage was suggested by Andi Kleen. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111147.890071690@infradead.org
2022-09-15 19:11:27 +08:00
#ifdef CONFIG_CALL_DEPTH_TRACKING
.align 64
SYM_FUNC_START(__x86_return_skl)
ANNOTATE_NOENDBR
/*
* Keep the hotpath in a 16byte I-fetch for the non-debug
* case.
*/
CALL_THUNKS_DEBUG_INC_RETS
x86/retbleed: Add SKL return thunk To address the Intel SKL RSB underflow issue in software it's required to do call depth tracking. Provide a return thunk for call depth tracking on Intel SKL CPUs. The tracking does not use a counter. It uses uses arithmetic shift right on call entry and logical shift left on return. The depth tracking variable is initialized to 0x8000.... when the call depth is zero. The arithmetic shift right sign extends the MSB and saturates after the 12th call. The shift count is 5 so the tracking covers 12 nested calls. On return the variable is shifted left logically so it becomes zero again. CALL RET 0: 0x8000000000000000 0x0000000000000000 1: 0xfc00000000000000 0xf000000000000000 ... 11: 0xfffffffffffffff8 0xfffffffffffffc00 12: 0xffffffffffffffff 0xffffffffffffffe0 After a return buffer fill the depth is credited 12 calls before the next stuffing has to take place. There is a inaccuracy for situations like this: 10 calls 5 returns 3 calls 4 returns 3 calls .... The shift count might cause this to be off by one in either direction, but there is still a cushion vs. the RSB depth. The algorithm does not claim to be perfect, but it should obfuscate the problem enough to make exploitation extremly difficult. The theory behind this is: RSB is a stack with depth 16 which is filled on every call. On the return path speculation "pops" entries to speculate down the call chain. Once the speculative RSB is empty it switches to other predictors, e.g. the Branch History Buffer, which can be mistrained by user space and misguide the speculation path to a gadget. Call depth tracking is designed to break this speculation path by stuffing speculation trap calls into the RSB which are never getting a corresponding return executed. This stalls the prediction path until it gets resteered, The assumption is that stuffing at the 12th return is sufficient to break the speculation before it hits the underflow and the fallback to the other predictors. Testing confirms that it works. Johannes, one of the retbleed researchers. tried to attack this approach but failed. There is obviously no scientific proof that this will withstand future research progress, but all we can do right now is to speculate about it. The SAR/SHL usage was suggested by Andi Kleen. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111147.890071690@infradead.org
2022-09-15 19:11:27 +08:00
shlq $5, PER_CPU_VAR(pcpu_hot + X86_call_depth)
jz 1f
ANNOTATE_UNRET_SAFE
ret
int3
1:
CALL_THUNKS_DEBUG_INC_STUFFS
x86/retbleed: Add SKL return thunk To address the Intel SKL RSB underflow issue in software it's required to do call depth tracking. Provide a return thunk for call depth tracking on Intel SKL CPUs. The tracking does not use a counter. It uses uses arithmetic shift right on call entry and logical shift left on return. The depth tracking variable is initialized to 0x8000.... when the call depth is zero. The arithmetic shift right sign extends the MSB and saturates after the 12th call. The shift count is 5 so the tracking covers 12 nested calls. On return the variable is shifted left logically so it becomes zero again. CALL RET 0: 0x8000000000000000 0x0000000000000000 1: 0xfc00000000000000 0xf000000000000000 ... 11: 0xfffffffffffffff8 0xfffffffffffffc00 12: 0xffffffffffffffff 0xffffffffffffffe0 After a return buffer fill the depth is credited 12 calls before the next stuffing has to take place. There is a inaccuracy for situations like this: 10 calls 5 returns 3 calls 4 returns 3 calls .... The shift count might cause this to be off by one in either direction, but there is still a cushion vs. the RSB depth. The algorithm does not claim to be perfect, but it should obfuscate the problem enough to make exploitation extremly difficult. The theory behind this is: RSB is a stack with depth 16 which is filled on every call. On the return path speculation "pops" entries to speculate down the call chain. Once the speculative RSB is empty it switches to other predictors, e.g. the Branch History Buffer, which can be mistrained by user space and misguide the speculation path to a gadget. Call depth tracking is designed to break this speculation path by stuffing speculation trap calls into the RSB which are never getting a corresponding return executed. This stalls the prediction path until it gets resteered, The assumption is that stuffing at the 12th return is sufficient to break the speculation before it hits the underflow and the fallback to the other predictors. Testing confirms that it works. Johannes, one of the retbleed researchers. tried to attack this approach but failed. There is obviously no scientific proof that this will withstand future research progress, but all we can do right now is to speculate about it. The SAR/SHL usage was suggested by Andi Kleen. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111147.890071690@infradead.org
2022-09-15 19:11:27 +08:00
.rept 16
ANNOTATE_INTRA_FUNCTION_CALL
call 2f
int3
2:
.endr
add $(8*16), %rsp
CREDIT_CALL_DEPTH
ANNOTATE_UNRET_SAFE
ret
int3
SYM_FUNC_END(__x86_return_skl)
#endif /* CONFIG_CALL_DEPTH_TRACKING */