linux/arch/ia64/kernel/mca_drv.c

795 lines
21 KiB
C
Raw Normal View History

/*
* File: mca_drv.c
* Purpose: Generic MCA handling layer
*
* Copyright (C) 2004 FUJITSU LIMITED
* Copyright (C) 2004 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
* Copyright (C) 2005 Silicon Graphics, Inc
* Copyright (C) 2005 Keith Owens <kaos@sgi.com>
[IA64] MCA recovery: kernel context recovery table Memory errors encountered by user applications may surface when the CPU is running in kernel context. The current code will not attempt recovery if the MCA surfaces in kernel context (privilage mode 0). This patch adds a check for cases where the user initiated the load that surfaces in kernel interrupt code. An example is a user process lauching a load from memory and the data in memory had bad ECC. Before the bad data gets to the CPU register, and interrupt comes in. The code jumps to the IVT interrupt entry point and begins execution in kernel context. The process of saving the user registers (SAVE_REST) causes the bad data to be loaded into a CPU register, triggering the MCA. The MCA surfaces in kernel context, even though the load was initiated from user context. As suggested by David and Tony, this patch uses an exception table like approach, puting the tagged recovery addresses in a searchable table. One difference from the exception table is that MCAs do not surface in precise places (such as with a TLB miss), so instead of tagging specific instructions, address ranges are registers. A single macro is used to do the tagging, with the input parameter being the label of the starting address and the macro being the ending address. This limits clutter in the code. This patch only tags one spot, the interrupt ivt entry. Testing showed that spot to be a "heavy hitter" with MCAs surfacing while saving user registers. Other spots can be added as needed by adding a single macro. Signed-off-by: Russ Anderson (rja@sgi.com) Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-03-25 01:49:52 +08:00
* Copyright (C) 2006 Russ Anderson <rja@sgi.com>
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kallsyms.h>
#include <linux/bootmem.h>
#include <linux/acpi.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/workqueue.h>
#include <linux/mm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/delay.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/sal.h>
#include <asm/mca.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
#include "mca_drv.h"
/* max size of SAL error record (default) */
static int sal_rec_max = 10000;
/* from mca_drv_asm.S */
extern void *mca_handler_bhhook(void);
static DEFINE_SPINLOCK(mca_bh_lock);
typedef enum {
MCA_IS_LOCAL = 0,
MCA_IS_GLOBAL = 1
} mca_type_t;
#define MAX_PAGE_ISOLATE 1024
static struct page *page_isolate[MAX_PAGE_ISOLATE];
static int num_page_isolate = 0;
typedef enum {
ISOLATE_NG,
ISOLATE_OK,
ISOLATE_NONE
} isolate_status_t;
typedef enum {
MCA_NOT_RECOVERED = 0,
MCA_RECOVERED = 1
} recovery_status_t;
/*
* This pool keeps pointers to the section part of SAL error record
*/
static struct {
slidx_list_t *buffer; /* section pointer list pool */
int cur_idx; /* Current index of section pointer list pool */
int max_idx; /* Maximum index of section pointer list pool */
} slidx_pool;
static int
fatal_mca(const char *fmt, ...)
{
va_list args;
char buf[256];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
ia64_mca_printk(KERN_ALERT "MCA: %s\n", buf);
return MCA_NOT_RECOVERED;
}
static int
mca_recovered(const char *fmt, ...)
{
va_list args;
char buf[256];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
ia64_mca_printk(KERN_INFO "MCA: %s\n", buf);
return MCA_RECOVERED;
}
/**
* mca_page_isolate - isolate a poisoned page in order not to use it later
* @paddr: poisoned memory location
*
* Return value:
* one of isolate_status_t, ISOLATE_OK/NG/NONE.
*/
static isolate_status_t
mca_page_isolate(unsigned long paddr)
{
int i;
struct page *p;
/* whether physical address is valid or not */
if (!ia64_phys_addr_valid(paddr))
return ISOLATE_NONE;
if (!pfn_valid(paddr >> PAGE_SHIFT))
return ISOLATE_NONE;
/* convert physical address to physical page number */
p = pfn_to_page(paddr>>PAGE_SHIFT);
/* check whether a page number have been already registered or not */
for (i = 0; i < num_page_isolate; i++)
if (page_isolate[i] == p)
return ISOLATE_OK; /* already listed */
/* limitation check */
if (num_page_isolate == MAX_PAGE_ISOLATE)
return ISOLATE_NG;
/* kick pages having attribute 'SLAB' or 'Reserved' */
if (PageSlab(p) || PageReserved(p))
return ISOLATE_NG;
/* add attribute 'Reserved' and register the page */
get_page(p);
SetPageReserved(p);
page_isolate[num_page_isolate++] = p;
return ISOLATE_OK;
}
/**
* mca_hanlder_bh - Kill the process which occurred memory read error
* @paddr: poisoned address received from MCA Handler
*/
void
[IA64] MCA recovery: kernel context recovery table Memory errors encountered by user applications may surface when the CPU is running in kernel context. The current code will not attempt recovery if the MCA surfaces in kernel context (privilage mode 0). This patch adds a check for cases where the user initiated the load that surfaces in kernel interrupt code. An example is a user process lauching a load from memory and the data in memory had bad ECC. Before the bad data gets to the CPU register, and interrupt comes in. The code jumps to the IVT interrupt entry point and begins execution in kernel context. The process of saving the user registers (SAVE_REST) causes the bad data to be loaded into a CPU register, triggering the MCA. The MCA surfaces in kernel context, even though the load was initiated from user context. As suggested by David and Tony, this patch uses an exception table like approach, puting the tagged recovery addresses in a searchable table. One difference from the exception table is that MCAs do not surface in precise places (such as with a TLB miss), so instead of tagging specific instructions, address ranges are registers. A single macro is used to do the tagging, with the input parameter being the label of the starting address and the macro being the ending address. This limits clutter in the code. This patch only tags one spot, the interrupt ivt entry. Testing showed that spot to be a "heavy hitter" with MCAs surfacing while saving user registers. Other spots can be added as needed by adding a single macro. Signed-off-by: Russ Anderson (rja@sgi.com) Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-03-25 01:49:52 +08:00
mca_handler_bh(unsigned long paddr, void *iip, unsigned long ipsr)
{
ia64_mlogbuf_dump();
[IA64] MCA recovery: kernel context recovery table Memory errors encountered by user applications may surface when the CPU is running in kernel context. The current code will not attempt recovery if the MCA surfaces in kernel context (privilage mode 0). This patch adds a check for cases where the user initiated the load that surfaces in kernel interrupt code. An example is a user process lauching a load from memory and the data in memory had bad ECC. Before the bad data gets to the CPU register, and interrupt comes in. The code jumps to the IVT interrupt entry point and begins execution in kernel context. The process of saving the user registers (SAVE_REST) causes the bad data to be loaded into a CPU register, triggering the MCA. The MCA surfaces in kernel context, even though the load was initiated from user context. As suggested by David and Tony, this patch uses an exception table like approach, puting the tagged recovery addresses in a searchable table. One difference from the exception table is that MCAs do not surface in precise places (such as with a TLB miss), so instead of tagging specific instructions, address ranges are registers. A single macro is used to do the tagging, with the input parameter being the label of the starting address and the macro being the ending address. This limits clutter in the code. This patch only tags one spot, the interrupt ivt entry. Testing showed that spot to be a "heavy hitter" with MCAs surfacing while saving user registers. Other spots can be added as needed by adding a single macro. Signed-off-by: Russ Anderson (rja@sgi.com) Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-03-25 01:49:52 +08:00
printk(KERN_ERR "OS_MCA: process [cpu %d, pid: %d, uid: %d, "
"iip: %p, psr: 0x%lx,paddr: 0x%lx](%s) encounters MCA.\n",
raw_smp_processor_id(), current->pid, current_uid(),
[IA64] MCA recovery: kernel context recovery table Memory errors encountered by user applications may surface when the CPU is running in kernel context. The current code will not attempt recovery if the MCA surfaces in kernel context (privilage mode 0). This patch adds a check for cases where the user initiated the load that surfaces in kernel interrupt code. An example is a user process lauching a load from memory and the data in memory had bad ECC. Before the bad data gets to the CPU register, and interrupt comes in. The code jumps to the IVT interrupt entry point and begins execution in kernel context. The process of saving the user registers (SAVE_REST) causes the bad data to be loaded into a CPU register, triggering the MCA. The MCA surfaces in kernel context, even though the load was initiated from user context. As suggested by David and Tony, this patch uses an exception table like approach, puting the tagged recovery addresses in a searchable table. One difference from the exception table is that MCAs do not surface in precise places (such as with a TLB miss), so instead of tagging specific instructions, address ranges are registers. A single macro is used to do the tagging, with the input parameter being the label of the starting address and the macro being the ending address. This limits clutter in the code. This patch only tags one spot, the interrupt ivt entry. Testing showed that spot to be a "heavy hitter" with MCAs surfacing while saving user registers. Other spots can be added as needed by adding a single macro. Signed-off-by: Russ Anderson (rja@sgi.com) Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-03-25 01:49:52 +08:00
iip, ipsr, paddr, current->comm);
spin_lock(&mca_bh_lock);
switch (mca_page_isolate(paddr)) {
case ISOLATE_OK:
printk(KERN_DEBUG "Page isolation: ( %lx ) success.\n", paddr);
break;
case ISOLATE_NG:
printk(KERN_CRIT "Page isolation: ( %lx ) failure.\n", paddr);
break;
default:
break;
}
spin_unlock(&mca_bh_lock);
/* This process is about to be killed itself */
do_exit(SIGKILL);
}
/**
* mca_make_peidx - Make index of processor error section
* @slpi: pointer to record of processor error section
* @peidx: pointer to index of processor error section
*/
static void
mca_make_peidx(sal_log_processor_info_t *slpi, peidx_table_t *peidx)
{
/*
* calculate the start address of
* "struct cpuid_info" and "sal_processor_static_info_t".
*/
u64 total_check_num = slpi->valid.num_cache_check
+ slpi->valid.num_tlb_check
+ slpi->valid.num_bus_check
+ slpi->valid.num_reg_file_check
+ slpi->valid.num_ms_check;
u64 head_size = sizeof(sal_log_mod_error_info_t) * total_check_num
+ sizeof(sal_log_processor_info_t);
u64 mid_size = slpi->valid.cpuid_info * sizeof(struct sal_cpuid_info);
peidx_head(peidx) = slpi;
peidx_mid(peidx) = (struct sal_cpuid_info *)
(slpi->valid.cpuid_info ? ((char*)slpi + head_size) : NULL);
peidx_bottom(peidx) = (sal_processor_static_info_t *)
(slpi->valid.psi_static_struct ?
((char*)slpi + head_size + mid_size) : NULL);
}
/**
* mca_make_slidx - Make index of SAL error record
* @buffer: pointer to SAL error record
* @slidx: pointer to index of SAL error record
*
* Return value:
* 1 if record has platform error / 0 if not
*/
#define LOG_INDEX_ADD_SECT_PTR(sect, ptr) \
{slidx_list_t *hl = &slidx_pool.buffer[slidx_pool.cur_idx]; \
hl->hdr = ptr; \
list_add(&hl->list, &(sect)); \
slidx_pool.cur_idx = (slidx_pool.cur_idx + 1)%slidx_pool.max_idx; }
static int
mca_make_slidx(void *buffer, slidx_table_t *slidx)
{
int platform_err = 0;
int record_len = ((sal_log_record_header_t*)buffer)->len;
u32 ercd_pos;
int sects;
sal_log_section_hdr_t *sp;
/*
* Initialize index referring current record
*/
INIT_LIST_HEAD(&(slidx->proc_err));
INIT_LIST_HEAD(&(slidx->mem_dev_err));
INIT_LIST_HEAD(&(slidx->sel_dev_err));
INIT_LIST_HEAD(&(slidx->pci_bus_err));
INIT_LIST_HEAD(&(slidx->smbios_dev_err));
INIT_LIST_HEAD(&(slidx->pci_comp_err));
INIT_LIST_HEAD(&(slidx->plat_specific_err));
INIT_LIST_HEAD(&(slidx->host_ctlr_err));
INIT_LIST_HEAD(&(slidx->plat_bus_err));
INIT_LIST_HEAD(&(slidx->unsupported));
/*
* Extract a Record Header
*/
slidx->header = buffer;
/*
* Extract each section records
* (arranged from "int ia64_log_platform_info_print()")
*/
for (ercd_pos = sizeof(sal_log_record_header_t), sects = 0;
ercd_pos < record_len; ercd_pos += sp->len, sects++) {
sp = (sal_log_section_hdr_t *)((char*)buffer + ercd_pos);
if (!efi_guidcmp(sp->guid, SAL_PROC_DEV_ERR_SECT_GUID)) {
LOG_INDEX_ADD_SECT_PTR(slidx->proc_err, sp);
} else if (!efi_guidcmp(sp->guid,
SAL_PLAT_MEM_DEV_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->mem_dev_err, sp);
} else if (!efi_guidcmp(sp->guid,
SAL_PLAT_SEL_DEV_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->sel_dev_err, sp);
} else if (!efi_guidcmp(sp->guid,
SAL_PLAT_PCI_BUS_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->pci_bus_err, sp);
} else if (!efi_guidcmp(sp->guid,
SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->smbios_dev_err, sp);
} else if (!efi_guidcmp(sp->guid,
SAL_PLAT_PCI_COMP_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->pci_comp_err, sp);
} else if (!efi_guidcmp(sp->guid,
SAL_PLAT_SPECIFIC_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->plat_specific_err, sp);
} else if (!efi_guidcmp(sp->guid,
SAL_PLAT_HOST_CTLR_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->host_ctlr_err, sp);
} else if (!efi_guidcmp(sp->guid,
SAL_PLAT_BUS_ERR_SECT_GUID)) {
platform_err = 1;
LOG_INDEX_ADD_SECT_PTR(slidx->plat_bus_err, sp);
} else {
LOG_INDEX_ADD_SECT_PTR(slidx->unsupported, sp);
}
}
slidx->n_sections = sects;
return platform_err;
}
/**
* init_record_index_pools - Initialize pool of lists for SAL record index
*
* Return value:
* 0 on Success / -ENOMEM on Failure
*/
static int
init_record_index_pools(void)
{
int i;
int rec_max_size; /* Maximum size of SAL error records */
int sect_min_size; /* Minimum size of SAL error sections */
/* minimum size table of each section */
static int sal_log_sect_min_sizes[] = {
sizeof(sal_log_processor_info_t)
+ sizeof(sal_processor_static_info_t),
sizeof(sal_log_mem_dev_err_info_t),
sizeof(sal_log_sel_dev_err_info_t),
sizeof(sal_log_pci_bus_err_info_t),
sizeof(sal_log_smbios_dev_err_info_t),
sizeof(sal_log_pci_comp_err_info_t),
sizeof(sal_log_plat_specific_err_info_t),
sizeof(sal_log_host_ctlr_err_info_t),
sizeof(sal_log_plat_bus_err_info_t),
};
/*
* MCA handler cannot allocate new memory on flight,
* so we preallocate enough memory to handle a SAL record.
*
* Initialize a handling set of slidx_pool:
* 1. Pick up the max size of SAL error records
* 2. Pick up the min size of SAL error sections
* 3. Allocate the pool as enough to 2 SAL records
* (now we can estimate the maxinum of section in a record.)
*/
/* - 1 - */
rec_max_size = sal_rec_max;
/* - 2 - */
sect_min_size = sal_log_sect_min_sizes[0];
for (i = 1; i < sizeof sal_log_sect_min_sizes/sizeof(size_t); i++)
if (sect_min_size > sal_log_sect_min_sizes[i])
sect_min_size = sal_log_sect_min_sizes[i];
/* - 3 - */
slidx_pool.max_idx = (rec_max_size/sect_min_size) * 2 + 1;
slidx_pool.buffer = (slidx_list_t *)
kmalloc(slidx_pool.max_idx * sizeof(slidx_list_t), GFP_KERNEL);
return slidx_pool.buffer ? 0 : -ENOMEM;
}
/*****************************************************************************
* Recovery functions *
*****************************************************************************/
/**
* is_mca_global - Check whether this MCA is global or not
* @peidx: pointer of index of processor error section
* @pbci: pointer to pal_bus_check_info_t
* @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* MCA_IS_LOCAL / MCA_IS_GLOBAL
*/
static mca_type_t
is_mca_global(peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
pal_processor_state_info_t *psp =
(pal_processor_state_info_t*)peidx_psp(peidx);
/*
* PAL can request a rendezvous, if the MCA has a global scope.
* If "rz_always" flag is set, SAL requests MCA rendezvous
* in spite of global MCA.
* Therefore it is local MCA when rendezvous has not been requested.
* Failed to rendezvous, the system must be down.
*/
switch (sos->rv_rc) {
case -1: /* SAL rendezvous unsuccessful */
return MCA_IS_GLOBAL;
case 0: /* SAL rendezvous not required */
return MCA_IS_LOCAL;
case 1: /* SAL rendezvous successful int */
case 2: /* SAL rendezvous successful int with init */
default:
break;
}
/*
* If One or more Cache/TLB/Reg_File/Uarch_Check is here,
* it would be a local MCA. (i.e. processor internal error)
*/
if (psp->tc || psp->cc || psp->rc || psp->uc)
return MCA_IS_LOCAL;
/*
* Bus_Check structure with Bus_Check.ib (internal bus error) flag set
* would be a global MCA. (e.g. a system bus address parity error)
*/
if (!pbci || pbci->ib)
return MCA_IS_GLOBAL;
/*
* Bus_Check structure with Bus_Check.eb (external bus error) flag set
* could be either a local MCA or a global MCA.
*
* Referring Bus_Check.bsi:
* 0: Unknown/unclassified
* 1: BERR#
* 2: BINIT#
* 3: Hard Fail
* (FIXME: Are these SGI specific or generic bsi values?)
*/
if (pbci->eb)
switch (pbci->bsi) {
case 0:
/* e.g. a load from poisoned memory */
return MCA_IS_LOCAL;
case 1:
case 2:
case 3:
return MCA_IS_GLOBAL;
}
return MCA_IS_GLOBAL;
}
/**
* get_target_identifier - Get the valid Cache or Bus check target identifier.
* @peidx: pointer of index of processor error section
*
* Return value:
* target address on Success / 0 on Failure
*/
static u64
get_target_identifier(peidx_table_t *peidx)
{
u64 target_address = 0;
sal_log_mod_error_info_t *smei;
pal_cache_check_info_t *pcci;
int i, level = 9;
/*
* Look through the cache checks for a valid target identifier
* If more than one valid target identifier, return the one
* with the lowest cache level.
*/
for (i = 0; i < peidx_cache_check_num(peidx); i++) {
smei = (sal_log_mod_error_info_t *)peidx_cache_check(peidx, i);
if (smei->valid.target_identifier && smei->target_identifier) {
pcci = (pal_cache_check_info_t *)&(smei->check_info);
if (!target_address || (pcci->level < level)) {
target_address = smei->target_identifier;
level = pcci->level;
continue;
}
}
}
if (target_address)
return target_address;
/*
* Look at the bus check for a valid target identifier
*/
smei = peidx_bus_check(peidx, 0);
if (smei && smei->valid.target_identifier)
return smei->target_identifier;
return 0;
}
/**
* recover_from_read_error - Try to recover the errors which type are "read"s.
* @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info
* @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* 1 on Success / 0 on Failure
*/
static int
recover_from_read_error(slidx_table_t *slidx,
peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
u64 target_identifier;
pal_min_state_area_t *pmsa;
struct ia64_psr *psr1, *psr2;
ia64_fptr_t *mca_hdlr_bh = (ia64_fptr_t*)mca_handler_bhhook;
/* Is target address valid? */
target_identifier = get_target_identifier(peidx);
if (!target_identifier)
return fatal_mca("target address not valid");
/*
* cpu read or memory-mapped io read
*
* offending process affected process OS MCA do
* kernel mode kernel mode down system
* kernel mode user mode kill the process
* user mode kernel mode down system (*)
* user mode user mode kill the process
*
* (*) You could terminate offending user-mode process
* if (pbci->pv && pbci->pl != 0) *and* if you sure
* the process not have any locks of kernel.
*/
/* Is minstate valid? */
if (!peidx_bottom(peidx) || !(peidx_bottom(peidx)->valid.minstate))
return fatal_mca("minstate not valid");
psr1 =(struct ia64_psr *)&(peidx_minstate_area(peidx)->pmsa_ipsr);
[IA64] MCA recovery: kernel context recovery table Memory errors encountered by user applications may surface when the CPU is running in kernel context. The current code will not attempt recovery if the MCA surfaces in kernel context (privilage mode 0). This patch adds a check for cases where the user initiated the load that surfaces in kernel interrupt code. An example is a user process lauching a load from memory and the data in memory had bad ECC. Before the bad data gets to the CPU register, and interrupt comes in. The code jumps to the IVT interrupt entry point and begins execution in kernel context. The process of saving the user registers (SAVE_REST) causes the bad data to be loaded into a CPU register, triggering the MCA. The MCA surfaces in kernel context, even though the load was initiated from user context. As suggested by David and Tony, this patch uses an exception table like approach, puting the tagged recovery addresses in a searchable table. One difference from the exception table is that MCAs do not surface in precise places (such as with a TLB miss), so instead of tagging specific instructions, address ranges are registers. A single macro is used to do the tagging, with the input parameter being the label of the starting address and the macro being the ending address. This limits clutter in the code. This patch only tags one spot, the interrupt ivt entry. Testing showed that spot to be a "heavy hitter" with MCAs surfacing while saving user registers. Other spots can be added as needed by adding a single macro. Signed-off-by: Russ Anderson (rja@sgi.com) Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-03-25 01:49:52 +08:00
psr2 =(struct ia64_psr *)&(peidx_minstate_area(peidx)->pmsa_xpsr);
/*
* Check the privilege level of interrupted context.
* If it is user-mode, then terminate affected process.
*/
[IA64] MCA recovery: kernel context recovery table Memory errors encountered by user applications may surface when the CPU is running in kernel context. The current code will not attempt recovery if the MCA surfaces in kernel context (privilage mode 0). This patch adds a check for cases where the user initiated the load that surfaces in kernel interrupt code. An example is a user process lauching a load from memory and the data in memory had bad ECC. Before the bad data gets to the CPU register, and interrupt comes in. The code jumps to the IVT interrupt entry point and begins execution in kernel context. The process of saving the user registers (SAVE_REST) causes the bad data to be loaded into a CPU register, triggering the MCA. The MCA surfaces in kernel context, even though the load was initiated from user context. As suggested by David and Tony, this patch uses an exception table like approach, puting the tagged recovery addresses in a searchable table. One difference from the exception table is that MCAs do not surface in precise places (such as with a TLB miss), so instead of tagging specific instructions, address ranges are registers. A single macro is used to do the tagging, with the input parameter being the label of the starting address and the macro being the ending address. This limits clutter in the code. This patch only tags one spot, the interrupt ivt entry. Testing showed that spot to be a "heavy hitter" with MCAs surfacing while saving user registers. Other spots can be added as needed by adding a single macro. Signed-off-by: Russ Anderson (rja@sgi.com) Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-03-25 01:49:52 +08:00
pmsa = sos->pal_min_state;
if (psr1->cpl != 0 ||
((psr2->cpl != 0) && mca_recover_range(pmsa->pmsa_iip))) {
/*
* setup for resume to bottom half of MCA,
* "mca_handler_bhhook"
*/
/* pass to bhhook as argument (gr8, ...) */
pmsa->pmsa_gr[8-1] = target_identifier;
pmsa->pmsa_gr[9-1] = pmsa->pmsa_iip;
pmsa->pmsa_gr[10-1] = pmsa->pmsa_ipsr;
/* set interrupted return address (but no use) */
pmsa->pmsa_br0 = pmsa->pmsa_iip;
/* change resume address to bottom half */
pmsa->pmsa_iip = mca_hdlr_bh->fp;
pmsa->pmsa_gr[1-1] = mca_hdlr_bh->gp;
/* set cpl with kernel mode */
psr2 = (struct ia64_psr *)&pmsa->pmsa_ipsr;
psr2->cpl = 0;
psr2->ri = 0;
psr2->bn = 1;
psr2->i = 0;
return mca_recovered("user memory corruption. "
"kill affected process - recovered.");
}
return fatal_mca("kernel context not recovered, iip 0x%lx\n",
pmsa->pmsa_iip);
}
/**
* recover_from_platform_error - Recover from platform error.
* @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info
* @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* 1 on Success / 0 on Failure
*/
static int
recover_from_platform_error(slidx_table_t *slidx, peidx_table_t *peidx,
pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
int status = 0;
pal_processor_state_info_t *psp =
(pal_processor_state_info_t*)peidx_psp(peidx);
if (psp->bc && pbci->eb && pbci->bsi == 0) {
switch(pbci->type) {
case 1: /* partial read */
case 3: /* full line(cpu) read */
case 9: /* I/O space read */
status = recover_from_read_error(slidx, peidx, pbci,
sos);
break;
case 0: /* unknown */
case 2: /* partial write */
case 4: /* full line write */
case 5: /* implicit or explicit write-back operation */
case 6: /* snoop probe */
case 7: /* incoming or outgoing ptc.g */
case 8: /* write coalescing transactions */
case 10: /* I/O space write */
case 11: /* inter-processor interrupt message(IPI) */
case 12: /* interrupt acknowledge or
external task priority cycle */
default:
break;
}
} else if (psp->cc && !psp->bc) { /* Cache error */
status = recover_from_read_error(slidx, peidx, pbci, sos);
}
return status;
}
/*
* recover_from_tlb_check
* @peidx: pointer of index of processor error section
*
* Return value:
* 1 on Success / 0 on Failure
*/
static int
recover_from_tlb_check(peidx_table_t *peidx)
{
sal_log_mod_error_info_t *smei;
pal_tlb_check_info_t *ptci;
smei = (sal_log_mod_error_info_t *)peidx_tlb_check(peidx, 0);
ptci = (pal_tlb_check_info_t *)&(smei->check_info);
/*
* Look for signature of a duplicate TLB DTC entry, which is
* a SW bug and always fatal.
*/
if (ptci->op == PAL_TLB_CHECK_OP_PURGE
&& !(ptci->itr || ptci->dtc || ptci->itc))
return fatal_mca("Duplicate TLB entry");
return mca_recovered("TLB check recovered");
}
/**
* recover_from_processor_error
* @platform: whether there are some platform error section or not
* @slidx: pointer of index of SAL error record
* @peidx: pointer of index of processor error section
* @pbci: pointer of pal_bus_check_info
* @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* 1 on Success / 0 on Failure
*/
static int
recover_from_processor_error(int platform, slidx_table_t *slidx,
peidx_table_t *peidx, pal_bus_check_info_t *pbci,
struct ia64_sal_os_state *sos)
{
pal_processor_state_info_t *psp =
(pal_processor_state_info_t*)peidx_psp(peidx);
/*
* Processor recovery status must key off of the PAL recovery
* status in the Processor State Parameter.
*/
/*
* The machine check is corrected.
*/
if (psp->cm == 1)
return mca_recovered("machine check is already corrected.");
/*
* The error was not contained. Software must be reset.
*/
if (psp->us || psp->ci == 0)
return fatal_mca("error not contained");
/*
* Look for recoverable TLB check
*/
if (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
return recover_from_tlb_check(peidx);
/*
* The cache check and bus check bits have four possible states
* cc bc
* 1 1 Memory error, attempt recovery
* 1 0 Cache error, attempt recovery
* 0 1 I/O error, attempt recovery
* 0 0 Other error type, not recovered
*/
if (psp->cc == 0 && (psp->bc == 0 || pbci == NULL))
return fatal_mca("No cache or bus check");
/*
* Cannot handle more than one bus check.
*/
if (peidx_bus_check_num(peidx) > 1)
return fatal_mca("Too many bus checks");
if (pbci->ib)
return fatal_mca("Internal Bus error");
if (pbci->eb && pbci->bsi > 0)
return fatal_mca("External bus check fatal status");
/*
* This is a local MCA and estimated as a recoverable error.
*/
if (platform)
return recover_from_platform_error(slidx, peidx, pbci, sos);
/*
* On account of strange SAL error record, we cannot recover.
*/
return fatal_mca("Strange SAL record");
}
/**
* mca_try_to_recover - Try to recover from MCA
* @rec: pointer to a SAL error record
* @sos: pointer to hand off struct between SAL and OS
*
* Return value:
* 1 on Success / 0 on Failure
*/
static int
mca_try_to_recover(void *rec, struct ia64_sal_os_state *sos)
{
int platform_err;
int n_proc_err;
slidx_table_t slidx;
peidx_table_t peidx;
pal_bus_check_info_t pbci;
/* Make index of SAL error record */
platform_err = mca_make_slidx(rec, &slidx);
/* Count processor error sections */
n_proc_err = slidx_count(&slidx, proc_err);
/* Now, OS can recover when there is one processor error section */
if (n_proc_err > 1)
return fatal_mca("Too Many Errors");
else if (n_proc_err == 0)
/* Weird SAL record ... We can't do anything */
return fatal_mca("Weird SAL record");
/* Make index of processor error section */
mca_make_peidx((sal_log_processor_info_t*)
slidx_first_entry(&slidx.proc_err)->hdr, &peidx);
/* Extract Processor BUS_CHECK[0] */
*((u64*)&pbci) = peidx_check_info(&peidx, bus_check, 0);
/* Check whether MCA is global or not */
if (is_mca_global(&peidx, &pbci, sos))
return fatal_mca("global MCA");
/* Try to recover a processor error */
return recover_from_processor_error(platform_err, &slidx, &peidx,
&pbci, sos);
}
/*
* =============================================================================
*/
int __init mca_external_handler_init(void)
{
if (init_record_index_pools())
return -ENOMEM;
/* register external mca handlers */
if (ia64_reg_MCA_extension(mca_try_to_recover)) {
printk(KERN_ERR "ia64_reg_MCA_extension failed.\n");
kfree(slidx_pool.buffer);
return -EFAULT;
}
return 0;
}
void __exit mca_external_handler_exit(void)
{
/* unregister external mca handlers */
ia64_unreg_MCA_extension();
kfree(slidx_pool.buffer);
}
module_init(mca_external_handler_init);
module_exit(mca_external_handler_exit);
module_param(sal_rec_max, int, 0644);
MODULE_PARM_DESC(sal_rec_max, "Max size of SAL error record");
MODULE_DESCRIPTION("ia64 platform dependent mca handler driver");
MODULE_LICENSE("GPL");