linux/include/net/red.h

467 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __NET_SCHED_RED_H
#define __NET_SCHED_RED_H
#include <linux/types.h>
#include <linux/bug.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
#include <net/dsfield.h>
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
#include <linux/reciprocal_div.h>
/* Random Early Detection (RED) algorithm.
=======================================
Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
This file codes a "divisionless" version of RED algorithm
as written down in Fig.17 of the paper.
Short description.
------------------
When a new packet arrives we calculate the average queue length:
avg = (1-W)*avg + W*current_queue_len,
W is the filter time constant (chosen as 2^(-Wlog)), it controls
the inertia of the algorithm. To allow larger bursts, W should be
decreased.
if (avg > th_max) -> packet marked (dropped).
if (avg < th_min) -> packet passes.
if (th_min < avg < th_max) we calculate probability:
Pb = max_P * (avg - th_min)/(th_max-th_min)
and mark (drop) packet with this probability.
Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
max_P should be small (not 1), usually 0.01..0.02 is good value.
max_P is chosen as a number, so that max_P/(th_max-th_min)
is a negative power of two in order arithmetics to contain
only shifts.
Parameters, settable by user:
-----------------------------
qth_min - bytes (should be < qth_max/2)
qth_max - bytes (should be at least 2*qth_min and less limit)
Wlog - bits (<32) log(1/W).
Plog - bits (<32)
Plog is related to max_P by formula:
max_P = (qth_max-qth_min)/2^Plog;
F.e. if qth_max=128K and qth_min=32K, then Plog=22
corresponds to max_P=0.02
Scell_log
Stab
Lookup table for log((1-W)^(t/t_ave).
NOTES:
Upper bound on W.
-----------------
If you want to allow bursts of L packets of size S,
you should choose W:
L + 1 - th_min/S < (1-(1-W)^L)/W
th_min/S = 32 th_min/S = 4
log(W) L
-1 33
-2 35
-3 39
-4 46
-5 57
-6 75
-7 101
-8 135
-9 190
etc.
*/
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
/*
* Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
* (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
*
* Every 500 ms:
* if (avg > target and max_p <= 0.5)
* increase max_p : max_p += alpha;
* else if (avg < target and max_p >= 0.01)
* decrease max_p : max_p *= beta;
*
* target :[qth_min + 0.4*(qth_min - qth_max),
* qth_min + 0.6*(qth_min - qth_max)].
* alpha : min(0.01, max_p / 4)
* beta : 0.9
* max_P is a Q0.32 fixed point number (with 32 bits mantissa)
* max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
*/
#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
#define MAX_P_MIN (1 * RED_ONE_PERCENT)
#define MAX_P_MAX (50 * RED_ONE_PERCENT)
#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
#define RED_STAB_SIZE 256
#define RED_STAB_MASK (RED_STAB_SIZE - 1)
struct red_stats {
u32 prob_drop; /* Early probability drops */
u32 prob_mark; /* Early probability marks */
u32 forced_drop; /* Forced drops, qavg > max_thresh */
u32 forced_mark; /* Forced marks, qavg > max_thresh */
u32 pdrop; /* Drops due to queue limits */
u32 other; /* Drops due to drop() calls */
};
struct red_parms {
/* Parameters */
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
u32 qth_min; /* Min avg length threshold: Wlog scaled */
u32 qth_max; /* Max avg length threshold: Wlog scaled */
u32 Scell_max;
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
reciprocal_divide: update/correction of the algorithm Jakub Zawadzki noticed that some divisions by reciprocal_divide() were not correct [1][2], which he could also show with BPF code after divisions are transformed into reciprocal_value() for runtime invariance which can be passed to reciprocal_divide() later on; reverse in BPF dump ended up with a different, off-by-one K in some situations. This has been fixed by Eric Dumazet in commit aee636c4809fa5 ("bpf: do not use reciprocal divide"). This follow-up patch improves reciprocal_value() and reciprocal_divide() to work in all cases by using Granlund and Montgomery method, so that also future use is safe and without any non-obvious side-effects. Known problems with the old implementation were that division by 1 always returned 0 and some off-by-ones when the dividend and divisor where very large. This seemed to not be problematic with its current users, as far as we can tell. Eric Dumazet checked for the slab usage, we cannot surely say so in the case of flex_array. Still, in order to fix that, we propose an extension from the original implementation from commit 6a2d7a955d8d resp. [3][4], by using the algorithm proposed in "Division by Invariant Integers Using Multiplication" [5], Torbjörn Granlund and Peter L. Montgomery, that is, pseudocode for q = n/d where q, n, d is in u32 universe: 1) Initialization: int l = ceil(log_2 d) uword m' = floor((1<<32)*((1<<l)-d)/d)+1 int sh_1 = min(l,1) int sh_2 = max(l-1,0) 2) For q = n/d, all uword: uword t = (n*m')>>32 q = (t+((n-t)>>sh_1))>>sh_2 The assembler implementation from Agner Fog [6] also helped a lot while implementing. We have tested the implementation on x86_64, ppc64, i686, s390x; on x86_64/haswell we're still half the latency compared to normal divide. Joint work with Daniel Borkmann. [1] http://www.wireshark.org/~darkjames/reciprocal-buggy.c [2] http://www.wireshark.org/~darkjames/set-and-dump-filter-k-bug.c [3] https://gmplib.org/~tege/division-paper.pdf [4] http://homepage.cs.uiowa.edu/~jones/bcd/divide.html [5] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556 [6] http://www.agner.org/optimize/asmlib.zip Reported-by: Jakub Zawadzki <darkjames-ws@darkjames.pl> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: linux-kernel@vger.kernel.org Cc: Jesse Gross <jesse@nicira.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andy Gospodarek <andy@greyhouse.net> Cc: Veaceslav Falico <vfalico@redhat.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Jakub Zawadzki <darkjames-ws@darkjames.pl> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-22 09:29:41 +08:00
/* reciprocal_value(max_P / qth_delta) */
struct reciprocal_value max_P_reciprocal;
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
u32 qth_delta; /* max_th - min_th */
u32 target_min; /* min_th + 0.4*(max_th - min_th) */
u32 target_max; /* min_th + 0.6*(max_th - min_th) */
u8 Scell_log;
u8 Wlog; /* log(W) */
u8 Plog; /* random number bits */
u8 Stab[RED_STAB_SIZE];
};
struct red_vars {
/* Variables */
int qcount; /* Number of packets since last random
number generation */
u32 qR; /* Cached random number */
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
unsigned long qavg; /* Average queue length: Wlog scaled */
ktime_t qidlestart; /* Start of current idle period */
};
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
static inline u32 red_maxp(u8 Plog)
{
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
return Plog < 32 ? (~0U >> Plog) : ~0U;
}
static inline void red_set_vars(struct red_vars *v)
{
/* Reset average queue length, the value is strictly bound
* to the parameters below, reseting hurts a bit but leaving
* it might result in an unreasonable qavg for a while. --TGR
*/
v->qavg = 0;
v->qcount = -1;
}
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
net: sched: validate stab values iproute2 package is well behaved, but malicious user space can provide illegal shift values and trigger UBSAN reports. Add stab parameter to red_check_params() to validate user input. syzbot reported: UBSAN: shift-out-of-bounds in ./include/net/red.h:312:18 shift exponent 111 is too large for 64-bit type 'long unsigned int' CPU: 1 PID: 14662 Comm: syz-executor.3 Not tainted 5.12.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 red_calc_qavg_from_idle_time include/net/red.h:312 [inline] red_calc_qavg include/net/red.h:353 [inline] choke_enqueue.cold+0x18/0x3dd net/sched/sch_choke.c:221 __dev_xmit_skb net/core/dev.c:3837 [inline] __dev_queue_xmit+0x1943/0x2e00 net/core/dev.c:4150 neigh_hh_output include/net/neighbour.h:499 [inline] neigh_output include/net/neighbour.h:508 [inline] ip6_finish_output2+0x911/0x1700 net/ipv6/ip6_output.c:117 __ip6_finish_output net/ipv6/ip6_output.c:182 [inline] __ip6_finish_output+0x4c1/0xe10 net/ipv6/ip6_output.c:161 ip6_finish_output+0x35/0x200 net/ipv6/ip6_output.c:192 NF_HOOK_COND include/linux/netfilter.h:290 [inline] ip6_output+0x1e4/0x530 net/ipv6/ip6_output.c:215 dst_output include/net/dst.h:448 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] NF_HOOK include/linux/netfilter.h:295 [inline] ip6_xmit+0x127e/0x1eb0 net/ipv6/ip6_output.c:320 inet6_csk_xmit+0x358/0x630 net/ipv6/inet6_connection_sock.c:135 dccp_transmit_skb+0x973/0x12c0 net/dccp/output.c:138 dccp_send_reset+0x21b/0x2b0 net/dccp/output.c:535 dccp_finish_passive_close net/dccp/proto.c:123 [inline] dccp_finish_passive_close+0xed/0x140 net/dccp/proto.c:118 dccp_terminate_connection net/dccp/proto.c:958 [inline] dccp_close+0xb3c/0xe60 net/dccp/proto.c:1028 inet_release+0x12e/0x280 net/ipv4/af_inet.c:431 inet6_release+0x4c/0x70 net/ipv6/af_inet6.c:478 __sock_release+0xcd/0x280 net/socket.c:599 sock_close+0x18/0x20 net/socket.c:1258 __fput+0x288/0x920 fs/file_table.c:280 task_work_run+0xdd/0x1a0 kernel/task_work.c:140 tracehook_notify_resume include/linux/tracehook.h:189 [inline] Fixes: 8afa10cbe281 ("net_sched: red: Avoid illegal values") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-11 00:26:41 +08:00
static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog,
u8 Scell_log, u8 *stab)
{
sch_red: fix off-by-one checks in red_check_params() This fixes following syzbot report: UBSAN: shift-out-of-bounds in ./include/net/red.h:237:23 shift exponent 32 is too large for 32-bit type 'unsigned int' CPU: 1 PID: 8418 Comm: syz-executor170 Not tainted 5.12.0-rc4-next-20210324-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 red_set_parms include/net/red.h:237 [inline] choke_change.cold+0x3c/0xc8 net/sched/sch_choke.c:414 qdisc_create+0x475/0x12f0 net/sched/sch_api.c:1247 tc_modify_qdisc+0x4c8/0x1a50 net/sched/sch_api.c:1663 rtnetlink_rcv_msg+0x44e/0xad0 net/core/rtnetlink.c:5553 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2502 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0x856/0xd90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:674 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2350 ___sys_sendmsg+0xf3/0x170 net/socket.c:2404 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x43f039 Code: 28 c3 e8 2a 14 00 00 66 2e 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffdfa725168 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000400488 RCX: 000000000043f039 RDX: 0000000000000000 RSI: 0000000020000040 RDI: 0000000000000004 RBP: 0000000000403020 R08: 0000000000400488 R09: 0000000000400488 R10: 0000000000400488 R11: 0000000000000246 R12: 00000000004030b0 R13: 0000000000000000 R14: 00000000004ac018 R15: 0000000000400488 Fixes: 8afa10cbe281 ("net_sched: red: Avoid illegal values") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-26 02:14:53 +08:00
if (fls(qth_min) + Wlog >= 32)
return false;
sch_red: fix off-by-one checks in red_check_params() This fixes following syzbot report: UBSAN: shift-out-of-bounds in ./include/net/red.h:237:23 shift exponent 32 is too large for 32-bit type 'unsigned int' CPU: 1 PID: 8418 Comm: syz-executor170 Not tainted 5.12.0-rc4-next-20210324-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 red_set_parms include/net/red.h:237 [inline] choke_change.cold+0x3c/0xc8 net/sched/sch_choke.c:414 qdisc_create+0x475/0x12f0 net/sched/sch_api.c:1247 tc_modify_qdisc+0x4c8/0x1a50 net/sched/sch_api.c:1663 rtnetlink_rcv_msg+0x44e/0xad0 net/core/rtnetlink.c:5553 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2502 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0x856/0xd90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:674 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2350 ___sys_sendmsg+0xf3/0x170 net/socket.c:2404 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x43f039 Code: 28 c3 e8 2a 14 00 00 66 2e 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffdfa725168 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000400488 RCX: 000000000043f039 RDX: 0000000000000000 RSI: 0000000020000040 RDI: 0000000000000004 RBP: 0000000000403020 R08: 0000000000400488 R09: 0000000000400488 R10: 0000000000400488 R11: 0000000000000246 R12: 00000000004030b0 R13: 0000000000000000 R14: 00000000004ac018 R15: 0000000000400488 Fixes: 8afa10cbe281 ("net_sched: red: Avoid illegal values") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-26 02:14:53 +08:00
if (fls(qth_max) + Wlog >= 32)
return false;
if (Scell_log >= 32)
return false;
if (qth_max < qth_min)
return false;
net: sched: validate stab values iproute2 package is well behaved, but malicious user space can provide illegal shift values and trigger UBSAN reports. Add stab parameter to red_check_params() to validate user input. syzbot reported: UBSAN: shift-out-of-bounds in ./include/net/red.h:312:18 shift exponent 111 is too large for 64-bit type 'long unsigned int' CPU: 1 PID: 14662 Comm: syz-executor.3 Not tainted 5.12.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 red_calc_qavg_from_idle_time include/net/red.h:312 [inline] red_calc_qavg include/net/red.h:353 [inline] choke_enqueue.cold+0x18/0x3dd net/sched/sch_choke.c:221 __dev_xmit_skb net/core/dev.c:3837 [inline] __dev_queue_xmit+0x1943/0x2e00 net/core/dev.c:4150 neigh_hh_output include/net/neighbour.h:499 [inline] neigh_output include/net/neighbour.h:508 [inline] ip6_finish_output2+0x911/0x1700 net/ipv6/ip6_output.c:117 __ip6_finish_output net/ipv6/ip6_output.c:182 [inline] __ip6_finish_output+0x4c1/0xe10 net/ipv6/ip6_output.c:161 ip6_finish_output+0x35/0x200 net/ipv6/ip6_output.c:192 NF_HOOK_COND include/linux/netfilter.h:290 [inline] ip6_output+0x1e4/0x530 net/ipv6/ip6_output.c:215 dst_output include/net/dst.h:448 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] NF_HOOK include/linux/netfilter.h:295 [inline] ip6_xmit+0x127e/0x1eb0 net/ipv6/ip6_output.c:320 inet6_csk_xmit+0x358/0x630 net/ipv6/inet6_connection_sock.c:135 dccp_transmit_skb+0x973/0x12c0 net/dccp/output.c:138 dccp_send_reset+0x21b/0x2b0 net/dccp/output.c:535 dccp_finish_passive_close net/dccp/proto.c:123 [inline] dccp_finish_passive_close+0xed/0x140 net/dccp/proto.c:118 dccp_terminate_connection net/dccp/proto.c:958 [inline] dccp_close+0xb3c/0xe60 net/dccp/proto.c:1028 inet_release+0x12e/0x280 net/ipv4/af_inet.c:431 inet6_release+0x4c/0x70 net/ipv6/af_inet6.c:478 __sock_release+0xcd/0x280 net/socket.c:599 sock_close+0x18/0x20 net/socket.c:1258 __fput+0x288/0x920 fs/file_table.c:280 task_work_run+0xdd/0x1a0 kernel/task_work.c:140 tracehook_notify_resume include/linux/tracehook.h:189 [inline] Fixes: 8afa10cbe281 ("net_sched: red: Avoid illegal values") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-03-11 00:26:41 +08:00
if (stab) {
int i;
for (i = 0; i < RED_STAB_SIZE; i++)
if (stab[i] >= 32)
return false;
}
return true;
}
static inline int red_get_flags(unsigned char qopt_flags,
unsigned char historic_mask,
struct nlattr *flags_attr,
unsigned char supported_mask,
struct nla_bitfield32 *p_flags,
unsigned char *p_userbits,
struct netlink_ext_ack *extack)
{
struct nla_bitfield32 flags;
if (qopt_flags && flags_attr) {
NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute");
return -EINVAL;
}
if (flags_attr) {
flags = nla_get_bitfield32(flags_attr);
} else {
flags.selector = historic_mask;
flags.value = qopt_flags & historic_mask;
}
*p_flags = flags;
*p_userbits = qopt_flags & ~historic_mask;
return 0;
}
static inline int red_validate_flags(unsigned char flags,
struct netlink_ext_ack *extack)
{
if ((flags & TC_RED_NODROP) && !(flags & TC_RED_ECN)) {
NL_SET_ERR_MSG_MOD(extack, "nodrop mode is only meaningful with ECN");
return -EINVAL;
}
return 0;
}
static inline void red_set_parms(struct red_parms *p,
u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
u8 Scell_log, u8 *stab, u32 max_P)
{
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
int delta = qth_max - qth_min;
u32 max_p_delta;
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
p->qth_min = qth_min << Wlog;
p->qth_max = qth_max << Wlog;
p->Wlog = Wlog;
p->Plog = Plog;
if (delta <= 0)
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
delta = 1;
p->qth_delta = delta;
if (!max_P) {
max_P = red_maxp(Plog);
max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
}
p->max_P = max_P;
max_p_delta = max_P / delta;
max_p_delta = max(max_p_delta, 1U);
p->max_P_reciprocal = reciprocal_value(max_p_delta);
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
/* RED Adaptative target :
* [min_th + 0.4*(min_th - max_th),
* min_th + 0.6*(min_th - max_th)].
*/
delta /= 5;
p->target_min = qth_min + 2*delta;
p->target_max = qth_min + 3*delta;
p->Scell_log = Scell_log;
p->Scell_max = (255 << Scell_log);
net_sched: sfq: add optional RED on top of SFQ Adds an optional Random Early Detection on each SFQ flow queue. Traditional SFQ limits count of packets, while RED permits to also control number of bytes per flow, and adds ECN capability as well. 1) We dont handle the idle time management in this RED implementation, since each 'new flow' begins with a null qavg. We really want to address backlogged flows. 2) if headdrop is selected, we try to ecn mark first packet instead of currently enqueued packet. This gives faster feedback for tcp flows compared to traditional RED [ marking the last packet in queue ] Example of use : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 4sec sfq \ limit 3000 headdrop flows 512 divisor 16384 \ redflowlimit 100000 min 8000 max 60000 probability 0.20 ecn qdisc sfq 10: parent 1:1 limit 3000p quantum 1514b depth 127 headdrop flows 512/16384 divisor 16384 ewma 6 min 8000b max 60000b probability 0.2 ecn prob_mark 0 prob_mark_head 4876 prob_drop 6131 forced_mark 0 forced_mark_head 0 forced_drop 0 Sent 1175211782 bytes 777537 pkt (dropped 6131, overlimits 11007 requeues 0) rate 99483Kbit 8219pps backlog 689392b 456p requeues 0 In this test, with 64 netperf TCP_STREAM sessions, 50% using ECN enabled flows, we can see number of packets CE marked is smaller than number of drops (for non ECN flows) If same test is run, without RED, we can check backlog is much bigger. qdisc sfq 10: parent 1:1 limit 3000p quantum 1514b depth 127 headdrop flows 512/16384 divisor 16384 Sent 1148683617 bytes 795006 pkt (dropped 0, overlimits 0 requeues 0) rate 98429Kbit 8521pps backlog 1221290b 841p requeues 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Dave Taht <dave.taht@gmail.com> Tested-by: Dave Taht <dave.taht@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-01-06 14:31:44 +08:00
if (stab)
memcpy(p->Stab, stab, sizeof(p->Stab));
}
static inline int red_is_idling(const struct red_vars *v)
{
return v->qidlestart != 0;
}
static inline void red_start_of_idle_period(struct red_vars *v)
{
v->qidlestart = ktime_get();
}
static inline void red_end_of_idle_period(struct red_vars *v)
{
v->qidlestart = 0;
}
static inline void red_restart(struct red_vars *v)
{
red_end_of_idle_period(v);
v->qavg = 0;
v->qcount = -1;
}
static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
const struct red_vars *v)
{
s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
long us_idle = min_t(s64, delta, p->Scell_max);
int shift;
/*
* The problem: ideally, average length queue recalculation should
* be done over constant clock intervals. This is too expensive, so
* that the calculation is driven by outgoing packets.
* When the queue is idle we have to model this clock by hand.
*
* SF+VJ proposed to "generate":
*
* m = idletime / (average_pkt_size / bandwidth)
*
* dummy packets as a burst after idle time, i.e.
*
* v->qavg *= (1-W)^m
*
* This is an apparently overcomplicated solution (f.e. we have to
* precompute a table to make this calculation in reasonable time)
* I believe that a simpler model may be used here,
* but it is field for experiments.
*/
shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
if (shift)
return v->qavg >> shift;
else {
/* Approximate initial part of exponent with linear function:
*
* (1-W)^m ~= 1-mW + ...
*
* Seems, it is the best solution to
* problem of too coarse exponent tabulation.
*/
us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
if (us_idle < (v->qavg >> 1))
return v->qavg - us_idle;
else
return v->qavg >> 1;
}
}
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
const struct red_vars *v,
unsigned int backlog)
{
/*
* NOTE: v->qavg is fixed point number with point at Wlog.
* The formula below is equvalent to floating point
* version:
*
* qavg = qavg*(1-W) + backlog*W;
*
* --ANK (980924)
*/
return v->qavg + (backlog - (v->qavg >> p->Wlog));
}
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
static inline unsigned long red_calc_qavg(const struct red_parms *p,
const struct red_vars *v,
unsigned int backlog)
{
if (!red_is_idling(v))
return red_calc_qavg_no_idle_time(p, v, backlog);
else
return red_calc_qavg_from_idle_time(p, v);
}
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
static inline u32 red_random(const struct red_parms *p)
{
return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
}
static inline int red_mark_probability(const struct red_parms *p,
const struct red_vars *v,
unsigned long qavg)
{
/* The formula used below causes questions.
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
OK. qR is random number in the interval
(0..1/max_P)*(qth_max-qth_min)
i.e. 0..(2^Plog). If we used floating point
arithmetics, it would be: (2^Plog)*rnd_num,
where rnd_num is less 1.
Taking into account, that qavg have fixed
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
point at Wlog, two lines
below have the following floating point equivalent:
max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
Any questions? --ANK (980924)
*/
return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
}
enum {
RED_BELOW_MIN_THRESH,
RED_BETWEEN_TRESH,
RED_ABOVE_MAX_TRESH,
};
static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
{
if (qavg < p->qth_min)
return RED_BELOW_MIN_THRESH;
else if (qavg >= p->qth_max)
return RED_ABOVE_MAX_TRESH;
else
return RED_BETWEEN_TRESH;
}
enum {
RED_DONT_MARK,
RED_PROB_MARK,
RED_HARD_MARK,
};
static inline int red_action(const struct red_parms *p,
struct red_vars *v,
unsigned long qavg)
{
switch (red_cmp_thresh(p, qavg)) {
case RED_BELOW_MIN_THRESH:
v->qcount = -1;
return RED_DONT_MARK;
case RED_BETWEEN_TRESH:
if (++v->qcount) {
if (red_mark_probability(p, v, qavg)) {
v->qcount = 0;
v->qR = red_random(p);
return RED_PROB_MARK;
}
} else
v->qR = red_random(p);
return RED_DONT_MARK;
case RED_ABOVE_MAX_TRESH:
v->qcount = -1;
return RED_HARD_MARK;
}
BUG();
return RED_DONT_MARK;
}
static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
{
unsigned long qavg;
u32 max_p_delta;
qavg = v->qavg;
if (red_is_idling(v))
qavg = red_calc_qavg_from_idle_time(p, v);
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
/* v->qavg is fixed point number with point at Wlog */
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
qavg >>= p->Wlog;
if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
max_p_delta = max(max_p_delta, 1U);
sch_red: Adaptative RED AQM Adaptative RED AQM for linux, based on paper from Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker, August 2001 : http://icir.org/floyd/papers/adaptiveRed.pdf Goal of Adaptative RED is to make max_p a dynamic value between 1% and 50% to reach the target average queue : (max_th - min_th) / 2 Every 500 ms: if (avg > target and max_p <= 0.5) increase max_p : max_p += alpha; else if (avg < target and max_p >= 0.01) decrease max_p : max_p *= beta; target :[min_th + 0.4*(min_th - max_th), min_th + 0.6*(min_th - max_th)]. alpha : min(0.01, max_p / 4) beta : 0.9 max_P is a Q0.32 fixed point number (unsigned, with 32 bits mantissa) Changes against our RED implementation are : max_p is no longer a negative power of two (1/(2^Plog)), but a Q0.32 fixed point number, to allow full range described in Adatative paper. To deliver a random number, we now use a reciprocal divide (thats really a multiply), but this operation is done once per marked/droped packet when in RED_BETWEEN_TRESH window, so added cost (compared to previous AND operation) is near zero. dump operation gives current max_p value in a new TCA_RED_MAX_P attribute. Example on a 10Mbit link : tc qdisc add dev $DEV parent 1:1 handle 10: est 1sec 8sec red \ limit 400000 min 30000 max 90000 avpkt 1000 \ burst 55 ecn adaptative bandwidth 10Mbit # tc -s -d qdisc show dev eth3 ... qdisc red 10: parent 1:1 limit 400000b min 30000b max 90000b ecn adaptative ewma 5 max_p=0.113335 Scell_log 15 Sent 50414282 bytes 34504 pkt (dropped 35, overlimits 1392 requeues 0) rate 9749Kbit 831pps backlog 72056b 16p requeues 0 marked 1357 early 35 pdrop 0 other 0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-12-08 14:06:03 +08:00
p->max_P_reciprocal = reciprocal_value(max_p_delta);
}
#endif