linux/fs/btrfs/lzo.c

479 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2008 Oracle. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/bio.h>
#include <linux/lzo.h>
#include <linux/refcount.h>
#include "messages.h"
#include "compression.h"
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
#include "ctree.h"
#include "super.h"
#include "btrfs_inode.h"
#define LZO_LEN 4
/*
* Btrfs LZO compression format
*
* Regular and inlined LZO compressed data extents consist of:
*
* 1. Header
* Fixed size. LZO_LEN (4) bytes long, LE32.
* Records the total size (including the header) of compressed data.
*
* 2. Segment(s)
* Variable size. Each segment includes one segment header, followed by data
* payload.
* One regular LZO compressed extent can have one or more segments.
* For inlined LZO compressed extent, only one segment is allowed.
* One segment represents at most one sector of uncompressed data.
*
* 2.1 Segment header
* Fixed size. LZO_LEN (4) bytes long, LE32.
* Records the total size of the segment (not including the header).
* Segment header never crosses sector boundary, thus it's possible to
* have at most 3 padding zeros at the end of the sector.
*
* 2.2 Data Payload
* Variable size. Size up limit should be lzo1x_worst_compress(sectorsize)
* which is 4419 for a 4KiB sectorsize.
*
* Example with 4K sectorsize:
* Page 1:
* 0 0x2 0x4 0x6 0x8 0xa 0xc 0xe 0x10
* 0x0000 | Header | SegHdr 01 | Data payload 01 ... |
* ...
* 0x0ff0 | SegHdr N | Data payload N ... |00|
* ^^ padding zeros
* Page 2:
* 0x1000 | SegHdr N+1| Data payload N+1 ... |
*/
#define WORKSPACE_BUF_LENGTH (lzo1x_worst_compress(PAGE_SIZE))
#define WORKSPACE_CBUF_LENGTH (lzo1x_worst_compress(PAGE_SIZE))
struct workspace {
void *mem;
void *buf; /* where decompressed data goes */
void *cbuf; /* where compressed data goes */
struct list_head list;
};
static struct workspace_manager wsm;
void lzo_free_workspace(struct list_head *ws)
{
struct workspace *workspace = list_entry(ws, struct workspace, list);
kvfree(workspace->buf);
kvfree(workspace->cbuf);
kvfree(workspace->mem);
kfree(workspace);
}
struct list_head *lzo_alloc_workspace(unsigned int level)
{
struct workspace *workspace;
workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
if (!workspace)
return ERR_PTR(-ENOMEM);
workspace->mem = kvmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL | __GFP_NOWARN);
workspace->buf = kvmalloc(WORKSPACE_BUF_LENGTH, GFP_KERNEL | __GFP_NOWARN);
workspace->cbuf = kvmalloc(WORKSPACE_CBUF_LENGTH, GFP_KERNEL | __GFP_NOWARN);
if (!workspace->mem || !workspace->buf || !workspace->cbuf)
goto fail;
INIT_LIST_HEAD(&workspace->list);
return &workspace->list;
fail:
lzo_free_workspace(&workspace->list);
return ERR_PTR(-ENOMEM);
}
static inline void write_compress_length(char *buf, size_t len)
{
__le32 dlen;
dlen = cpu_to_le32(len);
memcpy(buf, &dlen, LZO_LEN);
}
static inline size_t read_compress_length(const char *buf)
{
__le32 dlen;
memcpy(&dlen, buf, LZO_LEN);
return le32_to_cpu(dlen);
}
/*
* Will do:
*
* - Write a segment header into the destination
* - Copy the compressed buffer into the destination
* - Make sure we have enough space in the last sector to fit a segment header
* If not, we will pad at most (LZO_LEN (4)) - 1 bytes of zeros.
*
* Will allocate new pages when needed.
*/
static int copy_compressed_data_to_page(char *compressed_data,
size_t compressed_size,
struct folio **out_folios,
unsigned long max_nr_folio,
u32 *cur_out,
const u32 sectorsize)
{
u32 sector_bytes_left;
u32 orig_out;
struct folio *cur_folio;
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
char *kaddr;
if ((*cur_out / PAGE_SIZE) >= max_nr_folio)
btrfs: fix a out-of-bound access in copy_compressed_data_to_page() [BUG] The following script can cause btrfs to crash: $ mount -o compress-force=lzo $DEV /mnt $ dd if=/dev/urandom of=/mnt/foo bs=4k count=1 $ sync The call trace looks like this: general protection fault, probably for non-canonical address 0xe04b37fccce3b000: 0000 [#1] PREEMPT SMP NOPTI CPU: 5 PID: 164 Comm: kworker/u20:3 Not tainted 5.15.0-rc7-custom+ #4 Workqueue: btrfs-delalloc btrfs_work_helper [btrfs] RIP: 0010:__memcpy+0x12/0x20 Call Trace: lzo_compress_pages+0x236/0x540 [btrfs] btrfs_compress_pages+0xaa/0xf0 [btrfs] compress_file_range+0x431/0x8e0 [btrfs] async_cow_start+0x12/0x30 [btrfs] btrfs_work_helper+0xf6/0x3e0 [btrfs] process_one_work+0x294/0x5d0 worker_thread+0x55/0x3c0 kthread+0x140/0x170 ret_from_fork+0x22/0x30 ---[ end trace 63c3c0f131e61982 ]--- [CAUSE] In lzo_compress_pages(), parameter @out_pages is not only an output parameter (for the number of compressed pages), but also an input parameter, as the upper limit of compressed pages we can utilize. In commit d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible"), the refactoring doesn't take @out_pages as an input, thus completely ignoring the limit. And for compress-force case, we could hit incompressible data that compressed size would go beyond the page limit, and cause the above crash. [FIX] Save @out_pages as @max_nr_page, and pass it to lzo_compress_pages(), and check if we're beyond the limit before accessing the pages. Note: this also fixes crash on 32bit architectures that was suspected to be caused by merge of btrfs patches to 5.16-rc1. Reported in https://lore.kernel.org/all/20211104115001.GU20319@twin.jikos.cz/ . Reported-by: Omar Sandoval <osandov@fb.com> Fixes: d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible") Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add note ] Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-12 12:47:30 +08:00
return -E2BIG;
/*
* We never allow a segment header crossing sector boundary, previous
* run should ensure we have enough space left inside the sector.
*/
ASSERT((*cur_out / sectorsize) == (*cur_out + LZO_LEN - 1) / sectorsize);
cur_folio = out_folios[*cur_out / PAGE_SIZE];
/* Allocate a new page */
if (!cur_folio) {
cur_folio = btrfs_alloc_compr_folio();
if (!cur_folio)
return -ENOMEM;
out_folios[*cur_out / PAGE_SIZE] = cur_folio;
}
kaddr = kmap_local_folio(cur_folio, 0);
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
write_compress_length(kaddr + offset_in_page(*cur_out),
compressed_size);
*cur_out += LZO_LEN;
orig_out = *cur_out;
/* Copy compressed data */
while (*cur_out - orig_out < compressed_size) {
u32 copy_len = min_t(u32, sectorsize - *cur_out % sectorsize,
orig_out + compressed_size - *cur_out);
kunmap_local(kaddr);
for-5.16-rc1-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmGWiSAACgkQxWXV+ddt WDtKiA//VFrxg5I1yrTyyVvc2RqcPg0aCopO6wIAgcHV1yzseJ7AyP7two1p5dg8 3DPDKaXFvONZYXl8j9ZuzFiryKPGJxp1KSagKyt6EKDRYm50HOreTC1Qt2ZvLJHn wHohwHX96yv+4gyKvpCBZVpp3dSIDbsbCxlpz3mm7kZv//wHxA5l0chZpHbTqUF6 JloRSrOIGlSeQYPog1Lnu1c92qoGzLL5n47aXS3s5afpkqqkOlKZLsyb90N4uJx4 M1htsl4ga7b3OB8jbR95wlbd/qXsB+dvaBUQHgDm4hafW6ma5ft9NhuePQnQlaVH ub/rlfNTsKl6jly9eNJ6wGpqi/OBlhA4qCmQVbVDE+HhWUJbdUiQ5UgxoOrQlkOP Pd3NvW+95qg+Lj/egUA/Mrtz1v/6oSKcf3gQVKMNIrnk6lOUVZWtQhBe5YS3qHih PzxrCp4ThlvmVeemHS7783akiwkI49wUn7a6dUD87x81ghemUHJzC83/mgs1rl/0 7Q1QLetgfrZpko3W4GzS2J3WwKTB0tvBXxsZ8gU5gI0FNkx90bR8+xI0fVF8IGJo QglHn9gepb6si7BCxyKDTlQNMt23s7GFH5/4hHtkomtlR6vpRbPJAq5mpOrqsLgJ VGc/SwCJPSmynqRAxuCn+DqlfaMZZaqtvgVVWnhJl9ylKyUAQKU= =ze0L -----END PGP SIGNATURE----- Merge tag 'for-5.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Several xes and one old ioctl deprecation. Namely there's fix for crashes/warnings with lzo compression that was suspected to be caused by first pull merge resolution, but it was a different bug. Summary: - regression fix for a crash in lzo due to missing boundary checks of the page array - fix crashes on ARM64 due to missing barriers when synchronizing status bits between work queues - silence lockdep when reading chunk tree during mount - fix false positive warning in integrity checker on devices with disabled write caching - fix signedness of bitfields in scrub - start deprecation of balance v1 ioctl" * tag 'for-5.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: deprecate BTRFS_IOC_BALANCE ioctl btrfs: make 1-bit bit-fields of scrub_page unsigned int btrfs: check-integrity: fix a warning on write caching disabled disk btrfs: silence lockdep when reading chunk tree during mount btrfs: fix memory ordering between normal and ordered work functions btrfs: fix a out-of-bound access in copy_compressed_data_to_page()
2021-11-19 04:41:14 +08:00
if ((*cur_out / PAGE_SIZE) >= max_nr_folio)
btrfs: fix a out-of-bound access in copy_compressed_data_to_page() [BUG] The following script can cause btrfs to crash: $ mount -o compress-force=lzo $DEV /mnt $ dd if=/dev/urandom of=/mnt/foo bs=4k count=1 $ sync The call trace looks like this: general protection fault, probably for non-canonical address 0xe04b37fccce3b000: 0000 [#1] PREEMPT SMP NOPTI CPU: 5 PID: 164 Comm: kworker/u20:3 Not tainted 5.15.0-rc7-custom+ #4 Workqueue: btrfs-delalloc btrfs_work_helper [btrfs] RIP: 0010:__memcpy+0x12/0x20 Call Trace: lzo_compress_pages+0x236/0x540 [btrfs] btrfs_compress_pages+0xaa/0xf0 [btrfs] compress_file_range+0x431/0x8e0 [btrfs] async_cow_start+0x12/0x30 [btrfs] btrfs_work_helper+0xf6/0x3e0 [btrfs] process_one_work+0x294/0x5d0 worker_thread+0x55/0x3c0 kthread+0x140/0x170 ret_from_fork+0x22/0x30 ---[ end trace 63c3c0f131e61982 ]--- [CAUSE] In lzo_compress_pages(), parameter @out_pages is not only an output parameter (for the number of compressed pages), but also an input parameter, as the upper limit of compressed pages we can utilize. In commit d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible"), the refactoring doesn't take @out_pages as an input, thus completely ignoring the limit. And for compress-force case, we could hit incompressible data that compressed size would go beyond the page limit, and cause the above crash. [FIX] Save @out_pages as @max_nr_page, and pass it to lzo_compress_pages(), and check if we're beyond the limit before accessing the pages. Note: this also fixes crash on 32bit architectures that was suspected to be caused by merge of btrfs patches to 5.16-rc1. Reported in https://lore.kernel.org/all/20211104115001.GU20319@twin.jikos.cz/ . Reported-by: Omar Sandoval <osandov@fb.com> Fixes: d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible") Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add note ] Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-12 12:47:30 +08:00
return -E2BIG;
cur_folio = out_folios[*cur_out / PAGE_SIZE];
/* Allocate a new page */
if (!cur_folio) {
cur_folio = btrfs_alloc_compr_folio();
if (!cur_folio)
return -ENOMEM;
out_folios[*cur_out / PAGE_SIZE] = cur_folio;
}
kaddr = kmap_local_folio(cur_folio, 0);
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
memcpy(kaddr + offset_in_page(*cur_out),
compressed_data + *cur_out - orig_out, copy_len);
*cur_out += copy_len;
}
/*
* Check if we can fit the next segment header into the remaining space
* of the sector.
*/
sector_bytes_left = round_up(*cur_out, sectorsize) - *cur_out;
if (sector_bytes_left >= LZO_LEN || sector_bytes_left == 0)
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
goto out;
/* The remaining size is not enough, pad it with zeros */
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
memset(kaddr + offset_in_page(*cur_out), 0,
sector_bytes_left);
*cur_out += sector_bytes_left;
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
out:
kunmap_local(kaddr);
return 0;
}
int lzo_compress_folios(struct list_head *ws, struct address_space *mapping,
u64 start, struct folio **folios, unsigned long *out_folios,
unsigned long *total_in, unsigned long *total_out)
{
struct workspace *workspace = list_entry(ws, struct workspace, list);
const u32 sectorsize = inode_to_fs_info(mapping->host)->sectorsize;
struct folio *folio_in = NULL;
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
char *sizes_ptr;
const unsigned long max_nr_folio = *out_folios;
int ret = 0;
/* Points to the file offset of input data */
u64 cur_in = start;
/* Points to the current output byte */
u32 cur_out = 0;
u32 len = *total_out;
ASSERT(max_nr_folio > 0);
*out_folios = 0;
*total_out = 0;
*total_in = 0;
/*
* Skip the header for now, we will later come back and write the total
* compressed size
*/
cur_out += LZO_LEN;
while (cur_in < start + len) {
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
char *data_in;
const u32 sectorsize_mask = sectorsize - 1;
u32 sector_off = (cur_in - start) & sectorsize_mask;
u32 in_len;
size_t out_len;
/* Get the input page first */
if (!folio_in) {
ret = btrfs_compress_filemap_get_folio(mapping, cur_in, &folio_in);
if (ret < 0)
goto out;
}
/* Compress at most one sector of data each time */
in_len = min_t(u32, start + len - cur_in, sectorsize - sector_off);
ASSERT(in_len);
data_in = kmap_local_folio(folio_in, 0);
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
ret = lzo1x_1_compress(data_in +
offset_in_page(cur_in), in_len,
workspace->cbuf, &out_len,
workspace->mem);
kunmap_local(data_in);
if (ret < 0) {
pr_debug("BTRFS: lzo in loop returned %d\n", ret);
ret = -EIO;
goto out;
}
ret = copy_compressed_data_to_page(workspace->cbuf, out_len,
folios, max_nr_folio,
btrfs: fix a out-of-bound access in copy_compressed_data_to_page() [BUG] The following script can cause btrfs to crash: $ mount -o compress-force=lzo $DEV /mnt $ dd if=/dev/urandom of=/mnt/foo bs=4k count=1 $ sync The call trace looks like this: general protection fault, probably for non-canonical address 0xe04b37fccce3b000: 0000 [#1] PREEMPT SMP NOPTI CPU: 5 PID: 164 Comm: kworker/u20:3 Not tainted 5.15.0-rc7-custom+ #4 Workqueue: btrfs-delalloc btrfs_work_helper [btrfs] RIP: 0010:__memcpy+0x12/0x20 Call Trace: lzo_compress_pages+0x236/0x540 [btrfs] btrfs_compress_pages+0xaa/0xf0 [btrfs] compress_file_range+0x431/0x8e0 [btrfs] async_cow_start+0x12/0x30 [btrfs] btrfs_work_helper+0xf6/0x3e0 [btrfs] process_one_work+0x294/0x5d0 worker_thread+0x55/0x3c0 kthread+0x140/0x170 ret_from_fork+0x22/0x30 ---[ end trace 63c3c0f131e61982 ]--- [CAUSE] In lzo_compress_pages(), parameter @out_pages is not only an output parameter (for the number of compressed pages), but also an input parameter, as the upper limit of compressed pages we can utilize. In commit d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible"), the refactoring doesn't take @out_pages as an input, thus completely ignoring the limit. And for compress-force case, we could hit incompressible data that compressed size would go beyond the page limit, and cause the above crash. [FIX] Save @out_pages as @max_nr_page, and pass it to lzo_compress_pages(), and check if we're beyond the limit before accessing the pages. Note: this also fixes crash on 32bit architectures that was suspected to be caused by merge of btrfs patches to 5.16-rc1. Reported in https://lore.kernel.org/all/20211104115001.GU20319@twin.jikos.cz/ . Reported-by: Omar Sandoval <osandov@fb.com> Fixes: d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible") Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add note ] Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-12 12:47:30 +08:00
&cur_out, sectorsize);
if (ret < 0)
goto out;
cur_in += in_len;
/*
* Check if we're making it bigger after two sectors. And if
* it is so, give up.
*/
if (cur_in - start > sectorsize * 2 && cur_in - start < cur_out) {
ret = -E2BIG;
goto out;
}
/* Check if we have reached page boundary */
if (PAGE_ALIGNED(cur_in)) {
folio_put(folio_in);
folio_in = NULL;
}
}
/* Store the size of all chunks of compressed data */
sizes_ptr = kmap_local_folio(folios[0], 0);
for-5.16-tag -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu 89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s +YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr 5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7 NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT 0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM= =HvYu -----END PGP SIGNATURE----- Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-02 03:48:25 +08:00
write_compress_length(sizes_ptr, cur_out);
kunmap_local(sizes_ptr);
ret = 0;
*total_out = cur_out;
*total_in = cur_in - start;
out:
if (folio_in)
folio_put(folio_in);
*out_folios = DIV_ROUND_UP(cur_out, PAGE_SIZE);
return ret;
}
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
/*
* Copy the compressed segment payload into @dest.
*
* For the payload there will be no padding, just need to do page switching.
*/
static void copy_compressed_segment(struct compressed_bio *cb,
char *dest, u32 len, u32 *cur_in)
{
u32 orig_in = *cur_in;
while (*cur_in < orig_in + len) {
struct folio *cur_folio;
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
u32 copy_len = min_t(u32, PAGE_SIZE - offset_in_page(*cur_in),
orig_in + len - *cur_in);
ASSERT(copy_len);
cur_folio = cb->compressed_folios[*cur_in / PAGE_SIZE];
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
memcpy_from_folio(dest + *cur_in - orig_in, cur_folio,
offset_in_folio(cur_folio, *cur_in), copy_len);
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
*cur_in += copy_len;
}
}
int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
{
struct workspace *workspace = list_entry(ws, struct workspace, list);
const struct btrfs_fs_info *fs_info = cb->bbio.inode->root->fs_info;
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
const u32 sectorsize = fs_info->sectorsize;
char *kaddr;
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
int ret;
/* Compressed data length, can be unaligned */
u32 len_in;
/* Offset inside the compressed data */
u32 cur_in = 0;
/* Bytes decompressed so far */
u32 cur_out = 0;
kaddr = kmap_local_folio(cb->compressed_folios[0], 0);
len_in = read_compress_length(kaddr);
kunmap_local(kaddr);
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
cur_in += LZO_LEN;
btrfs: lzo: Add header length check to avoid potential out-of-bounds access James Harvey reported that some corrupted compressed extent data can lead to various kernel memory corruption. Such corrupted extent data belongs to inode with NODATASUM flags, thus data csum won't help us detecting such bug. If lucky enough, KASAN could catch it like: BUG: KASAN: slab-out-of-bounds in lzo_decompress_bio+0x384/0x7a0 [btrfs] Write of size 4096 at addr ffff8800606cb0f8 by task kworker/u16:0/2338 CPU: 3 PID: 2338 Comm: kworker/u16:0 Tainted: G O 4.17.0-rc5-custom+ #50 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: btrfs-endio btrfs_endio_helper [btrfs] Call Trace: dump_stack+0xc2/0x16b print_address_description+0x6a/0x270 kasan_report+0x260/0x380 memcpy+0x34/0x50 lzo_decompress_bio+0x384/0x7a0 [btrfs] end_compressed_bio_read+0x99f/0x10b0 [btrfs] bio_endio+0x32e/0x640 normal_work_helper+0x15a/0xea0 [btrfs] process_one_work+0x7e3/0x1470 worker_thread+0x1b0/0x1170 kthread+0x2db/0x390 ret_from_fork+0x22/0x40 ... The offending compressed data has the following info: Header: length 32768 (looks completely valid) Segment 0 Header: length 3472882419 (obviously out of bounds) Then when handling segment 0, since it's over the current page, we need the copy the compressed data to temporary buffer in workspace, then such large size would trigger out-of-bounds memory access, screwing up the whole kernel. Fix it by adding extra checks on header and segment headers to ensure we won't access out-of-bounds, and even checks the decompressed data won't be out-of-bounds. Reported-by: James Harvey <jamespharvey20@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> [ updated comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-15 14:57:51 +08:00
/*
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
* LZO header length check
btrfs: lzo: Add header length check to avoid potential out-of-bounds access James Harvey reported that some corrupted compressed extent data can lead to various kernel memory corruption. Such corrupted extent data belongs to inode with NODATASUM flags, thus data csum won't help us detecting such bug. If lucky enough, KASAN could catch it like: BUG: KASAN: slab-out-of-bounds in lzo_decompress_bio+0x384/0x7a0 [btrfs] Write of size 4096 at addr ffff8800606cb0f8 by task kworker/u16:0/2338 CPU: 3 PID: 2338 Comm: kworker/u16:0 Tainted: G O 4.17.0-rc5-custom+ #50 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: btrfs-endio btrfs_endio_helper [btrfs] Call Trace: dump_stack+0xc2/0x16b print_address_description+0x6a/0x270 kasan_report+0x260/0x380 memcpy+0x34/0x50 lzo_decompress_bio+0x384/0x7a0 [btrfs] end_compressed_bio_read+0x99f/0x10b0 [btrfs] bio_endio+0x32e/0x640 normal_work_helper+0x15a/0xea0 [btrfs] process_one_work+0x7e3/0x1470 worker_thread+0x1b0/0x1170 kthread+0x2db/0x390 ret_from_fork+0x22/0x40 ... The offending compressed data has the following info: Header: length 32768 (looks completely valid) Segment 0 Header: length 3472882419 (obviously out of bounds) Then when handling segment 0, since it's over the current page, we need the copy the compressed data to temporary buffer in workspace, then such large size would trigger out-of-bounds memory access, screwing up the whole kernel. Fix it by adding extra checks on header and segment headers to ensure we won't access out-of-bounds, and even checks the decompressed data won't be out-of-bounds. Reported-by: James Harvey <jamespharvey20@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> [ updated comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-15 14:57:51 +08:00
*
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
* The total length should not exceed the maximum extent length,
* and all sectors should be used.
* If this happens, it means the compressed extent is corrupted.
btrfs: lzo: Add header length check to avoid potential out-of-bounds access James Harvey reported that some corrupted compressed extent data can lead to various kernel memory corruption. Such corrupted extent data belongs to inode with NODATASUM flags, thus data csum won't help us detecting such bug. If lucky enough, KASAN could catch it like: BUG: KASAN: slab-out-of-bounds in lzo_decompress_bio+0x384/0x7a0 [btrfs] Write of size 4096 at addr ffff8800606cb0f8 by task kworker/u16:0/2338 CPU: 3 PID: 2338 Comm: kworker/u16:0 Tainted: G O 4.17.0-rc5-custom+ #50 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: btrfs-endio btrfs_endio_helper [btrfs] Call Trace: dump_stack+0xc2/0x16b print_address_description+0x6a/0x270 kasan_report+0x260/0x380 memcpy+0x34/0x50 lzo_decompress_bio+0x384/0x7a0 [btrfs] end_compressed_bio_read+0x99f/0x10b0 [btrfs] bio_endio+0x32e/0x640 normal_work_helper+0x15a/0xea0 [btrfs] process_one_work+0x7e3/0x1470 worker_thread+0x1b0/0x1170 kthread+0x2db/0x390 ret_from_fork+0x22/0x40 ... The offending compressed data has the following info: Header: length 32768 (looks completely valid) Segment 0 Header: length 3472882419 (obviously out of bounds) Then when handling segment 0, since it's over the current page, we need the copy the compressed data to temporary buffer in workspace, then such large size would trigger out-of-bounds memory access, screwing up the whole kernel. Fix it by adding extra checks on header and segment headers to ensure we won't access out-of-bounds, and even checks the decompressed data won't be out-of-bounds. Reported-by: James Harvey <jamespharvey20@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> [ updated comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-15 14:57:51 +08:00
*/
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
if (len_in > min_t(size_t, BTRFS_MAX_COMPRESSED, cb->compressed_len) ||
round_up(len_in, sectorsize) < cb->compressed_len) {
btrfs_err(fs_info,
"invalid lzo header, lzo len %u compressed len %u",
len_in, cb->compressed_len);
return -EUCLEAN;
btrfs: lzo: Add header length check to avoid potential out-of-bounds access James Harvey reported that some corrupted compressed extent data can lead to various kernel memory corruption. Such corrupted extent data belongs to inode with NODATASUM flags, thus data csum won't help us detecting such bug. If lucky enough, KASAN could catch it like: BUG: KASAN: slab-out-of-bounds in lzo_decompress_bio+0x384/0x7a0 [btrfs] Write of size 4096 at addr ffff8800606cb0f8 by task kworker/u16:0/2338 CPU: 3 PID: 2338 Comm: kworker/u16:0 Tainted: G O 4.17.0-rc5-custom+ #50 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: btrfs-endio btrfs_endio_helper [btrfs] Call Trace: dump_stack+0xc2/0x16b print_address_description+0x6a/0x270 kasan_report+0x260/0x380 memcpy+0x34/0x50 lzo_decompress_bio+0x384/0x7a0 [btrfs] end_compressed_bio_read+0x99f/0x10b0 [btrfs] bio_endio+0x32e/0x640 normal_work_helper+0x15a/0xea0 [btrfs] process_one_work+0x7e3/0x1470 worker_thread+0x1b0/0x1170 kthread+0x2db/0x390 ret_from_fork+0x22/0x40 ... The offending compressed data has the following info: Header: length 32768 (looks completely valid) Segment 0 Header: length 3472882419 (obviously out of bounds) Then when handling segment 0, since it's over the current page, we need the copy the compressed data to temporary buffer in workspace, then such large size would trigger out-of-bounds memory access, screwing up the whole kernel. Fix it by adding extra checks on header and segment headers to ensure we won't access out-of-bounds, and even checks the decompressed data won't be out-of-bounds. Reported-by: James Harvey <jamespharvey20@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> [ updated comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-15 14:57:51 +08:00
}
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
/* Go through each lzo segment */
while (cur_in < len_in) {
struct folio *cur_folio;
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
/* Length of the compressed segment */
u32 seg_len;
u32 sector_bytes_left;
size_t out_len = lzo1x_worst_compress(sectorsize);
btrfs: lzo: Add header length check to avoid potential out-of-bounds access James Harvey reported that some corrupted compressed extent data can lead to various kernel memory corruption. Such corrupted extent data belongs to inode with NODATASUM flags, thus data csum won't help us detecting such bug. If lucky enough, KASAN could catch it like: BUG: KASAN: slab-out-of-bounds in lzo_decompress_bio+0x384/0x7a0 [btrfs] Write of size 4096 at addr ffff8800606cb0f8 by task kworker/u16:0/2338 CPU: 3 PID: 2338 Comm: kworker/u16:0 Tainted: G O 4.17.0-rc5-custom+ #50 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: btrfs-endio btrfs_endio_helper [btrfs] Call Trace: dump_stack+0xc2/0x16b print_address_description+0x6a/0x270 kasan_report+0x260/0x380 memcpy+0x34/0x50 lzo_decompress_bio+0x384/0x7a0 [btrfs] end_compressed_bio_read+0x99f/0x10b0 [btrfs] bio_endio+0x32e/0x640 normal_work_helper+0x15a/0xea0 [btrfs] process_one_work+0x7e3/0x1470 worker_thread+0x1b0/0x1170 kthread+0x2db/0x390 ret_from_fork+0x22/0x40 ... The offending compressed data has the following info: Header: length 32768 (looks completely valid) Segment 0 Header: length 3472882419 (obviously out of bounds) Then when handling segment 0, since it's over the current page, we need the copy the compressed data to temporary buffer in workspace, then such large size would trigger out-of-bounds memory access, screwing up the whole kernel. Fix it by adding extra checks on header and segment headers to ensure we won't access out-of-bounds, and even checks the decompressed data won't be out-of-bounds. Reported-by: James Harvey <jamespharvey20@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> [ updated comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-15 14:57:51 +08:00
/*
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
* We should always have enough space for one segment header
* inside current sector.
btrfs: lzo: Add header length check to avoid potential out-of-bounds access James Harvey reported that some corrupted compressed extent data can lead to various kernel memory corruption. Such corrupted extent data belongs to inode with NODATASUM flags, thus data csum won't help us detecting such bug. If lucky enough, KASAN could catch it like: BUG: KASAN: slab-out-of-bounds in lzo_decompress_bio+0x384/0x7a0 [btrfs] Write of size 4096 at addr ffff8800606cb0f8 by task kworker/u16:0/2338 CPU: 3 PID: 2338 Comm: kworker/u16:0 Tainted: G O 4.17.0-rc5-custom+ #50 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Workqueue: btrfs-endio btrfs_endio_helper [btrfs] Call Trace: dump_stack+0xc2/0x16b print_address_description+0x6a/0x270 kasan_report+0x260/0x380 memcpy+0x34/0x50 lzo_decompress_bio+0x384/0x7a0 [btrfs] end_compressed_bio_read+0x99f/0x10b0 [btrfs] bio_endio+0x32e/0x640 normal_work_helper+0x15a/0xea0 [btrfs] process_one_work+0x7e3/0x1470 worker_thread+0x1b0/0x1170 kthread+0x2db/0x390 ret_from_fork+0x22/0x40 ... The offending compressed data has the following info: Header: length 32768 (looks completely valid) Segment 0 Header: length 3472882419 (obviously out of bounds) Then when handling segment 0, since it's over the current page, we need the copy the compressed data to temporary buffer in workspace, then such large size would trigger out-of-bounds memory access, screwing up the whole kernel. Fix it by adding extra checks on header and segment headers to ensure we won't access out-of-bounds, and even checks the decompressed data won't be out-of-bounds. Reported-by: James Harvey <jamespharvey20@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> [ updated comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-15 14:57:51 +08:00
*/
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
ASSERT(cur_in / sectorsize ==
(cur_in + LZO_LEN - 1) / sectorsize);
cur_folio = cb->compressed_folios[cur_in / PAGE_SIZE];
ASSERT(cur_folio);
kaddr = kmap_local_folio(cur_folio, 0);
seg_len = read_compress_length(kaddr + offset_in_page(cur_in));
kunmap_local(kaddr);
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
cur_in += LZO_LEN;
if (seg_len > WORKSPACE_CBUF_LENGTH) {
btrfs: prevent copying too big compressed lzo segment Compressed length can be corrupted to be a lot larger than memory we have allocated for buffer. This will cause memcpy in copy_compressed_segment to write outside of allocated memory. This mostly results in stuck read syscall but sometimes when using btrfs send can get #GP kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P OE 5.17.0-rc2-1 #12 kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs] kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs Code starting with the faulting instruction =========================================== 0:* 48 8b 06 mov (%rsi),%rax <-- trapping instruction 3: 48 8d 79 08 lea 0x8(%rcx),%rdi 7: 48 83 e7 f8 and $0xfffffffffffffff8,%rdi b: 48 89 01 mov %rax,(%rcx) e: 44 89 f0 mov %r14d,%eax 11: 48 8b 54 06 f8 mov -0x8(%rsi,%rax,1),%rdx kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212 kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8 kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000 kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000 kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000 kernel: FS: 0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000 kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0 kernel: Call Trace: kernel: <TASK> kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312) kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455) kernel: ? process_one_work (kernel/workqueue.c:2397) kernel: kthread (kernel/kthread.c:377) kernel: ? kthread_complete_and_exit (kernel/kthread.c:332) kernel: ret_from_fork (arch/x86/entry/entry_64.S:301) kernel: </TASK> CC: stable@vger.kernel.org # 4.9+ Signed-off-by: Dāvis Mosāns <davispuh@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-02-03 05:44:55 +08:00
/*
* seg_len shouldn't be larger than we have allocated
* for workspace->cbuf
*/
btrfs_err(fs_info, "unexpectedly large lzo segment len %u",
seg_len);
return -EIO;
btrfs: prevent copying too big compressed lzo segment Compressed length can be corrupted to be a lot larger than memory we have allocated for buffer. This will cause memcpy in copy_compressed_segment to write outside of allocated memory. This mostly results in stuck read syscall but sometimes when using btrfs send can get #GP kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P OE 5.17.0-rc2-1 #12 kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs] kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs Code starting with the faulting instruction =========================================== 0:* 48 8b 06 mov (%rsi),%rax <-- trapping instruction 3: 48 8d 79 08 lea 0x8(%rcx),%rdi 7: 48 83 e7 f8 and $0xfffffffffffffff8,%rdi b: 48 89 01 mov %rax,(%rcx) e: 44 89 f0 mov %r14d,%eax 11: 48 8b 54 06 f8 mov -0x8(%rsi,%rax,1),%rdx kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212 kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8 kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000 kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000 kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000 kernel: FS: 0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000 kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0 kernel: Call Trace: kernel: <TASK> kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312) kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455) kernel: ? process_one_work (kernel/workqueue.c:2397) kernel: kthread (kernel/kthread.c:377) kernel: ? kthread_complete_and_exit (kernel/kthread.c:332) kernel: ret_from_fork (arch/x86/entry/entry_64.S:301) kernel: </TASK> CC: stable@vger.kernel.org # 4.9+ Signed-off-by: Dāvis Mosāns <davispuh@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-02-03 05:44:55 +08:00
}
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
/* Copy the compressed segment payload into workspace */
copy_compressed_segment(cb, workspace->cbuf, seg_len, &cur_in);
/* Decompress the data */
ret = lzo1x_decompress_safe(workspace->cbuf, seg_len,
workspace->buf, &out_len);
if (ret != LZO_E_OK) {
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
btrfs_err(fs_info, "failed to decompress");
return -EIO;
}
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
/* Copy the data into inode pages */
ret = btrfs_decompress_buf2page(workspace->buf, out_len, cb, cur_out);
cur_out += out_len;
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
/* All data read, exit */
if (ret == 0)
return 0;
btrfs: rework lzo_decompress_bio() to make it subpage compatible For the initial subpage support, although we won't support compressed write, we still need to support compressed read. But for lzo_decompress_bio() it has several problems: - The abuse of PAGE_SIZE for boundary detection For subpage case, we should follow sectorsize to detect the padding zeros. Using PAGE_SIZE will cause subpage compress read to skip certain bytes, and causing read error. - Too many helper variables There are half a dozen helper variables, which is only making things harder to read This patch will rework lzo_decompress_bio() to make it work for subpage: - Use sectorsize to do boundary check, while still use PAGE_SIZE for page switching This allows us to have the same on-disk format for 4K sectorsize fs, while take advantage of larger page size. - Use two main cursors Only @cur_in and @cur_out is utilized as the main cursor. The helper variables will only be declared inside the loop, and only 2 helper variables needed. - Introduce a helper function to copy compressed segment payload Introduce a new helper, copy_compressed_segment(), to copy a compressed segment to workspace buffer. This function will handle the page switching. Now the net result is, with all the excessive comments and new helper function, the refactored code is still smaller, and easier to read. For other decompression code, they have no special padding rule, thus no need to bother for initial subpage support, but will be refactored to the same style later. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 14:34:55 +08:00
ret = 0;
/* Check if the sector has enough space for a segment header */
sector_bytes_left = sectorsize - (cur_in % sectorsize);
if (sector_bytes_left >= LZO_LEN)
continue;
/* Skip the padding zeros */
cur_in += sector_bytes_left;
}
return 0;
}
int lzo_decompress(struct list_head *ws, const u8 *data_in,
btrfs: lzo: fix and simplify the inline extent decompression [BUG] If we have a filesystem with 4k sectorsize, and an inlined compressed extent created like this: item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160 generation 8 transid 8 size 4096 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24 index 2 namelen 14 name: source_inlined item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69 generation 8 type 0 (inline) inline extent data size 48 ram_bytes 4096 compression 2 (lzo) Then trying to reflink that extent in an aarch64 system with 64K page size, the reflink would just fail: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest XFS_IOC_CLONE_RANGE: Input/output error [CAUSE] In zlib_decompress(), we didn't treat @start_byte as just a page offset, but also use it as an indicator on whether we should error out, without any proper explanation (this is from the very beginning of btrfs). In reality, for subpage cases, although @start_byte can be non-zero, we should never switch input/output buffer nor error out, since the whole input/output buffer should never exceed one sector. Note: The above assumption is only not true if we're going to support multi-page sectorsize. Thus the current code using @start_byte as a condition to switch input/output buffer or finish the decompression is completely incorrect. [FIX] The fix involves several modifications: - Rename @start_byte to @dest_pgoff to properly express its meaning - Use @sectorsize other than PAGE_SIZE to properly initialize the output buffer size - Use correct destination offset inside the destination page - Use memcpy_to_page() to copy the contents to the destination page - Use memzero_page() to zero out the tailing part - Consider early end as an error After the fix, even on 64K page sized aarch64, above reflink now works as expected: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest linked 4096/4096 bytes at offset 61440 And results the correct file layout: item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160 generation 10 transid 10 size 65536 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14 index 3 namelen 4 name: dest item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83 location key (0 UNKNOWN.0 0) type XATTR transid 10 data_len 37 name_len 16 name: security.selinux data unconfined_u:object_r:unlabeled_t:s0 item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53 generation 10 type 1 (regular) extent data disk byte 13631488 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression 0 (none) Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-08 17:08:45 +08:00
struct page *dest_page, unsigned long dest_pgoff, size_t srclen,
size_t destlen)
{
struct workspace *workspace = list_entry(ws, struct workspace, list);
struct btrfs_fs_info *fs_info = page_to_fs_info(dest_page);
btrfs: lzo: fix and simplify the inline extent decompression [BUG] If we have a filesystem with 4k sectorsize, and an inlined compressed extent created like this: item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160 generation 8 transid 8 size 4096 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24 index 2 namelen 14 name: source_inlined item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69 generation 8 type 0 (inline) inline extent data size 48 ram_bytes 4096 compression 2 (lzo) Then trying to reflink that extent in an aarch64 system with 64K page size, the reflink would just fail: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest XFS_IOC_CLONE_RANGE: Input/output error [CAUSE] In zlib_decompress(), we didn't treat @start_byte as just a page offset, but also use it as an indicator on whether we should error out, without any proper explanation (this is from the very beginning of btrfs). In reality, for subpage cases, although @start_byte can be non-zero, we should never switch input/output buffer nor error out, since the whole input/output buffer should never exceed one sector. Note: The above assumption is only not true if we're going to support multi-page sectorsize. Thus the current code using @start_byte as a condition to switch input/output buffer or finish the decompression is completely incorrect. [FIX] The fix involves several modifications: - Rename @start_byte to @dest_pgoff to properly express its meaning - Use @sectorsize other than PAGE_SIZE to properly initialize the output buffer size - Use correct destination offset inside the destination page - Use memcpy_to_page() to copy the contents to the destination page - Use memzero_page() to zero out the tailing part - Consider early end as an error After the fix, even on 64K page sized aarch64, above reflink now works as expected: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest linked 4096/4096 bytes at offset 61440 And results the correct file layout: item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160 generation 10 transid 10 size 65536 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14 index 3 namelen 4 name: dest item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83 location key (0 UNKNOWN.0 0) type XATTR transid 10 data_len 37 name_len 16 name: security.selinux data unconfined_u:object_r:unlabeled_t:s0 item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53 generation 10 type 1 (regular) extent data disk byte 13631488 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression 0 (none) Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-08 17:08:45 +08:00
const u32 sectorsize = fs_info->sectorsize;
size_t in_len;
size_t out_len;
size_t max_segment_len = WORKSPACE_BUF_LENGTH;
int ret = 0;
if (srclen < LZO_LEN || srclen > max_segment_len + LZO_LEN * 2)
return -EUCLEAN;
in_len = read_compress_length(data_in);
if (in_len != srclen)
return -EUCLEAN;
data_in += LZO_LEN;
in_len = read_compress_length(data_in);
if (in_len != srclen - LZO_LEN * 2) {
ret = -EUCLEAN;
goto out;
}
data_in += LZO_LEN;
btrfs: lzo: fix and simplify the inline extent decompression [BUG] If we have a filesystem with 4k sectorsize, and an inlined compressed extent created like this: item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160 generation 8 transid 8 size 4096 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24 index 2 namelen 14 name: source_inlined item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69 generation 8 type 0 (inline) inline extent data size 48 ram_bytes 4096 compression 2 (lzo) Then trying to reflink that extent in an aarch64 system with 64K page size, the reflink would just fail: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest XFS_IOC_CLONE_RANGE: Input/output error [CAUSE] In zlib_decompress(), we didn't treat @start_byte as just a page offset, but also use it as an indicator on whether we should error out, without any proper explanation (this is from the very beginning of btrfs). In reality, for subpage cases, although @start_byte can be non-zero, we should never switch input/output buffer nor error out, since the whole input/output buffer should never exceed one sector. Note: The above assumption is only not true if we're going to support multi-page sectorsize. Thus the current code using @start_byte as a condition to switch input/output buffer or finish the decompression is completely incorrect. [FIX] The fix involves several modifications: - Rename @start_byte to @dest_pgoff to properly express its meaning - Use @sectorsize other than PAGE_SIZE to properly initialize the output buffer size - Use correct destination offset inside the destination page - Use memcpy_to_page() to copy the contents to the destination page - Use memzero_page() to zero out the tailing part - Consider early end as an error After the fix, even on 64K page sized aarch64, above reflink now works as expected: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest linked 4096/4096 bytes at offset 61440 And results the correct file layout: item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160 generation 10 transid 10 size 65536 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14 index 3 namelen 4 name: dest item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83 location key (0 UNKNOWN.0 0) type XATTR transid 10 data_len 37 name_len 16 name: security.selinux data unconfined_u:object_r:unlabeled_t:s0 item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53 generation 10 type 1 (regular) extent data disk byte 13631488 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression 0 (none) Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-08 17:08:45 +08:00
out_len = sectorsize;
ret = lzo1x_decompress_safe(data_in, in_len, workspace->buf, &out_len);
if (ret != LZO_E_OK) {
pr_warn("BTRFS: decompress failed!\n");
ret = -EIO;
goto out;
}
btrfs: lzo: fix and simplify the inline extent decompression [BUG] If we have a filesystem with 4k sectorsize, and an inlined compressed extent created like this: item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160 generation 8 transid 8 size 4096 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24 index 2 namelen 14 name: source_inlined item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69 generation 8 type 0 (inline) inline extent data size 48 ram_bytes 4096 compression 2 (lzo) Then trying to reflink that extent in an aarch64 system with 64K page size, the reflink would just fail: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest XFS_IOC_CLONE_RANGE: Input/output error [CAUSE] In zlib_decompress(), we didn't treat @start_byte as just a page offset, but also use it as an indicator on whether we should error out, without any proper explanation (this is from the very beginning of btrfs). In reality, for subpage cases, although @start_byte can be non-zero, we should never switch input/output buffer nor error out, since the whole input/output buffer should never exceed one sector. Note: The above assumption is only not true if we're going to support multi-page sectorsize. Thus the current code using @start_byte as a condition to switch input/output buffer or finish the decompression is completely incorrect. [FIX] The fix involves several modifications: - Rename @start_byte to @dest_pgoff to properly express its meaning - Use @sectorsize other than PAGE_SIZE to properly initialize the output buffer size - Use correct destination offset inside the destination page - Use memcpy_to_page() to copy the contents to the destination page - Use memzero_page() to zero out the tailing part - Consider early end as an error After the fix, even on 64K page sized aarch64, above reflink now works as expected: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest linked 4096/4096 bytes at offset 61440 And results the correct file layout: item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160 generation 10 transid 10 size 65536 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14 index 3 namelen 4 name: dest item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83 location key (0 UNKNOWN.0 0) type XATTR transid 10 data_len 37 name_len 16 name: security.selinux data unconfined_u:object_r:unlabeled_t:s0 item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53 generation 10 type 1 (regular) extent data disk byte 13631488 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression 0 (none) Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-08 17:08:45 +08:00
ASSERT(out_len <= sectorsize);
memcpy_to_page(dest_page, dest_pgoff, workspace->buf, out_len);
/* Early end, considered as an error. */
if (unlikely(out_len < destlen)) {
ret = -EIO;
btrfs: lzo: fix and simplify the inline extent decompression [BUG] If we have a filesystem with 4k sectorsize, and an inlined compressed extent created like this: item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160 generation 8 transid 8 size 4096 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24 index 2 namelen 14 name: source_inlined item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69 generation 8 type 0 (inline) inline extent data size 48 ram_bytes 4096 compression 2 (lzo) Then trying to reflink that extent in an aarch64 system with 64K page size, the reflink would just fail: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest XFS_IOC_CLONE_RANGE: Input/output error [CAUSE] In zlib_decompress(), we didn't treat @start_byte as just a page offset, but also use it as an indicator on whether we should error out, without any proper explanation (this is from the very beginning of btrfs). In reality, for subpage cases, although @start_byte can be non-zero, we should never switch input/output buffer nor error out, since the whole input/output buffer should never exceed one sector. Note: The above assumption is only not true if we're going to support multi-page sectorsize. Thus the current code using @start_byte as a condition to switch input/output buffer or finish the decompression is completely incorrect. [FIX] The fix involves several modifications: - Rename @start_byte to @dest_pgoff to properly express its meaning - Use @sectorsize other than PAGE_SIZE to properly initialize the output buffer size - Use correct destination offset inside the destination page - Use memcpy_to_page() to copy the contents to the destination page - Use memzero_page() to zero out the tailing part - Consider early end as an error After the fix, even on 64K page sized aarch64, above reflink now works as expected: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest linked 4096/4096 bytes at offset 61440 And results the correct file layout: item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160 generation 10 transid 10 size 65536 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14 index 3 namelen 4 name: dest item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83 location key (0 UNKNOWN.0 0) type XATTR transid 10 data_len 37 name_len 16 name: security.selinux data unconfined_u:object_r:unlabeled_t:s0 item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53 generation 10 type 1 (regular) extent data disk byte 13631488 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression 0 (none) Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-08 17:08:45 +08:00
memzero_page(dest_page, dest_pgoff + out_len, destlen - out_len);
}
out:
return ret;
}
const struct btrfs_compress_op btrfs_lzo_compress = {
.workspace_manager = &wsm,
.max_level = 1,
.default_level = 1,
};