linux/drivers/ata/pata_hpt366.c

462 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Libata driver for the highpoint 366 and 368 UDMA66 ATA controllers.
*
* This driver is heavily based upon:
*
* linux/drivers/ide/pci/hpt366.c Version 0.36 April 25, 2003
*
* Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org>
* Portions Copyright (C) 2001 Sun Microsystems, Inc.
* Portions Copyright (C) 2003 Red Hat Inc
*
*
* TODO
* Look into engine reset on timeout errors. Should not be required.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#define DRV_NAME "pata_hpt366"
#define DRV_VERSION "0.6.13"
struct hpt_clock {
u8 xfer_mode;
u32 timing;
};
/* key for bus clock timings
* bit
* 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
* cycles = value + 1
* 4:7 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
* cycles = value + 1
* 8:11 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
* register access.
* 12:15 cmd_low_time. Active time of DIOW_/DIOR_ during task file
* register access.
* 16:18 udma_cycle_time. Clock cycles for UDMA xfer?
* 19:21 pre_high_time. Time to initialize 1st cycle for PIO and MW DMA xfer.
* 22:24 cmd_pre_high_time. Time to initialize 1st PIO cycle for task file
* register access.
* 28 UDMA enable.
* 29 DMA enable.
* 30 PIO_MST enable. If set, the chip is in bus master mode during
* PIO xfer.
* 31 FIFO enable.
*/
static const struct hpt_clock hpt366_40[] = {
{ XFER_UDMA_4, 0x900fd943 },
{ XFER_UDMA_3, 0x900ad943 },
{ XFER_UDMA_2, 0x900bd943 },
{ XFER_UDMA_1, 0x9008d943 },
{ XFER_UDMA_0, 0x9008d943 },
{ XFER_MW_DMA_2, 0xa008d943 },
{ XFER_MW_DMA_1, 0xa010d955 },
{ XFER_MW_DMA_0, 0xa010d9fc },
{ XFER_PIO_4, 0xc008d963 },
{ XFER_PIO_3, 0xc010d974 },
{ XFER_PIO_2, 0xc010d997 },
{ XFER_PIO_1, 0xc010d9c7 },
{ XFER_PIO_0, 0xc018d9d9 },
{ 0, 0x0120d9d9 }
};
static const struct hpt_clock hpt366_33[] = {
{ XFER_UDMA_4, 0x90c9a731 },
{ XFER_UDMA_3, 0x90cfa731 },
{ XFER_UDMA_2, 0x90caa731 },
{ XFER_UDMA_1, 0x90cba731 },
{ XFER_UDMA_0, 0x90c8a731 },
{ XFER_MW_DMA_2, 0xa0c8a731 },
{ XFER_MW_DMA_1, 0xa0c8a732 }, /* 0xa0c8a733 */
{ XFER_MW_DMA_0, 0xa0c8a797 },
{ XFER_PIO_4, 0xc0c8a731 },
{ XFER_PIO_3, 0xc0c8a742 },
{ XFER_PIO_2, 0xc0d0a753 },
{ XFER_PIO_1, 0xc0d0a7a3 }, /* 0xc0d0a793 */
{ XFER_PIO_0, 0xc0d0a7aa }, /* 0xc0d0a7a7 */
{ 0, 0x0120a7a7 }
};
static const struct hpt_clock hpt366_25[] = {
{ XFER_UDMA_4, 0x90c98521 },
{ XFER_UDMA_3, 0x90cf8521 },
{ XFER_UDMA_2, 0x90cf8521 },
{ XFER_UDMA_1, 0x90cb8521 },
{ XFER_UDMA_0, 0x90cb8521 },
{ XFER_MW_DMA_2, 0xa0ca8521 },
{ XFER_MW_DMA_1, 0xa0ca8532 },
{ XFER_MW_DMA_0, 0xa0ca8575 },
{ XFER_PIO_4, 0xc0ca8521 },
{ XFER_PIO_3, 0xc0ca8532 },
{ XFER_PIO_2, 0xc0ca8542 },
{ XFER_PIO_1, 0xc0d08572 },
{ XFER_PIO_0, 0xc0d08585 },
{ 0, 0x01208585 }
};
/**
* hpt36x_find_mode - find the hpt36x timing
* @ap: ATA port
* @speed: transfer mode
*
* Return the 32bit register programming information for this channel
* that matches the speed provided.
*/
static u32 hpt36x_find_mode(struct ata_port *ap, int speed)
{
struct hpt_clock *clocks = ap->host->private_data;
while (clocks->xfer_mode) {
if (clocks->xfer_mode == speed)
return clocks->timing;
clocks++;
}
BUG();
return 0xffffffffU; /* silence compiler warning */
}
static const char * const bad_ata33[] = {
"Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3",
"Maxtor 90845U3", "Maxtor 90650U2",
"Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5",
"Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
"Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6",
"Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
"Maxtor 90510D4",
"Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
"Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7",
"Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
"Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5",
"Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
NULL
};
static const char * const bad_ata66_4[] = {
"IBM-DTLA-307075",
"IBM-DTLA-307060",
"IBM-DTLA-307045",
"IBM-DTLA-307030",
"IBM-DTLA-307020",
"IBM-DTLA-307015",
"IBM-DTLA-305040",
"IBM-DTLA-305030",
"IBM-DTLA-305020",
"IC35L010AVER07-0",
"IC35L020AVER07-0",
"IC35L030AVER07-0",
"IC35L040AVER07-0",
"IC35L060AVER07-0",
"WDC AC310200R",
NULL
};
static const char * const bad_ata66_3[] = {
"WDC AC310200R",
NULL
};
static int hpt_dma_blacklisted(const struct ata_device *dev, char *modestr,
const char * const list[])
{
unsigned char model_num[ATA_ID_PROD_LEN + 1];
int i;
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
i = match_string(list, -1, model_num);
if (i >= 0) {
ata_dev_warn(dev, "%s is not supported for %s\n", modestr, list[i]);
return 1;
}
return 0;
}
/**
* hpt366_filter - mode selection filter
* @adev: ATA device
* @mask: Current mask to manipulate and pass back
*
* Block UDMA on devices that cause trouble with this controller.
*/
static unsigned int hpt366_filter(struct ata_device *adev, unsigned int mask)
{
if (adev->class == ATA_DEV_ATA) {
if (hpt_dma_blacklisted(adev, "UDMA", bad_ata33))
mask &= ~ATA_MASK_UDMA;
if (hpt_dma_blacklisted(adev, "UDMA3", bad_ata66_3))
mask &= ~(0xF8 << ATA_SHIFT_UDMA);
if (hpt_dma_blacklisted(adev, "UDMA4", bad_ata66_4))
mask &= ~(0xF0 << ATA_SHIFT_UDMA);
} else if (adev->class == ATA_DEV_ATAPI)
mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
libata-sff: clean up BMDMA initialization When BMDMA initialization failed or BMDMA was not available for whatever reason, bmdma_addr was left at zero and used as an indication that BMDMA shouldn't be used. This leads to the following problems. p1. For BMDMA drivers which don't use traditional BMDMA register, ata_bmdma_mode_filter() incorrectly inhibits DMA modes. Those drivers either have to inherit from ata_sff_port_ops or clear ->mode_filter explicitly. p2. non-BMDMA drivers call into BMDMA PRD table allocation. It doesn't actually allocate PRD table if bmdma_addr is not initialized but is still confusing. p3. For BMDMA drivers which don't use traditional BMDMA register, some methods might not be invoked as expected (e.g. bmdma_stop from ata_sff_post_internal_cmd()). p4. SFF drivers w/ custom DMA interface implement noop BMDMA ops worrying libata core might call into one of them. These problems are caused by the muddy line between SFF and BMDMA and the assumption that all BMDMA controllers initialize bmdma_addr. This patch fixes p1 and p2 by removing the bmdma_addr assumption and moving prd allocation to BMDMA port start. Later patches will fix the remaining issues. This patch improves BMDMA initialization such that * When BMDMA register initialization fails, falls back to PIO instead of failing. ata_pci_bmdma_init() never fails now. * When ata_pci_bmdma_init() falls back to PIO, it clears ap->mwdma_mask and udma_mask instead of depending on ata_bmdma_mode_filter(). This makes ata_bmdma_mode_filter() unnecessary thus resolving p1. * ata_port_start() which actually is BMDMA specific is moved to ata_bmdma_port_start(). ata_port_start() and ata_sff_port_start() are killed. * ata_sff_port_start32() is moved and renamed to ata_bmdma_port_start32(). Drivers which no longer call into PRD table allocation are... pdc_adma, sata_inic162x, sata_qstor, sata_sx4, pata_cmd640 and all drivers which inherit from ata_sff_port_ops. pata_icside sets ->port_start to ATA_OP_NULL as it doesn't need PRD but is a BMDMA controller and doesn't have custom port_start like other such controllers. Note that with the previous patch which makes all and only BMDMA drivers inherit from ata_bmdma_port_ops, this change doesn't break drivers which need PRD table. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2010-05-11 03:41:34 +08:00
return mask;
}
static int hpt36x_cable_detect(struct ata_port *ap)
{
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
u8 ata66;
/*
* Each channel of pata_hpt366 occupies separate PCI function
* as the primary channel and bit1 indicates the cable type.
*/
pci_read_config_byte(pdev, 0x5A, &ata66);
if (ata66 & 2)
return ATA_CBL_PATA40;
return ATA_CBL_PATA80;
}
static void hpt366_set_mode(struct ata_port *ap, struct ata_device *adev,
u8 mode)
{
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
u32 addr = 0x40 + 4 * adev->devno;
u32 mask, reg, t;
/* determine timing mask and find matching clock entry */
if (mode < XFER_MW_DMA_0)
mask = 0xc1f8ffff;
else if (mode < XFER_UDMA_0)
mask = 0x303800ff;
else
mask = 0x30070000;
t = hpt36x_find_mode(ap, mode);
/*
* Combine new mode bits with old config bits and disable
* on-chip PIO FIFO/buffer (and PIO MST mode as well) to avoid
* problems handling I/O errors later.
*/
pci_read_config_dword(pdev, addr, &reg);
reg = ((reg & ~mask) | (t & mask)) & ~0xc0000000;
pci_write_config_dword(pdev, addr, reg);
}
/**
* hpt366_set_piomode - PIO setup
* @ap: ATA interface
* @adev: device on the interface
*
* Perform PIO mode setup.
*/
static void hpt366_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
hpt366_set_mode(ap, adev, adev->pio_mode);
}
/**
* hpt366_set_dmamode - DMA timing setup
* @ap: ATA interface
* @adev: Device being configured
*
* Set up the channel for MWDMA or UDMA modes. Much the same as with
* PIO, load the mode number and then set MWDMA or UDMA flag.
*/
static void hpt366_set_dmamode(struct ata_port *ap, struct ata_device *adev)
{
hpt366_set_mode(ap, adev, adev->dma_mode);
}
/**
* hpt366_prereset - reset the hpt36x bus
* @link: ATA link to reset
* @deadline: deadline jiffies for the operation
*
* Perform the initial reset handling for the 36x series controllers.
* Reset the hardware and state machine,
*/
static int hpt366_prereset(struct ata_link *link, unsigned long deadline)
{
struct ata_port *ap = link->ap;
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
/*
* HPT36x chips have one channel per function and have
* both channel enable bits located differently and visible
* to both functions -- really stupid design decision... :-(
* Bit 4 is for the primary channel, bit 5 for the secondary.
*/
static const struct pci_bits hpt366_enable_bits = {
0x50, 1, 0x30, 0x30
};
u8 mcr2;
if (!pci_test_config_bits(pdev, &hpt366_enable_bits))
return -ENOENT;
pci_read_config_byte(pdev, 0x51, &mcr2);
if (mcr2 & 0x80)
pci_write_config_byte(pdev, 0x51, mcr2 & ~0x80);
return ata_sff_prereset(link, deadline);
}
static struct scsi_host_template hpt36x_sht = {
ATA_BMDMA_SHT(DRV_NAME),
};
/*
* Configuration for HPT366/68
*/
static struct ata_port_operations hpt366_port_ops = {
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
.inherits = &ata_bmdma_port_ops,
.prereset = hpt366_prereset,
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-25 11:22:49 +08:00
.cable_detect = hpt36x_cable_detect,
.mode_filter = hpt366_filter,
.set_piomode = hpt366_set_piomode,
.set_dmamode = hpt366_set_dmamode,
};
/**
* hpt36x_init_chipset - common chip setup
* @dev: PCI device
*
* Perform the chip setup work that must be done at both init and
* resume time
*/
static void hpt36x_init_chipset(struct pci_dev *dev)
{
u8 mcr1;
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
/*
* Now we'll have to force both channels enabled if at least one
* of them has been enabled by BIOS...
*/
pci_read_config_byte(dev, 0x50, &mcr1);
if (mcr1 & 0x30)
pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
}
/**
* hpt36x_init_one - Initialise an HPT366/368
* @dev: PCI device
* @id: Entry in match table
*
* Initialise an HPT36x device. There are some interesting complications
* here. Firstly the chip may report 366 and be one of several variants.
* Secondly all the timings depend on the clock for the chip which we must
* detect and look up
*
* This is the known chip mappings. It may be missing a couple of later
* releases.
*
* Chip version PCI Rev Notes
* HPT366 4 (HPT366) 0 UDMA66
* HPT366 4 (HPT366) 1 UDMA66
* HPT368 4 (HPT366) 2 UDMA66
* HPT37x/30x 4 (HPT366) 3+ Other driver
*
*/
static int hpt36x_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
libata: clean up SFF init mess The intention of using port_mask in SFF init helpers was to eventually support exoctic configurations such as combination of legacy and native port on the same controller. This never became actually necessary and the related code always has been subtly broken one way or the other. Now that new init model is in place, there is no reason to make common helpers capable of handling all corner cases. Exotic cases can simply dealt within LLDs as necessary. This patch removes port_mask handling in SFF init helpers. SFF init helpers don't take n_ports argument and interpret it into port_mask anymore. All information is carried via port_info. n_ports argument is dropped and always two ports are allocated. LLD can tell SFF to skip certain port by marking it dummy. Note that SFF code has been treating unuvailable ports this way for a long time until recent breakage fix from Linus and is consistent with how other drivers handle with unavailable ports. This fixes 1-port legacy host handling still broken after the recent native mode fix and simplifies SFF init logic. The following changes are made... * ata_pci_init_native_host() and ata_init_legacy_host() both now try to initialized whatever they can and mark failed ports dummy. They return 0 if any port is successfully initialized. * ata_pci_prepare_native_host() and ata_pci_init_one() now doesn't take n_ports argument. All info should be specified via port_info array. Always two ports are allocated. * ata_pci_init_bmdma() exported to be used by LLDs in exotic cases. * port_info handling in all LLDs are standardized - all port_info arrays are const stack variable named ppi. Unless the second port is different from the first, its port_info is specified as NULL (tells libata that it's identical to the last non-NULL port_info). * pata_hpt37x/hpt3x2n: don't modify static variable directly. Make an on-stack copy instead as ata_piix does. * pata_uli: It has 4 ports instead of 2. Don't use ata_pci_prepare_native_host(). Allocate the host explicitly and use init helpers. It's simple enough. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-04 18:43:58 +08:00
static const struct ata_port_info info_hpt366 = {
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA4,
.port_ops = &hpt366_port_ops
};
const struct ata_port_info *ppi[] = { &info_hpt366, NULL };
const void *hpriv = NULL;
u32 reg1;
int rc;
rc = pcim_enable_device(dev);
if (rc)
return rc;
/* May be a later chip in disguise. Check */
/* Newer chips are not in the HPT36x driver. Ignore them */
if (dev->revision > 2)
return -ENODEV;
hpt36x_init_chipset(dev);
pci_read_config_dword(dev, 0x40, &reg1);
/* PCI clocking determines the ATA timing values to use */
/* info_hpt366 is safe against re-entry so we can scribble on it */
switch ((reg1 & 0xf00) >> 8) {
case 9:
hpriv = &hpt366_40;
break;
case 5:
hpriv = &hpt366_25;
break;
default:
hpriv = &hpt366_33;
break;
}
/* Now kick off ATA set up */
return ata_pci_bmdma_init_one(dev, ppi, &hpt36x_sht, (void *)hpriv, 0);
}
#ifdef CONFIG_PM_SLEEP
static int hpt36x_reinit_one(struct pci_dev *dev)
{
struct ata_host *host = pci_get_drvdata(dev);
int rc;
rc = ata_pci_device_do_resume(dev);
if (rc)
return rc;
hpt36x_init_chipset(dev);
ata_host_resume(host);
return 0;
}
#endif
static const struct pci_device_id hpt36x[] = {
{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), },
{ },
};
static struct pci_driver hpt36x_pci_driver = {
.name = DRV_NAME,
.id_table = hpt36x,
.probe = hpt36x_init_one,
.remove = ata_pci_remove_one,
#ifdef CONFIG_PM_SLEEP
.suspend = ata_pci_device_suspend,
.resume = hpt36x_reinit_one,
#endif
};
module_pci_driver(hpt36x_pci_driver);
MODULE_AUTHOR("Alan Cox");
MODULE_DESCRIPTION("low-level driver for the Highpoint HPT366/368");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, hpt36x);
MODULE_VERSION(DRV_VERSION);