linux/fs/ecryptfs/mmap.c

535 lines
15 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
ecryptfs: mmap: Help out one function header and demote other abuses Fixes the following W=1 kernel build warning(s): fs/ecryptfs/mmap.c:26: warning: Incorrect use of kernel-doc format: * ecryptfs_get_locked_page fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'inode' not described in 'ecryptfs_get_locked_page' fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'index' not described in 'ecryptfs_get_locked_page' fs/ecryptfs/mmap.c:34: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_get_locked_page() instead fs/ecryptfs/mmap.c:52: warning: Function parameter or member 'wbc' not described in 'ecryptfs_writepage' fs/ecryptfs/mmap.c:98: warning: Incorrect use of kernel-doc format: * ecryptfs_copy_up_encrypted_with_header fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'page' not described in 'ecryptfs_copy_up_encrypted_with_header' fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'crypt_stat' not described in 'ecryptfs_copy_up_encrypted_with_header' fs/ecryptfs/mmap.c:110: warning: expecting prototype for Header Extent(). Prototype was for ecryptfs_copy_up_encrypted_with_header() instead fs/ecryptfs/mmap.c:233: warning: wrong kernel-doc identifier on line: fs/ecryptfs/mmap.c:379: warning: Function parameter or member 'ecryptfs_inode' not described in 'ecryptfs_write_inode_size_to_header' Cc: Tyler Hicks <code@tyhicks.com> Cc: James Morris <jamorris@linux.microsoft.com> Cc: Tycho Andersen <tycho@tycho.pizza> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com> Cc: ecryptfs@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Tyler Hicks <code@tyhicks.com>
2021-03-31 00:44:56 +08:00
/*
* eCryptfs: Linux filesystem encryption layer
* This is where eCryptfs coordinates the symmetric encryption and
* decryption of the file data as it passes between the lower
* encrypted file and the upper decrypted file.
*
* Copyright (C) 1997-2003 Erez Zadok
* Copyright (C) 2001-2003 Stony Brook University
* Copyright (C) 2004-2007 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
*/
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/page-flags.h>
#include <linux/mount.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/unaligned.h>
#include "ecryptfs_kernel.h"
/*
* This is where we encrypt the data and pass the encrypted data to
* the lower filesystem. In OpenPGP-compatible mode, we operate on
* entire underlying packets.
*/
static int ecryptfs_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct folio *folio = NULL;
int error;
while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
error = ecryptfs_encrypt_page(folio);
if (error) {
ecryptfs_printk(KERN_WARNING,
"Error encrypting folio (index [0x%.16lx])\n",
folio->index);
folio_clear_uptodate(folio);
mapping_set_error(mapping, error);
}
folio_unlock(folio);
}
return error;
}
static void strip_xattr_flag(char *page_virt,
struct ecryptfs_crypt_stat *crypt_stat)
{
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
size_t written;
crypt_stat->flags &= ~ECRYPTFS_METADATA_IN_XATTR;
ecryptfs_write_crypt_stat_flags(page_virt, crypt_stat,
&written);
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
}
}
ecryptfs: mmap: Help out one function header and demote other abuses Fixes the following W=1 kernel build warning(s): fs/ecryptfs/mmap.c:26: warning: Incorrect use of kernel-doc format: * ecryptfs_get_locked_page fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'inode' not described in 'ecryptfs_get_locked_page' fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'index' not described in 'ecryptfs_get_locked_page' fs/ecryptfs/mmap.c:34: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_get_locked_page() instead fs/ecryptfs/mmap.c:52: warning: Function parameter or member 'wbc' not described in 'ecryptfs_writepage' fs/ecryptfs/mmap.c:98: warning: Incorrect use of kernel-doc format: * ecryptfs_copy_up_encrypted_with_header fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'page' not described in 'ecryptfs_copy_up_encrypted_with_header' fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'crypt_stat' not described in 'ecryptfs_copy_up_encrypted_with_header' fs/ecryptfs/mmap.c:110: warning: expecting prototype for Header Extent(). Prototype was for ecryptfs_copy_up_encrypted_with_header() instead fs/ecryptfs/mmap.c:233: warning: wrong kernel-doc identifier on line: fs/ecryptfs/mmap.c:379: warning: Function parameter or member 'ecryptfs_inode' not described in 'ecryptfs_write_inode_size_to_header' Cc: Tyler Hicks <code@tyhicks.com> Cc: James Morris <jamorris@linux.microsoft.com> Cc: Tycho Andersen <tycho@tycho.pizza> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com> Cc: ecryptfs@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Tyler Hicks <code@tyhicks.com>
2021-03-31 00:44:56 +08:00
/*
* Header Extent:
* Octets 0-7: Unencrypted file size (big-endian)
* Octets 8-15: eCryptfs special marker
* Octets 16-19: Flags
* Octet 16: File format version number (between 0 and 255)
* Octets 17-18: Reserved
* Octet 19: Bit 1 (lsb): Reserved
* Bit 2: Encrypted?
* Bits 3-8: Reserved
* Octets 20-23: Header extent size (big-endian)
* Octets 24-25: Number of header extents at front of file
* (big-endian)
* Octet 26: Begin RFC 2440 authentication token packet set
*/
/**
* ecryptfs_copy_up_encrypted_with_header
* @folio: Sort of a ``virtual'' representation of the encrypted lower
* file. The actual lower file does not have the metadata in
* the header. This is locked.
* @crypt_stat: The eCryptfs inode's cryptographic context
*
* The ``view'' is the version of the file that userspace winds up
* seeing, with the header information inserted.
*/
static int
ecryptfs_copy_up_encrypted_with_header(struct folio *folio,
struct ecryptfs_crypt_stat *crypt_stat)
{
loff_t extent_num_in_page = 0;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
loff_t num_extents_per_page = (PAGE_SIZE
/ crypt_stat->extent_size);
int rc = 0;
while (extent_num_in_page < num_extents_per_page) {
loff_t view_extent_num = ((loff_t)folio->index
* num_extents_per_page)
+ extent_num_in_page;
size_t num_header_extents_at_front =
(crypt_stat->metadata_size / crypt_stat->extent_size);
if (view_extent_num < num_header_extents_at_front) {
/* This is a header extent */
char *page_virt;
page_virt = kmap_local_folio(folio, 0);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
memset(page_virt, 0, PAGE_SIZE);
/* TODO: Support more than one header extent */
if (view_extent_num == 0) {
size_t written;
rc = ecryptfs_read_xattr_region(
page_virt, folio->mapping->host);
strip_xattr_flag(page_virt + 16, crypt_stat);
ecryptfs_write_header_metadata(page_virt + 20,
crypt_stat,
&written);
}
fs/ecryptfs: Use kmap_local_page() in copy_up_encrypted_with_header() kmap_atomic() has been deprecated in favor of kmap_local_page(). Therefore, replace kmap_atomic() with kmap_local_page() in ecryptfs_copy_up_encrypted_with_header(). kmap_atomic() is implemented like a kmap_local_page() which also disables page-faults and preemption (the latter only in !PREEMPT_RT kernels). The kernel virtual addresses returned by these two API are only valid in the context of the callers (i.e., they cannot be handed to other threads). With kmap_local_page() the mappings are per thread and CPU local like in kmap_atomic(); however, they can handle page-faults and can be called from any context (including interrupts). The tasks that call kmap_local_page() can be preempted and, when they are scheduled to run again, the kernel virtual addresses are restored and are still valid. In ecryptfs_copy_up_encrypted_with_header(), the block of code between the mapping and un-mapping does not depend on the above-mentioned side effects of kmap_aatomic(), so that the mere replacements of the old API with the new one is all that is required (i.e., there is no need to explicitly call pagefault_disable() and/or preempt_disable()). Tested in a QEMU/KVM x86_32 VM, 6GB RAM, booting a kernel with HIGHMEM64GB enabled. Cc: Ira Weiny <ira.weiny@intel.com> Signed-off-by: "Fabio M. De Francesco" <fmdefrancesco@gmail.com> Message-Id: <20230426172223.8896-4-fmdefrancesco@gmail.com> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-04-27 01:22:23 +08:00
kunmap_local(page_virt);
flush_dcache_folio(folio);
if (rc) {
printk(KERN_ERR "%s: Error reading xattr "
"region; rc = [%d]\n", __func__, rc);
goto out;
}
} else {
/* This is an encrypted data extent */
loff_t lower_offset =
((view_extent_num * crypt_stat->extent_size)
- crypt_stat->metadata_size);
rc = ecryptfs_read_lower_page_segment(
folio, (lower_offset >> PAGE_SHIFT),
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
(lower_offset & ~PAGE_MASK),
crypt_stat->extent_size, folio->mapping->host);
if (rc) {
printk(KERN_ERR "%s: Error attempting to read "
"extent at offset [%lld] in the lower "
"file; rc = [%d]\n", __func__,
lower_offset, rc);
goto out;
}
}
extent_num_in_page++;
}
out:
return rc;
}
/**
* ecryptfs_read_folio
* @file: An eCryptfs file
* @folio: Folio from eCryptfs inode mapping into which to stick the read data
*
* Read in a folio, decrypting if necessary.
*
* Returns zero on success; non-zero on error.
*/
static int ecryptfs_read_folio(struct file *file, struct folio *folio)
{
struct inode *inode = folio->mapping->host;
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(inode)->crypt_stat;
int err = 0;
if (!crypt_stat || !(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
err = ecryptfs_read_lower_page_segment(folio, folio->index, 0,
folio_size(folio), inode);
} else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
err = ecryptfs_copy_up_encrypted_with_header(folio,
crypt_stat);
if (err) {
printk(KERN_ERR "%s: Error attempting to copy "
"the encrypted content from the lower "
"file whilst inserting the metadata "
"from the xattr into the header; err = "
"[%d]\n", __func__, err);
goto out;
}
} else {
err = ecryptfs_read_lower_page_segment(folio,
folio->index, 0, folio_size(folio),
inode);
if (err) {
printk(KERN_ERR "Error reading page; err = "
"[%d]\n", err);
goto out;
}
}
} else {
err = ecryptfs_decrypt_page(folio);
if (err) {
ecryptfs_printk(KERN_ERR, "Error decrypting page; "
"err = [%d]\n", err);
goto out;
}
}
out:
ecryptfs_printk(KERN_DEBUG, "Unlocking folio with index = [0x%.16lx]\n",
folio->index);
folio_end_read(folio, err == 0);
return err;
}
ecryptfs: mmap: Help out one function header and demote other abuses Fixes the following W=1 kernel build warning(s): fs/ecryptfs/mmap.c:26: warning: Incorrect use of kernel-doc format: * ecryptfs_get_locked_page fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'inode' not described in 'ecryptfs_get_locked_page' fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'index' not described in 'ecryptfs_get_locked_page' fs/ecryptfs/mmap.c:34: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_get_locked_page() instead fs/ecryptfs/mmap.c:52: warning: Function parameter or member 'wbc' not described in 'ecryptfs_writepage' fs/ecryptfs/mmap.c:98: warning: Incorrect use of kernel-doc format: * ecryptfs_copy_up_encrypted_with_header fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'page' not described in 'ecryptfs_copy_up_encrypted_with_header' fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'crypt_stat' not described in 'ecryptfs_copy_up_encrypted_with_header' fs/ecryptfs/mmap.c:110: warning: expecting prototype for Header Extent(). Prototype was for ecryptfs_copy_up_encrypted_with_header() instead fs/ecryptfs/mmap.c:233: warning: wrong kernel-doc identifier on line: fs/ecryptfs/mmap.c:379: warning: Function parameter or member 'ecryptfs_inode' not described in 'ecryptfs_write_inode_size_to_header' Cc: Tyler Hicks <code@tyhicks.com> Cc: James Morris <jamorris@linux.microsoft.com> Cc: Tycho Andersen <tycho@tycho.pizza> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com> Cc: ecryptfs@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Tyler Hicks <code@tyhicks.com>
2021-03-31 00:44:56 +08:00
/*
* Called with lower inode mutex held.
*/
static int fill_zeros_to_end_of_page(struct folio *folio, unsigned int to)
{
struct inode *inode = folio->mapping->host;
int end_byte_in_page;
if ((i_size_read(inode) / PAGE_SIZE) != folio->index)
goto out;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
end_byte_in_page = i_size_read(inode) % PAGE_SIZE;
if (to > end_byte_in_page)
end_byte_in_page = to;
folio_zero_segment(folio, end_byte_in_page, PAGE_SIZE);
out:
return 0;
}
/**
* ecryptfs_write_begin
* @file: The eCryptfs file
* @mapping: The eCryptfs object
* @pos: The file offset at which to start writing
* @len: Length of the write
* @foliop: Pointer to return the folio
* @fsdata: Pointer to return fs data (unused)
*
* This function must zero any hole we create
*
* Returns zero on success; non-zero otherwise
*/
static int ecryptfs_write_begin(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len,
struct folio **foliop, void **fsdata)
{
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
pgoff_t index = pos >> PAGE_SHIFT;
struct folio *folio;
loff_t prev_page_end_size;
int rc = 0;
folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
mapping_gfp_mask(mapping));
if (IS_ERR(folio))
return PTR_ERR(folio);
*foliop = folio;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
prev_page_end_size = ((loff_t)index << PAGE_SHIFT);
if (!folio_test_uptodate(folio)) {
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(mapping->host)->crypt_stat;
if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
rc = ecryptfs_read_lower_page_segment(
folio, index, 0, PAGE_SIZE, mapping->host);
if (rc) {
printk(KERN_ERR "%s: Error attempting to read "
"lower page segment; rc = [%d]\n",
__func__, rc);
folio_clear_uptodate(folio);
goto out;
} else
folio_mark_uptodate(folio);
} else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
rc = ecryptfs_copy_up_encrypted_with_header(
folio, crypt_stat);
if (rc) {
printk(KERN_ERR "%s: Error attempting "
"to copy the encrypted content "
"from the lower file whilst "
"inserting the metadata from "
"the xattr into the header; rc "
"= [%d]\n", __func__, rc);
folio_clear_uptodate(folio);
goto out;
}
folio_mark_uptodate(folio);
} else {
rc = ecryptfs_read_lower_page_segment(
folio, index, 0, PAGE_SIZE,
mapping->host);
if (rc) {
printk(KERN_ERR "%s: Error reading "
"page; rc = [%d]\n",
__func__, rc);
folio_clear_uptodate(folio);
goto out;
}
folio_mark_uptodate(folio);
}
} else {
if (prev_page_end_size
>= i_size_read(mapping->host)) {
folio_zero_range(folio, 0, PAGE_SIZE);
folio_mark_uptodate(folio);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
} else if (len < PAGE_SIZE) {
rc = ecryptfs_decrypt_page(folio);
if (rc) {
printk(KERN_ERR "%s: Error decrypting "
"page at index [%ld]; "
"rc = [%d]\n",
__func__, folio->index, rc);
folio_clear_uptodate(folio);
goto out;
}
folio_mark_uptodate(folio);
}
}
}
/* If creating a page or more of holes, zero them out via truncate.
* Note, this will increase i_size. */
if (index != 0) {
if (prev_page_end_size > i_size_read(mapping->host)) {
rc = ecryptfs_truncate(file->f_path.dentry,
prev_page_end_size);
if (rc) {
printk(KERN_ERR "%s: Error on attempt to "
"truncate to (higher) offset [%lld];"
" rc = [%d]\n", __func__,
prev_page_end_size, rc);
goto out;
}
}
}
/* Writing to a new page, and creating a small hole from start
* of page? Zero it out. */
if ((i_size_read(mapping->host) == prev_page_end_size)
&& (pos != 0))
folio_zero_range(folio, 0, PAGE_SIZE);
out:
if (unlikely(rc)) {
folio_unlock(folio);
folio_put(folio);
}
return rc;
}
ecryptfs: mmap: Help out one function header and demote other abuses Fixes the following W=1 kernel build warning(s): fs/ecryptfs/mmap.c:26: warning: Incorrect use of kernel-doc format: * ecryptfs_get_locked_page fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'inode' not described in 'ecryptfs_get_locked_page' fs/ecryptfs/mmap.c:34: warning: Function parameter or member 'index' not described in 'ecryptfs_get_locked_page' fs/ecryptfs/mmap.c:34: warning: expecting prototype for eCryptfs(). Prototype was for ecryptfs_get_locked_page() instead fs/ecryptfs/mmap.c:52: warning: Function parameter or member 'wbc' not described in 'ecryptfs_writepage' fs/ecryptfs/mmap.c:98: warning: Incorrect use of kernel-doc format: * ecryptfs_copy_up_encrypted_with_header fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'page' not described in 'ecryptfs_copy_up_encrypted_with_header' fs/ecryptfs/mmap.c:110: warning: Function parameter or member 'crypt_stat' not described in 'ecryptfs_copy_up_encrypted_with_header' fs/ecryptfs/mmap.c:110: warning: expecting prototype for Header Extent(). Prototype was for ecryptfs_copy_up_encrypted_with_header() instead fs/ecryptfs/mmap.c:233: warning: wrong kernel-doc identifier on line: fs/ecryptfs/mmap.c:379: warning: Function parameter or member 'ecryptfs_inode' not described in 'ecryptfs_write_inode_size_to_header' Cc: Tyler Hicks <code@tyhicks.com> Cc: James Morris <jamorris@linux.microsoft.com> Cc: Tycho Andersen <tycho@tycho.pizza> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: "Michael A. Halcrow" <mahalcro@us.ibm.com> Cc: ecryptfs@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Tyler Hicks <code@tyhicks.com>
2021-03-31 00:44:56 +08:00
/*
* ecryptfs_write_inode_size_to_header
*
* Writes the lower file size to the first 8 bytes of the header.
*
* Returns zero on success; non-zero on error.
*/
static int ecryptfs_write_inode_size_to_header(struct inode *ecryptfs_inode)
{
char *file_size_virt;
int rc;
file_size_virt = kmalloc(sizeof(u64), GFP_KERNEL);
if (!file_size_virt) {
rc = -ENOMEM;
goto out;
}
put_unaligned_be64(i_size_read(ecryptfs_inode), file_size_virt);
rc = ecryptfs_write_lower(ecryptfs_inode, file_size_virt, 0,
sizeof(u64));
kfree(file_size_virt);
if (rc < 0)
printk(KERN_ERR "%s: Error writing file size to header; "
"rc = [%d]\n", __func__, rc);
else
rc = 0;
out:
return rc;
}
struct kmem_cache *ecryptfs_xattr_cache;
static int ecryptfs_write_inode_size_to_xattr(struct inode *ecryptfs_inode)
{
ssize_t size;
void *xattr_virt;
struct dentry *lower_dentry =
ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
struct inode *lower_inode = d_inode(lower_dentry);
int rc;
if (!(lower_inode->i_opflags & IOP_XATTR)) {
printk(KERN_WARNING
"No support for setting xattr in lower filesystem\n");
rc = -ENOSYS;
goto out;
}
xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
if (!xattr_virt) {
rc = -ENOMEM;
goto out;
}
inode_lock(lower_inode);
size = __vfs_getxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
xattr_virt, PAGE_SIZE);
if (size < 0)
size = 8;
put_unaligned_be64(i_size_read(ecryptfs_inode), xattr_virt);
rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode,
ECRYPTFS_XATTR_NAME, xattr_virt, size, 0);
inode_unlock(lower_inode);
if (rc)
printk(KERN_ERR "Error whilst attempting to write inode size "
"to lower file xattr; rc = [%d]\n", rc);
kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
out:
return rc;
}
int ecryptfs_write_inode_size_to_metadata(struct inode *ecryptfs_inode)
{
struct ecryptfs_crypt_stat *crypt_stat;
crypt_stat = &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
return ecryptfs_write_inode_size_to_xattr(ecryptfs_inode);
else
return ecryptfs_write_inode_size_to_header(ecryptfs_inode);
}
/**
* ecryptfs_write_end
* @file: The eCryptfs file object
* @mapping: The eCryptfs object
* @pos: The file position
* @len: The length of the data (unused)
* @copied: The amount of data copied
* @folio: The eCryptfs folio
* @fsdata: The fsdata (unused)
*/
static int ecryptfs_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct folio *folio, void *fsdata)
{
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
pgoff_t index = pos >> PAGE_SHIFT;
unsigned from = pos & (PAGE_SIZE - 1);
unsigned to = from + copied;
struct inode *ecryptfs_inode = mapping->host;
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
int rc;
ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
"(page w/ index = [0x%.16lx], to = [%d])\n", index, to);
if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
rc = ecryptfs_write_lower_page_segment(ecryptfs_inode,
folio, 0, to);
if (!rc) {
rc = copied;
fsstack_copy_inode_size(ecryptfs_inode,
ecryptfs_inode_to_lower(ecryptfs_inode));
}
goto out;
}
if (!folio_test_uptodate(folio)) {
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
if (copied < PAGE_SIZE) {
rc = 0;
goto out;
}
folio_mark_uptodate(folio);
}
/* Fills in zeros if 'to' goes beyond inode size */
rc = fill_zeros_to_end_of_page(folio, to);
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
"zeros in page with index = [0x%.16lx]\n", index);
goto out;
}
rc = ecryptfs_encrypt_page(folio);
eCryptfs: Revert to a writethrough cache model A change was made about a year ago to get eCryptfs to better utilize its page cache during writes. The idea was to do the page encryption operations during page writeback, rather than doing them when initially writing into the page cache, to reduce the number of page encryption operations during sequential writes. This meant that the encrypted page would only be written to the lower filesystem during page writeback, which was a change from how eCryptfs had previously wrote to the lower filesystem in ecryptfs_write_end(). The change caused a few eCryptfs-internal bugs that were shook out. Unfortunately, more grave side effects have been identified that will force changes outside of eCryptfs. Because the lower filesystem isn't consulted until page writeback, eCryptfs has no way to pass lower write errors (ENOSPC, mainly) back to userspace. Additionaly, it was reported that quotas could be bypassed because of the way eCryptfs may sometimes open the lower filesystem using a privileged kthread. It would be nice to resolve the latest issues, but it is best if the eCryptfs commits be reverted to the old behavior in the meantime. This reverts: 32001d6f "eCryptfs: Flush file in vma close" 5be79de2 "eCryptfs: Flush dirty pages in setattr" 57db4e8d "ecryptfs: modify write path to encrypt page in writepage" Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Tested-by: Colin King <colin.king@canonical.com> Cc: Colin King <colin.king@canonical.com> Cc: Thieu Le <thieule@google.com>
2012-07-04 07:50:57 +08:00
if (rc) {
ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
"index [0x%.16lx])\n", index);
goto out;
}
if (pos + copied > i_size_read(ecryptfs_inode)) {
i_size_write(ecryptfs_inode, pos + copied);
ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
"[0x%.16llx]\n",
(unsigned long long)i_size_read(ecryptfs_inode));
}
eCryptfs: Revert to a writethrough cache model A change was made about a year ago to get eCryptfs to better utilize its page cache during writes. The idea was to do the page encryption operations during page writeback, rather than doing them when initially writing into the page cache, to reduce the number of page encryption operations during sequential writes. This meant that the encrypted page would only be written to the lower filesystem during page writeback, which was a change from how eCryptfs had previously wrote to the lower filesystem in ecryptfs_write_end(). The change caused a few eCryptfs-internal bugs that were shook out. Unfortunately, more grave side effects have been identified that will force changes outside of eCryptfs. Because the lower filesystem isn't consulted until page writeback, eCryptfs has no way to pass lower write errors (ENOSPC, mainly) back to userspace. Additionaly, it was reported that quotas could be bypassed because of the way eCryptfs may sometimes open the lower filesystem using a privileged kthread. It would be nice to resolve the latest issues, but it is best if the eCryptfs commits be reverted to the old behavior in the meantime. This reverts: 32001d6f "eCryptfs: Flush file in vma close" 5be79de2 "eCryptfs: Flush dirty pages in setattr" 57db4e8d "ecryptfs: modify write path to encrypt page in writepage" Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Tested-by: Colin King <colin.king@canonical.com> Cc: Colin King <colin.king@canonical.com> Cc: Thieu Le <thieule@google.com>
2012-07-04 07:50:57 +08:00
rc = ecryptfs_write_inode_size_to_metadata(ecryptfs_inode);
if (rc)
printk(KERN_ERR "Error writing inode size to metadata; "
"rc = [%d]\n", rc);
else
rc = copied;
out:
folio_unlock(folio);
folio_put(folio);
return rc;
}
static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
{
struct inode *lower_inode = ecryptfs_inode_to_lower(mapping->host);
int ret = bmap(lower_inode, &block);
if (ret)
return 0;
return block;
}
#include <linux/buffer_head.h>
const struct address_space_operations ecryptfs_aops = {
/*
* XXX: This is pretty broken for multiple reasons: ecryptfs does not
* actually use buffer_heads, and ecryptfs will crash without
* CONFIG_BLOCK. But it matches the behavior before the default for
* address_space_operations without the ->dirty_folio method was
* cleaned up, so this is the best we can do without maintainer
* feedback.
*/
#ifdef CONFIG_BLOCK
.dirty_folio = block_dirty_folio,
.invalidate_folio = block_invalidate_folio,
#endif
.writepages = ecryptfs_writepages,
.read_folio = ecryptfs_read_folio,
.write_begin = ecryptfs_write_begin,
.write_end = ecryptfs_write_end,
.migrate_folio = filemap_migrate_folio,
.bmap = ecryptfs_bmap,
};