iproute2/tc/q_netem.c
Stephen Hemminger 5c4697a405 whitespace cleanups
Remove trailing whitespace.
Make sure there is space after keywords.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
2023-06-05 18:45:45 -07:00

842 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Author: Stephen Hemminger <shemminger@linux-foundation.org>
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdint.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <errno.h>
#include "utils.h"
#include "tc_util.h"
#include "tc_common.h"
static void explain(void)
{
fprintf(stderr,
"Usage: ... netem [ limit PACKETS ]\n"
" [ delay TIME [ JITTER [CORRELATION]]]\n"
" [ distribution {uniform|normal|pareto|paretonormal} ]\n"
" [ corrupt PERCENT [CORRELATION]]\n"
" [ duplicate PERCENT [CORRELATION]]\n"
" [ loss random PERCENT [CORRELATION]]\n"
" [ loss state P13 [P31 [P32 [P23 P14]]]\n"
" [ loss gemodel PERCENT [R [1-H [1-K]]]\n"
" [ ecn ]\n"
" [ reorder PERCENT [CORRELATION] [ gap DISTANCE ]]\n"
" [ rate RATE [PACKETOVERHEAD] [CELLSIZE] [CELLOVERHEAD]]\n"
" [ slot MIN_DELAY [MAX_DELAY] [packets MAX_PACKETS] [bytes MAX_BYTES]]\n"
" [ slot distribution {uniform|normal|pareto|paretonormal|custom}\n"
" DELAY JITTER [packets MAX_PACKETS] [bytes MAX_BYTES]]\n");
}
static void explain1(const char *arg)
{
fprintf(stderr, "Illegal \"%s\"\n", arg);
}
/* Upper bound on size of distribution
* really (TCA_BUF_MAX - other headers) / sizeof (__s16)
*/
#define MAX_DIST (16*1024)
/* Print values only if they are non-zero */
static void __attribute__((format(printf, 2, 0)))
__print_int_opt(const char *label_json, const char *label_fp, int val)
{
print_int(PRINT_JSON, label_json, NULL, val);
if (val != 0)
print_int(PRINT_FP, NULL, label_fp, val);
}
#define PRINT_INT_OPT(label, val) \
__print_int_opt(label, " " label " %d", (val))
/* Time print prints normally with varying units, but for JSON prints
* in seconds (1ms vs 0.001).
*/
static void __attribute__((format(printf, 2, 0)))
__print_time64(const char *label_json, const char *label_fp, __u64 val)
{
SPRINT_BUF(b1);
print_string(PRINT_FP, NULL, label_fp, sprint_time64(val, b1));
print_float(PRINT_JSON, label_json, NULL, val / 1000000000.);
}
#define __PRINT_TIME64(label_json, label_fp, val) \
__print_time64(label_json, label_fp " %s", (val))
#define PRINT_TIME64(label, val) __PRINT_TIME64(label, " " label, (val))
/* Percent print prints normally in percentage points, but for JSON prints
* an absolute value (1% vs 0.01).
*/
static void __attribute__((format(printf, 2, 0)))
__print_percent(const char *label_json, const char *label_fp, __u32 per)
{
print_float(PRINT_FP, NULL, label_fp, (100. * per) / UINT32_MAX);
print_float(PRINT_JSON, label_json, NULL, (1. * per) / UINT32_MAX);
}
#define __PRINT_PERCENT(label_json, label_fp, per) \
__print_percent(label_json, label_fp " %g%%", (per))
#define PRINT_PERCENT(label, per) __PRINT_PERCENT(label, " " label, (per))
/* scaled value used to percent of maximum. */
static void set_percent(__u32 *percent, double per)
{
*percent = rint(per * UINT32_MAX);
}
static int get_percent(__u32 *percent, const char *str)
{
double per;
if (parse_percent(&per, str))
return -1;
set_percent(percent, per);
return 0;
}
static void print_corr(bool present, __u32 value)
{
if (!is_json_context()) {
if (present)
__PRINT_PERCENT("", "", value);
} else {
PRINT_PERCENT("correlation", value);
}
}
/*
* Simplistic file parser for distrbution data.
* Format is:
* # comment line(s)
* data0 data1 ...
*/
static int get_distribution(const char *type, __s16 *data, int maxdata)
{
FILE *f;
int n;
long x;
size_t len;
char *line = NULL;
char name[128];
snprintf(name, sizeof(name), "%s/%s.dist", get_tc_lib(), type);
f = fopen(name, "r");
if (f == NULL) {
fprintf(stderr, "No distribution data for %s (%s: %s)\n",
type, name, strerror(errno));
return -1;
}
n = 0;
while (getline(&line, &len, f) != -1) {
char *p, *endp;
if (*line == '\n' || *line == '#')
continue;
for (p = line; ; p = endp) {
x = strtol(p, &endp, 0);
if (endp == p)
break;
if (n >= maxdata) {
fprintf(stderr, "%s: too much data\n",
name);
n = -1;
goto error;
}
data[n++] = x;
}
}
error:
free(line);
fclose(f);
return n;
}
#define NEXT_IS_NUMBER() (NEXT_ARG_OK() && isdigit(argv[1][0]))
#define NEXT_IS_SIGNED_NUMBER() \
(NEXT_ARG_OK() && (isdigit(argv[1][0]) || argv[1][0] == '-'))
/*
* Adjust for the fact that psched_ticks aren't always usecs
* (based on kernel PSCHED_CLOCK configuration
*/
static int get_ticks(__u32 *ticks, const char *str)
{
unsigned int t;
if (get_time(&t, str))
return -1;
if (tc_core_time2big(t)) {
fprintf(stderr, "Illegal %u time (too large)\n", t);
return -1;
}
*ticks = tc_core_time2tick(t);
return 0;
}
static int netem_parse_opt(struct qdisc_util *qu, int argc, char **argv,
struct nlmsghdr *n, const char *dev)
{
int dist_size = 0;
int slot_dist_size = 0;
struct rtattr *tail;
struct tc_netem_qopt opt = { .limit = 1000 };
struct tc_netem_corr cor = {};
struct tc_netem_reorder reorder = {};
struct tc_netem_corrupt corrupt = {};
struct tc_netem_gimodel gimodel;
struct tc_netem_gemodel gemodel;
struct tc_netem_rate rate = {};
struct tc_netem_slot slot = {};
__s16 *dist_data = NULL;
__s16 *slot_dist_data = NULL;
__u16 loss_type = NETEM_LOSS_UNSPEC;
int present[__TCA_NETEM_MAX] = {};
__u64 rate64 = 0;
for ( ; argc > 0; --argc, ++argv) {
if (matches(*argv, "limit") == 0) {
NEXT_ARG();
if (get_size(&opt.limit, *argv)) {
explain1("limit");
return -1;
}
} else if (matches(*argv, "latency") == 0 ||
matches(*argv, "delay") == 0) {
NEXT_ARG();
if (get_ticks(&opt.latency, *argv)) {
explain1("latency");
return -1;
}
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
if (get_ticks(&opt.jitter, *argv)) {
explain1("latency");
return -1;
}
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
++present[TCA_NETEM_CORR];
if (get_percent(&cor.delay_corr, *argv)) {
explain1("latency");
return -1;
}
}
}
} else if (matches(*argv, "loss") == 0 ||
matches(*argv, "drop") == 0) {
if (opt.loss > 0 || loss_type != NETEM_LOSS_UNSPEC) {
explain1("duplicate loss argument\n");
return -1;
}
NEXT_ARG();
/* Old (deprecated) random loss model syntax */
if (isdigit(argv[0][0]))
goto random_loss_model;
if (!strcmp(*argv, "random")) {
NEXT_ARG();
random_loss_model:
if (get_percent(&opt.loss, *argv)) {
explain1("loss percent");
return -1;
}
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
++present[TCA_NETEM_CORR];
if (get_percent(&cor.loss_corr, *argv)) {
explain1("loss correlation");
return -1;
}
}
} else if (!strcmp(*argv, "state")) {
double p13;
NEXT_ARG();
if (parse_percent(&p13, *argv)) {
explain1("loss p13");
return -1;
}
/* set defaults */
set_percent(&gimodel.p13, p13);
set_percent(&gimodel.p31, 1. - p13);
set_percent(&gimodel.p32, 0);
set_percent(&gimodel.p23, 1.);
set_percent(&gimodel.p14, 0);
loss_type = NETEM_LOSS_GI;
if (!NEXT_IS_NUMBER())
continue;
NEXT_ARG();
if (get_percent(&gimodel.p31, *argv)) {
explain1("loss p31");
return -1;
}
if (!NEXT_IS_NUMBER())
continue;
NEXT_ARG();
if (get_percent(&gimodel.p32, *argv)) {
explain1("loss p32");
return -1;
}
if (!NEXT_IS_NUMBER())
continue;
NEXT_ARG();
if (get_percent(&gimodel.p23, *argv)) {
explain1("loss p23");
return -1;
}
if (!NEXT_IS_NUMBER())
continue;
NEXT_ARG();
if (get_percent(&gimodel.p14, *argv)) {
explain1("loss p14");
return -1;
}
} else if (!strcmp(*argv, "gemodel")) {
double p;
NEXT_ARG();
if (parse_percent(&p, *argv)) {
explain1("loss gemodel p");
return -1;
}
set_percent(&gemodel.p, p);
/* set defaults */
set_percent(&gemodel.r, 1. - p);
set_percent(&gemodel.h, 0);
set_percent(&gemodel.k1, 0);
loss_type = NETEM_LOSS_GE;
if (!NEXT_IS_NUMBER())
continue;
NEXT_ARG();
if (get_percent(&gemodel.r, *argv)) {
explain1("loss gemodel r");
return -1;
}
if (!NEXT_IS_NUMBER())
continue;
NEXT_ARG();
if (get_percent(&gemodel.h, *argv)) {
explain1("loss gemodel h");
return -1;
}
/* netem option is "1-h" but kernel
* expects "h".
*/
gemodel.h = UINT32_MAX - gemodel.h;
if (!NEXT_IS_NUMBER())
continue;
NEXT_ARG();
if (get_percent(&gemodel.k1, *argv)) {
explain1("loss gemodel k");
return -1;
}
} else {
fprintf(stderr, "Unknown loss parameter: %s\n",
*argv);
return -1;
}
} else if (matches(*argv, "ecn") == 0) {
present[TCA_NETEM_ECN] = 1;
} else if (matches(*argv, "reorder") == 0) {
NEXT_ARG();
present[TCA_NETEM_REORDER] = 1;
if (get_percent(&reorder.probability, *argv)) {
explain1("reorder");
return -1;
}
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
++present[TCA_NETEM_CORR];
if (get_percent(&reorder.correlation, *argv)) {
explain1("reorder");
return -1;
}
}
} else if (matches(*argv, "corrupt") == 0) {
NEXT_ARG();
present[TCA_NETEM_CORRUPT] = 1;
if (get_percent(&corrupt.probability, *argv)) {
explain1("corrupt");
return -1;
}
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
++present[TCA_NETEM_CORR];
if (get_percent(&corrupt.correlation, *argv)) {
explain1("corrupt");
return -1;
}
}
} else if (matches(*argv, "gap") == 0) {
NEXT_ARG();
if (get_u32(&opt.gap, *argv, 0)) {
explain1("gap");
return -1;
}
} else if (matches(*argv, "duplicate") == 0) {
NEXT_ARG();
if (get_percent(&opt.duplicate, *argv)) {
explain1("duplicate");
return -1;
}
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
if (get_percent(&cor.dup_corr, *argv)) {
explain1("duplicate");
return -1;
}
}
} else if (matches(*argv, "distribution") == 0) {
NEXT_ARG();
dist_data = calloc(sizeof(dist_data[0]), MAX_DIST);
if (dist_data == NULL)
return -1;
dist_size = get_distribution(*argv, dist_data, MAX_DIST);
if (dist_size <= 0) {
free(dist_data);
return -1;
}
} else if (matches(*argv, "rate") == 0) {
++present[TCA_NETEM_RATE];
NEXT_ARG();
if (strchr(*argv, '%')) {
if (get_percent_rate64(&rate64, *argv, dev)) {
explain1("rate");
return -1;
}
} else if (get_rate64(&rate64, *argv)) {
explain1("rate");
return -1;
}
if (NEXT_IS_SIGNED_NUMBER()) {
NEXT_ARG();
if (get_s32(&rate.packet_overhead, *argv, 0)) {
explain1("rate");
return -1;
}
}
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
if (get_u32(&rate.cell_size, *argv, 0)) {
explain1("rate");
return -1;
}
}
if (NEXT_IS_SIGNED_NUMBER()) {
NEXT_ARG();
if (get_s32(&rate.cell_overhead, *argv, 0)) {
explain1("rate");
return -1;
}
}
} else if (matches(*argv, "slot") == 0) {
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
present[TCA_NETEM_SLOT] = 1;
if (get_time64(&slot.min_delay, *argv)) {
explain1("slot min_delay");
return -1;
}
if (NEXT_IS_NUMBER()) {
NEXT_ARG();
if (get_time64(&slot.max_delay, *argv) ||
slot.max_delay < slot.min_delay) {
explain1("slot max_delay");
return -1;
}
} else {
slot.max_delay = slot.min_delay;
}
} else {
NEXT_ARG();
if (strcmp(*argv, "distribution") == 0) {
present[TCA_NETEM_SLOT] = 1;
NEXT_ARG();
slot_dist_data = calloc(sizeof(slot_dist_data[0]), MAX_DIST);
if (!slot_dist_data)
return -1;
slot_dist_size = get_distribution(*argv, slot_dist_data, MAX_DIST);
if (slot_dist_size <= 0) {
free(slot_dist_data);
return -1;
}
NEXT_ARG();
if (get_time64(&slot.dist_delay, *argv)) {
explain1("slot delay");
return -1;
}
NEXT_ARG();
if (get_time64(&slot.dist_jitter, *argv)) {
explain1("slot jitter");
return -1;
}
if (slot.dist_jitter <= 0) {
fprintf(stderr, "Non-positive jitter\n");
return -1;
}
} else {
fprintf(stderr, "Unknown slot parameter: %s\n",
*argv);
return -1;
}
}
if (NEXT_ARG_OK() &&
matches(*(argv+1), "packets") == 0) {
NEXT_ARG();
if (!NEXT_ARG_OK() ||
get_s32(&slot.max_packets, *(argv+1), 0)) {
explain1("slot packets");
return -1;
}
NEXT_ARG();
}
if (NEXT_ARG_OK() &&
matches(*(argv+1), "bytes") == 0) {
unsigned int max_bytes;
NEXT_ARG();
if (!NEXT_ARG_OK() ||
get_size(&max_bytes, *(argv+1))) {
explain1("slot bytes");
return -1;
}
slot.max_bytes = (int) max_bytes;
NEXT_ARG();
}
} else {
if (strcmp(*argv, "help") != 0)
fprintf(stderr, "What is \"%s\"?\n", *argv);
explain();
return -1;
}
}
tail = NLMSG_TAIL(n);
if (reorder.probability) {
if (opt.latency == 0) {
fprintf(stderr, "reordering not possible without specifying some delay\n");
explain();
return -1;
}
if (opt.gap == 0)
opt.gap = 1;
} else if (opt.gap > 0) {
fprintf(stderr, "gap specified without reorder probability\n");
explain();
return -1;
}
if (present[TCA_NETEM_ECN]) {
if (opt.loss <= 0 && loss_type == NETEM_LOSS_UNSPEC) {
fprintf(stderr, "ecn requested without loss model\n");
explain();
return -1;
}
}
if (dist_data && (opt.latency == 0 || opt.jitter == 0)) {
fprintf(stderr, "distribution specified but no latency and jitter values\n");
explain();
return -1;
}
if (addattr_l(n, 1024, TCA_OPTIONS, &opt, sizeof(opt)) < 0)
return -1;
if (present[TCA_NETEM_CORR] &&
addattr_l(n, 1024, TCA_NETEM_CORR, &cor, sizeof(cor)) < 0)
return -1;
if (present[TCA_NETEM_REORDER] &&
addattr_l(n, 1024, TCA_NETEM_REORDER, &reorder, sizeof(reorder)) < 0)
return -1;
if (present[TCA_NETEM_ECN] &&
addattr_l(n, 1024, TCA_NETEM_ECN, &present[TCA_NETEM_ECN],
sizeof(present[TCA_NETEM_ECN])) < 0)
return -1;
if (present[TCA_NETEM_CORRUPT] &&
addattr_l(n, 1024, TCA_NETEM_CORRUPT, &corrupt, sizeof(corrupt)) < 0)
return -1;
if (present[TCA_NETEM_SLOT] &&
addattr_l(n, 1024, TCA_NETEM_SLOT, &slot, sizeof(slot)) < 0)
return -1;
if (loss_type != NETEM_LOSS_UNSPEC) {
struct rtattr *start;
start = addattr_nest(n, 1024, TCA_NETEM_LOSS | NLA_F_NESTED);
if (loss_type == NETEM_LOSS_GI) {
if (addattr_l(n, 1024, NETEM_LOSS_GI,
&gimodel, sizeof(gimodel)) < 0)
return -1;
} else if (loss_type == NETEM_LOSS_GE) {
if (addattr_l(n, 1024, NETEM_LOSS_GE,
&gemodel, sizeof(gemodel)) < 0)
return -1;
} else {
fprintf(stderr, "loss in the weeds!\n");
return -1;
}
addattr_nest_end(n, start);
}
if (present[TCA_NETEM_RATE]) {
if (rate64 >= (1ULL << 32)) {
if (addattr_l(n, 1024,
TCA_NETEM_RATE64, &rate64, sizeof(rate64)) < 0)
return -1;
rate.rate = ~0U;
} else {
rate.rate = rate64;
}
if (addattr_l(n, 1024, TCA_NETEM_RATE, &rate, sizeof(rate)) < 0)
return -1;
}
if (dist_data) {
if (addattr_l(n, MAX_DIST * sizeof(dist_data[0]),
TCA_NETEM_DELAY_DIST,
dist_data, dist_size * sizeof(dist_data[0])) < 0)
return -1;
free(dist_data);
}
if (slot_dist_data) {
if (addattr_l(n, MAX_DIST * sizeof(slot_dist_data[0]),
TCA_NETEM_SLOT_DIST,
slot_dist_data, slot_dist_size * sizeof(slot_dist_data[0])) < 0)
return -1;
free(slot_dist_data);
}
tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail;
return 0;
}
static int netem_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
const struct tc_netem_corr *cor = NULL;
const struct tc_netem_reorder *reorder = NULL;
const struct tc_netem_corrupt *corrupt = NULL;
const struct tc_netem_gimodel *gimodel = NULL;
const struct tc_netem_gemodel *gemodel = NULL;
int *ecn = NULL;
struct tc_netem_qopt qopt;
const struct tc_netem_rate *rate = NULL;
const struct tc_netem_slot *slot = NULL;
int len;
__u64 rate64 = 0;
SPRINT_BUF(b1);
if (opt == NULL)
return 0;
len = RTA_PAYLOAD(opt) - sizeof(qopt);
if (len < 0) {
fprintf(stderr, "options size error\n");
return -1;
}
memcpy(&qopt, RTA_DATA(opt), sizeof(qopt));
if (len > 0) {
struct rtattr *tb[TCA_NETEM_MAX+1];
parse_rtattr(tb, TCA_NETEM_MAX, RTA_DATA(opt) + sizeof(qopt),
len);
if (tb[TCA_NETEM_CORR]) {
if (RTA_PAYLOAD(tb[TCA_NETEM_CORR]) < sizeof(*cor))
return -1;
cor = RTA_DATA(tb[TCA_NETEM_CORR]);
}
if (tb[TCA_NETEM_REORDER]) {
if (RTA_PAYLOAD(tb[TCA_NETEM_REORDER]) < sizeof(*reorder))
return -1;
reorder = RTA_DATA(tb[TCA_NETEM_REORDER]);
}
if (tb[TCA_NETEM_CORRUPT]) {
if (RTA_PAYLOAD(tb[TCA_NETEM_CORRUPT]) < sizeof(*corrupt))
return -1;
corrupt = RTA_DATA(tb[TCA_NETEM_CORRUPT]);
}
if (tb[TCA_NETEM_LOSS]) {
struct rtattr *lb[NETEM_LOSS_MAX + 1];
parse_rtattr_nested(lb, NETEM_LOSS_MAX, tb[TCA_NETEM_LOSS]);
if (lb[NETEM_LOSS_GI])
gimodel = RTA_DATA(lb[NETEM_LOSS_GI]);
if (lb[NETEM_LOSS_GE])
gemodel = RTA_DATA(lb[NETEM_LOSS_GE]);
}
if (tb[TCA_NETEM_RATE]) {
if (RTA_PAYLOAD(tb[TCA_NETEM_RATE]) < sizeof(*rate))
return -1;
rate = RTA_DATA(tb[TCA_NETEM_RATE]);
}
if (tb[TCA_NETEM_ECN]) {
if (RTA_PAYLOAD(tb[TCA_NETEM_ECN]) < sizeof(*ecn))
return -1;
ecn = RTA_DATA(tb[TCA_NETEM_ECN]);
}
if (tb[TCA_NETEM_RATE64]) {
if (RTA_PAYLOAD(tb[TCA_NETEM_RATE64]) < sizeof(rate64))
return -1;
rate64 = rta_getattr_u64(tb[TCA_NETEM_RATE64]);
}
if (tb[TCA_NETEM_SLOT]) {
if (RTA_PAYLOAD(tb[TCA_NETEM_SLOT]) < sizeof(*slot))
return -1;
slot = RTA_DATA(tb[TCA_NETEM_SLOT]);
}
}
print_uint(PRINT_ANY, "limit", "limit %d", qopt.limit);
if (qopt.latency) {
open_json_object("delay");
if (!is_json_context()) {
print_string(PRINT_FP, NULL, " delay %s",
sprint_ticks(qopt.latency, b1));
if (qopt.jitter)
print_string(PRINT_FP, NULL, " %s",
sprint_ticks(qopt.jitter, b1));
} else {
print_float(PRINT_JSON, "delay", NULL,
tc_core_tick2time(qopt.latency) /
1000000.);
print_float(PRINT_JSON, "jitter", NULL,
tc_core_tick2time(qopt.jitter) /
1000000.);
}
print_corr(qopt.jitter && cor && cor->delay_corr,
cor ? cor->delay_corr : 0);
close_json_object();
}
if (qopt.loss) {
open_json_object("loss-random");
PRINT_PERCENT("loss", qopt.loss);
print_corr(cor && cor->loss_corr, cor ? cor->loss_corr : 0);
close_json_object();
}
if (gimodel) {
open_json_object("loss-state");
__PRINT_PERCENT("p13", " loss state p13", gimodel->p13);
PRINT_PERCENT("p31", gimodel->p31);
PRINT_PERCENT("p32", gimodel->p32);
PRINT_PERCENT("p23", gimodel->p23);
PRINT_PERCENT("p14", gimodel->p14);
close_json_object();
}
if (gemodel) {
open_json_object("loss-gemodel");
__PRINT_PERCENT("p", " loss gemodel p", gemodel->p);
PRINT_PERCENT("r", gemodel->r);
PRINT_PERCENT("1-h", UINT32_MAX - gemodel->h);
PRINT_PERCENT("1-k", gemodel->k1);
close_json_object();
}
if (qopt.duplicate) {
open_json_object("duplicate");
PRINT_PERCENT("duplicate", qopt.duplicate);
print_corr(cor && cor->dup_corr, cor ? cor->dup_corr : 0);
close_json_object();
}
if (reorder && reorder->probability) {
open_json_object("reorder");
PRINT_PERCENT("reorder", reorder->probability);
print_corr(reorder->correlation, reorder->correlation);
close_json_object();
}
if (corrupt && corrupt->probability) {
open_json_object("corrupt");
PRINT_PERCENT("corrupt", corrupt->probability);
print_corr(corrupt->correlation, corrupt->correlation);
close_json_object();
}
if (rate && rate->rate) {
open_json_object("rate");
rate64 = rate64 ? : rate->rate;
tc_print_rate(PRINT_ANY, "rate", " rate %s", rate64);
PRINT_INT_OPT("packetoverhead", rate->packet_overhead);
print_uint(PRINT_JSON, "cellsize", NULL, rate->cell_size);
if (rate->cell_size)
print_uint(PRINT_FP, NULL, " cellsize %u", rate->cell_size);
PRINT_INT_OPT("celloverhead", rate->cell_overhead);
close_json_object();
}
if (slot) {
open_json_object("slot");
if (slot->dist_jitter > 0) {
__PRINT_TIME64("distribution", " slot distribution",
slot->dist_delay);
__PRINT_TIME64("jitter", "", slot->dist_jitter);
} else {
__PRINT_TIME64("min-delay", " slot", slot->min_delay);
__PRINT_TIME64("max-delay", "", slot->max_delay);
}
PRINT_INT_OPT("packets", slot->max_packets);
PRINT_INT_OPT("bytes", slot->max_bytes);
close_json_object();
}
print_bool(PRINT_JSON, "ecn", NULL, ecn);
if (ecn)
print_bool(PRINT_FP, NULL, " ecn ", ecn);
print_luint(PRINT_JSON, "gap", NULL, qopt.gap);
if (qopt.gap)
print_luint(PRINT_FP, NULL, " gap %lu", qopt.gap);
return 0;
}
struct qdisc_util netem_qdisc_util = {
.id = "netem",
.parse_qopt = netem_parse_opt,
.print_qopt = netem_print_opt,
};