iproute2/tc/tc_util.c
Stephen Hemminger b49759c0e7 tc: don't double print rate
Conversion to print stats in JSON forgot to remove existing
fprintf.

Fixes: 4fcec7f366 ("tc: jsonify stats2")
Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
2018-07-09 09:53:45 -07:00

913 lines
20 KiB
C

/*
* tc_util.c Misc TC utility functions.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include "utils.h"
#include "names.h"
#include "tc_util.h"
#include "tc_common.h"
#ifndef LIBDIR
#define LIBDIR "/usr/lib"
#endif
static struct db_names *cls_names;
#define NAMES_DB "/etc/iproute2/tc_cls"
int cls_names_init(char *path)
{
int ret;
cls_names = db_names_alloc();
if (!cls_names)
return -1;
ret = db_names_load(cls_names, path ?: NAMES_DB);
if (ret == -ENOENT && path) {
fprintf(stderr, "Can't open class names file: %s\n", path);
return -1;
}
if (ret) {
db_names_free(cls_names);
cls_names = NULL;
}
return 0;
}
void cls_names_uninit(void)
{
db_names_free(cls_names);
}
const char *get_tc_lib(void)
{
const char *lib_dir;
lib_dir = getenv("TC_LIB_DIR");
if (!lib_dir)
lib_dir = LIBDIR "/tc/";
return lib_dir;
}
int get_qdisc_handle(__u32 *h, const char *str)
{
__u32 maj;
char *p;
maj = TC_H_UNSPEC;
if (strcmp(str, "none") == 0)
goto ok;
maj = strtoul(str, &p, 16);
if (p == str || maj >= (1 << 16))
return -1;
maj <<= 16;
if (*p != ':' && *p != 0)
return -1;
ok:
*h = maj;
return 0;
}
int get_tc_classid(__u32 *h, const char *str)
{
__u32 maj, min;
char *p;
maj = TC_H_ROOT;
if (strcmp(str, "root") == 0)
goto ok;
maj = TC_H_UNSPEC;
if (strcmp(str, "none") == 0)
goto ok;
maj = strtoul(str, &p, 16);
if (p == str) {
maj = 0;
if (*p != ':')
return -1;
}
if (*p == ':') {
if (maj >= (1<<16))
return -1;
maj <<= 16;
str = p+1;
min = strtoul(str, &p, 16);
if (*p != 0)
return -1;
if (min >= (1<<16))
return -1;
maj |= min;
} else if (*p != 0)
return -1;
ok:
*h = maj;
return 0;
}
int print_tc_classid(char *buf, int blen, __u32 h)
{
SPRINT_BUF(handle) = {};
int hlen = SPRINT_BSIZE - 1;
if (h == TC_H_ROOT)
sprintf(handle, "root");
else if (h == TC_H_UNSPEC)
snprintf(handle, hlen, "none");
else if (TC_H_MAJ(h) == 0)
snprintf(handle, hlen, ":%x", TC_H_MIN(h));
else if (TC_H_MIN(h) == 0)
snprintf(handle, hlen, "%x:", TC_H_MAJ(h) >> 16);
else
snprintf(handle, hlen, "%x:%x", TC_H_MAJ(h) >> 16, TC_H_MIN(h));
if (use_names) {
char clname[IDNAME_MAX] = {};
if (id_to_name(cls_names, h, clname))
snprintf(buf, blen, "%s#%s", clname, handle);
else
snprintf(buf, blen, "%s", handle);
} else {
snprintf(buf, blen, "%s", handle);
}
return 0;
}
char *sprint_tc_classid(__u32 h, char *buf)
{
if (print_tc_classid(buf, SPRINT_BSIZE-1, h))
strcpy(buf, "???");
return buf;
}
/* See http://physics.nist.gov/cuu/Units/binary.html */
static const struct rate_suffix {
const char *name;
double scale;
} suffixes[] = {
{ "bit", 1. },
{ "Kibit", 1024. },
{ "kbit", 1000. },
{ "mibit", 1024.*1024. },
{ "mbit", 1000000. },
{ "gibit", 1024.*1024.*1024. },
{ "gbit", 1000000000. },
{ "tibit", 1024.*1024.*1024.*1024. },
{ "tbit", 1000000000000. },
{ "Bps", 8. },
{ "KiBps", 8.*1024. },
{ "KBps", 8000. },
{ "MiBps", 8.*1024*1024. },
{ "MBps", 8000000. },
{ "GiBps", 8.*1024.*1024.*1024. },
{ "GBps", 8000000000. },
{ "TiBps", 8.*1024.*1024.*1024.*1024. },
{ "TBps", 8000000000000. },
{ NULL }
};
int parse_percent_rate(char *rate, const char *str, const char *dev)
{
long dev_mbit;
int ret;
double perc, rate_mbit;
char *str_perc;
if (!dev[0]) {
fprintf(stderr, "No device specified; specify device to rate limit by percentage\n");
return -1;
}
if (read_prop(dev, "speed", &dev_mbit))
return -1;
ret = sscanf(str, "%m[0-9.%]", &str_perc);
if (ret != 1)
goto malf;
if (parse_percent(&perc, str_perc))
goto malf;
free(str_perc);
if (perc > 1.0 || perc < 0.0) {
fprintf(stderr, "Invalid rate specified; should be between [0,100]%% but is %s\n", str);
return -1;
}
rate_mbit = perc * dev_mbit;
ret = snprintf(rate, 20, "%lf", rate_mbit);
if (ret <= 0 || ret >= 20) {
fprintf(stderr, "Unable to parse calculated rate\n");
return -1;
}
return 0;
malf:
fprintf(stderr, "Specified rate value could not be read or is malformed\n");
return -1;
}
int get_percent_rate(unsigned int *rate, const char *str, const char *dev)
{
char r_str[20];
if (parse_percent_rate(r_str, str, dev))
return -1;
return get_rate(rate, r_str);
}
int get_percent_rate64(__u64 *rate, const char *str, const char *dev)
{
char r_str[20];
if (parse_percent_rate(r_str, str, dev))
return -1;
return get_rate64(rate, r_str);
}
int get_rate(unsigned int *rate, const char *str)
{
char *p;
double bps = strtod(str, &p);
const struct rate_suffix *s;
if (p == str)
return -1;
for (s = suffixes; s->name; ++s) {
if (strcasecmp(s->name, p) == 0) {
bps *= s->scale;
p += strlen(p);
break;
}
}
if (*p)
return -1; /* unknown suffix */
bps /= 8; /* -> bytes per second */
*rate = bps;
/* detect if an overflow happened */
if (*rate != floor(bps))
return -1;
return 0;
}
int get_rate64(__u64 *rate, const char *str)
{
char *p;
double bps = strtod(str, &p);
const struct rate_suffix *s;
if (p == str)
return -1;
for (s = suffixes; s->name; ++s) {
if (strcasecmp(s->name, p) == 0) {
bps *= s->scale;
p += strlen(p);
break;
}
}
if (*p)
return -1; /* unknown suffix */
bps /= 8; /* -> bytes per second */
*rate = bps;
return 0;
}
void print_rate(char *buf, int len, __u64 rate)
{
extern int use_iec;
unsigned long kilo = use_iec ? 1024 : 1000;
const char *str = use_iec ? "i" : "";
static char *units[5] = {"", "K", "M", "G", "T"};
int i;
rate <<= 3; /* bytes/sec -> bits/sec */
for (i = 0; i < ARRAY_SIZE(units) - 1; i++) {
if (rate < kilo)
break;
if (((rate % kilo) != 0) && rate < 1000*kilo)
break;
rate /= kilo;
}
snprintf(buf, len, "%.0f%s%sbit", (double)rate, units[i], str);
}
char *sprint_rate(__u64 rate, char *buf)
{
print_rate(buf, SPRINT_BSIZE-1, rate);
return buf;
}
int get_time(unsigned int *time, const char *str)
{
double t;
char *p;
t = strtod(str, &p);
if (p == str)
return -1;
if (*p) {
if (strcasecmp(p, "s") == 0 || strcasecmp(p, "sec") == 0 ||
strcasecmp(p, "secs") == 0)
t *= TIME_UNITS_PER_SEC;
else if (strcasecmp(p, "ms") == 0 || strcasecmp(p, "msec") == 0 ||
strcasecmp(p, "msecs") == 0)
t *= TIME_UNITS_PER_SEC/1000;
else if (strcasecmp(p, "us") == 0 || strcasecmp(p, "usec") == 0 ||
strcasecmp(p, "usecs") == 0)
t *= TIME_UNITS_PER_SEC/1000000;
else
return -1;
}
*time = t;
return 0;
}
void print_time(char *buf, int len, __u32 time)
{
double tmp = time;
if (tmp >= TIME_UNITS_PER_SEC)
snprintf(buf, len, "%.1fs", tmp/TIME_UNITS_PER_SEC);
else if (tmp >= TIME_UNITS_PER_SEC/1000)
snprintf(buf, len, "%.1fms", tmp/(TIME_UNITS_PER_SEC/1000));
else
snprintf(buf, len, "%uus", time);
}
char *sprint_time(__u32 time, char *buf)
{
print_time(buf, SPRINT_BSIZE-1, time);
return buf;
}
char *sprint_ticks(__u32 ticks, char *buf)
{
return sprint_time(tc_core_tick2time(ticks), buf);
}
int get_size(unsigned int *size, const char *str)
{
double sz;
char *p;
sz = strtod(str, &p);
if (p == str)
return -1;
if (*p) {
if (strcasecmp(p, "kb") == 0 || strcasecmp(p, "k") == 0)
sz *= 1024;
else if (strcasecmp(p, "gb") == 0 || strcasecmp(p, "g") == 0)
sz *= 1024*1024*1024;
else if (strcasecmp(p, "gbit") == 0)
sz *= 1024*1024*1024/8;
else if (strcasecmp(p, "mb") == 0 || strcasecmp(p, "m") == 0)
sz *= 1024*1024;
else if (strcasecmp(p, "mbit") == 0)
sz *= 1024*1024/8;
else if (strcasecmp(p, "kbit") == 0)
sz *= 1024/8;
else if (strcasecmp(p, "b") != 0)
return -1;
}
*size = sz;
return 0;
}
int get_size_and_cell(unsigned int *size, int *cell_log, char *str)
{
char *slash = strchr(str, '/');
if (slash)
*slash = 0;
if (get_size(size, str))
return -1;
if (slash) {
int cell;
int i;
if (get_integer(&cell, slash+1, 0))
return -1;
*slash = '/';
for (i = 0; i < 32; i++) {
if ((1<<i) == cell) {
*cell_log = i;
return 0;
}
}
return -1;
}
return 0;
}
void print_devname(enum output_type type, int ifindex)
{
const char *ifname = ll_index_to_name(ifindex);
if (!is_json_context())
printf("dev ");
print_color_string(type, COLOR_IFNAME,
"dev", "%s ", ifname);
}
void print_size(char *buf, int len, __u32 sz)
{
double tmp = sz;
if (sz >= 1024*1024 && fabs(1024*1024*rint(tmp/(1024*1024)) - sz) < 1024)
snprintf(buf, len, "%gMb", rint(tmp/(1024*1024)));
else if (sz >= 1024 && fabs(1024*rint(tmp/1024) - sz) < 16)
snprintf(buf, len, "%gKb", rint(tmp/1024));
else
snprintf(buf, len, "%ub", sz);
}
char *sprint_size(__u32 size, char *buf)
{
print_size(buf, SPRINT_BSIZE-1, size);
return buf;
}
void print_qdisc_handle(char *buf, int len, __u32 h)
{
snprintf(buf, len, "%x:", TC_H_MAJ(h)>>16);
}
char *sprint_qdisc_handle(__u32 h, char *buf)
{
print_qdisc_handle(buf, SPRINT_BSIZE-1, h);
return buf;
}
static const char *action_n2a(int action)
{
static char buf[64];
if (TC_ACT_EXT_CMP(action, TC_ACT_GOTO_CHAIN))
return "goto";
if (TC_ACT_EXT_CMP(action, TC_ACT_JUMP))
return "jump";
switch (action) {
case TC_ACT_UNSPEC:
return "continue";
case TC_ACT_OK:
return "pass";
case TC_ACT_SHOT:
return "drop";
case TC_ACT_RECLASSIFY:
return "reclassify";
case TC_ACT_PIPE:
return "pipe";
case TC_ACT_STOLEN:
return "stolen";
case TC_ACT_TRAP:
return "trap";
default:
snprintf(buf, 64, "%d", action);
return buf;
}
}
/* Convert action branch name into numeric format.
*
* Parameters:
* @arg - string to parse
* @result - pointer to output variable
* @allow_num - whether @arg may be in numeric format already
*
* In error case, returns -1 and does not touch @result. Otherwise returns 0.
*/
int action_a2n(char *arg, int *result, bool allow_num)
{
int n;
char dummy;
struct {
const char *a;
int n;
} a2n[] = {
{"continue", TC_ACT_UNSPEC},
{"drop", TC_ACT_SHOT},
{"shot", TC_ACT_SHOT},
{"pass", TC_ACT_OK},
{"ok", TC_ACT_OK},
{"reclassify", TC_ACT_RECLASSIFY},
{"pipe", TC_ACT_PIPE},
{"goto", TC_ACT_GOTO_CHAIN},
{"jump", TC_ACT_JUMP},
{"trap", TC_ACT_TRAP},
{ NULL },
}, *iter;
for (iter = a2n; iter->a; iter++) {
if (matches(arg, iter->a) != 0)
continue;
n = iter->n;
goto out_ok;
}
if (!allow_num || sscanf(arg, "%d%c", &n, &dummy) != 1)
return -1;
out_ok:
if (result)
*result = n;
return 0;
}
static int __parse_action_control(int *argc_p, char ***argv_p, int *result_p,
bool allow_num, bool ignore_a2n_miss)
{
int argc = *argc_p;
char **argv = *argv_p;
int result;
if (!argc)
return -1;
if (action_a2n(*argv, &result, allow_num) == -1) {
if (!ignore_a2n_miss)
fprintf(stderr, "Bad action type %s\n", *argv);
return -1;
}
if (result == TC_ACT_GOTO_CHAIN) {
__u32 chain_index;
NEXT_ARG();
if (matches(*argv, "chain") != 0) {
fprintf(stderr, "\"chain index\" expected\n");
return -1;
}
NEXT_ARG();
if (get_u32(&chain_index, *argv, 10) ||
chain_index > TC_ACT_EXT_VAL_MASK) {
fprintf(stderr, "Illegal \"chain index\"\n");
return -1;
}
result |= chain_index;
}
if (result == TC_ACT_JUMP) {
__u32 jump_cnt = 0;
NEXT_ARG();
if (get_u32(&jump_cnt, *argv, 10) ||
jump_cnt > TC_ACT_EXT_VAL_MASK) {
fprintf(stderr, "Invalid \"jump count\" (%s)\n", *argv);
return -1;
}
result |= jump_cnt;
}
NEXT_ARG_FWD();
*argc_p = argc;
*argv_p = argv;
*result_p = result;
return 0;
}
/* Parse action control including possible options.
*
* Parameters:
* @argc_p - pointer to argc to parse
* @argv_p - pointer to argv to parse
* @result_p - pointer to output variable
* @allow_num - whether action may be in numeric format already
*
* In error case, returns -1 and does not touch @result_1p. Otherwise returns 0.
*/
int parse_action_control(int *argc_p, char ***argv_p,
int *result_p, bool allow_num)
{
return __parse_action_control(argc_p, argv_p, result_p,
allow_num, false);
}
/* Parse action control including possible options.
*
* Parameters:
* @argc_p - pointer to argc to parse
* @argv_p - pointer to argv to parse
* @result_p - pointer to output variable
* @allow_num - whether action may be in numeric format already
* @default_result - set as a result in case of parsing error
*
* In case there is an error during parsing, the default result is used.
*/
void parse_action_control_dflt(int *argc_p, char ***argv_p,
int *result_p, bool allow_num,
int default_result)
{
if (__parse_action_control(argc_p, argv_p, result_p, allow_num, true))
*result_p = default_result;
}
static int parse_action_control_slash_spaces(int *argc_p, char ***argv_p,
int *result1_p, int *result2_p,
bool allow_num)
{
int argc = *argc_p;
char **argv = *argv_p;
int result1 = -1, result2;
int *result_p = &result1;
int ok = 0;
int ret;
while (argc > 0) {
switch (ok) {
case 1:
if (strcmp(*argv, "/") != 0)
goto out;
result_p = &result2;
NEXT_ARG();
/* fall-through */
case 0: /* fall-through */
case 2:
ret = parse_action_control(&argc, &argv,
result_p, allow_num);
if (ret)
return ret;
ok++;
break;
default:
goto out;
}
}
out:
*result1_p = result1;
if (ok == 2)
*result2_p = result2;
*argc_p = argc;
*argv_p = argv;
return 0;
}
/* Parse action control with slash including possible options.
*
* Parameters:
* @argc_p - pointer to argc to parse
* @argv_p - pointer to argv to parse
* @result1_p - pointer to the first (before slash) output variable
* @result2_p - pointer to the second (after slash) output variable
* @allow_num - whether action may be in numeric format already
*
* In error case, returns -1 and does not touch @result*. Otherwise returns 0.
*/
int parse_action_control_slash(int *argc_p, char ***argv_p,
int *result1_p, int *result2_p, bool allow_num)
{
int result1, result2, argc = *argc_p;
char **argv = *argv_p;
char *p = strchr(*argv, '/');
if (!p)
return parse_action_control_slash_spaces(argc_p, argv_p,
result1_p, result2_p,
allow_num);
*p = 0;
if (action_a2n(*argv, &result1, allow_num)) {
*p = '/';
return -1;
}
*p = '/';
if (action_a2n(p + 1, &result2, allow_num))
return -1;
*result1_p = result1;
*result2_p = result2;
NEXT_ARG_FWD();
*argc_p = argc;
*argv_p = argv;
return 0;
}
void print_action_control(FILE *f, const char *prefix,
int action, const char *suffix)
{
print_string(PRINT_FP, NULL, "%s", prefix);
open_json_object("control_action");
print_string(PRINT_ANY, "type", "%s", action_n2a(action));
if (TC_ACT_EXT_CMP(action, TC_ACT_GOTO_CHAIN))
print_uint(PRINT_ANY, "chain", " chain %u",
action & TC_ACT_EXT_VAL_MASK);
if (TC_ACT_EXT_CMP(action, TC_ACT_JUMP))
print_uint(PRINT_ANY, "jump", " %u",
action & TC_ACT_EXT_VAL_MASK);
close_json_object();
print_string(PRINT_FP, NULL, "%s", suffix);
}
int get_linklayer(unsigned int *val, const char *arg)
{
int res;
if (matches(arg, "ethernet") == 0)
res = LINKLAYER_ETHERNET;
else if (matches(arg, "atm") == 0)
res = LINKLAYER_ATM;
else if (matches(arg, "adsl") == 0)
res = LINKLAYER_ATM;
else
return -1; /* Indicate error */
*val = res;
return 0;
}
void print_linklayer(char *buf, int len, unsigned int linklayer)
{
switch (linklayer) {
case LINKLAYER_UNSPEC:
snprintf(buf, len, "%s", "unspec");
return;
case LINKLAYER_ETHERNET:
snprintf(buf, len, "%s", "ethernet");
return;
case LINKLAYER_ATM:
snprintf(buf, len, "%s", "atm");
return;
default:
snprintf(buf, len, "%s", "unknown");
return;
}
}
char *sprint_linklayer(unsigned int linklayer, char *buf)
{
print_linklayer(buf, SPRINT_BSIZE-1, linklayer);
return buf;
}
void print_tm(FILE *f, const struct tcf_t *tm)
{
int hz = get_user_hz();
if (tm->install != 0) {
print_uint(PRINT_JSON, "installed", NULL, tm->install);
print_uint(PRINT_FP, NULL, " installed %u sec",
(unsigned int)(tm->install/hz));
}
if (tm->lastuse != 0) {
print_uint(PRINT_JSON, "last_used", NULL, tm->lastuse);
print_uint(PRINT_FP, NULL, " used %u sec",
(unsigned int)(tm->lastuse/hz));
}
if (tm->expires != 0) {
print_uint(PRINT_JSON, "expires", NULL, tm->expires);
print_uint(PRINT_FP, NULL, " expires %u sec",
(unsigned int)(tm->expires/hz));
}
}
void print_tcstats2_attr(FILE *fp, struct rtattr *rta, char *prefix, struct rtattr **xstats)
{
SPRINT_BUF(b1);
struct rtattr *tbs[TCA_STATS_MAX + 1];
parse_rtattr_nested(tbs, TCA_STATS_MAX, rta);
if (tbs[TCA_STATS_BASIC]) {
struct gnet_stats_basic bs = {0};
memcpy(&bs, RTA_DATA(tbs[TCA_STATS_BASIC]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_BASIC]), sizeof(bs)));
print_string(PRINT_FP, NULL, "%s", prefix);
print_lluint(PRINT_ANY, "bytes", "Sent %llu bytes", bs.bytes);
print_uint(PRINT_ANY, "packets", " %u pkt", bs.packets);
}
if (tbs[TCA_STATS_QUEUE]) {
struct gnet_stats_queue q = {0};
memcpy(&q, RTA_DATA(tbs[TCA_STATS_QUEUE]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_QUEUE]), sizeof(q)));
print_uint(PRINT_ANY, "drops", " (dropped %u", q.drops);
print_uint(PRINT_ANY, "overlimits", ", overlimits %u",
q.overlimits);
print_uint(PRINT_ANY, "requeues", " requeues %u) ", q.requeues);
}
if (tbs[TCA_STATS_RATE_EST64]) {
struct gnet_stats_rate_est64 re = {0};
memcpy(&re, RTA_DATA(tbs[TCA_STATS_RATE_EST64]),
MIN(RTA_PAYLOAD(tbs[TCA_STATS_RATE_EST64]),
sizeof(re)));
print_string(PRINT_FP, NULL, "\n%s", prefix);
print_lluint(PRINT_JSON, "rate", NULL, re.bps);
print_string(PRINT_FP, NULL, "rate %s",
sprint_rate(re.bps, b1));
print_lluint(PRINT_ANY, "pps", " %llupps", re.pps);
} else if (tbs[TCA_STATS_RATE_EST]) {
struct gnet_stats_rate_est re = {0};
memcpy(&re, RTA_DATA(tbs[TCA_STATS_RATE_EST]),
MIN(RTA_PAYLOAD(tbs[TCA_STATS_RATE_EST]), sizeof(re)));
print_string(PRINT_FP, NULL, "\n%s", prefix);
print_uint(PRINT_JSON, "rate", NULL, re.bps);
print_string(PRINT_FP, NULL, "rate %s",
sprint_rate(re.bps, b1));
print_uint(PRINT_ANY, "pps", " %upps", re.pps);
}
if (tbs[TCA_STATS_QUEUE]) {
struct gnet_stats_queue q = {0};
memcpy(&q, RTA_DATA(tbs[TCA_STATS_QUEUE]), MIN(RTA_PAYLOAD(tbs[TCA_STATS_QUEUE]), sizeof(q)));
if (!tbs[TCA_STATS_RATE_EST])
print_string(PRINT_FP, NULL, "\n%s", prefix);
print_uint(PRINT_JSON, "backlog", NULL, q.backlog);
print_string(PRINT_FP, NULL, "backlog %s",
sprint_size(q.backlog, b1));
print_uint(PRINT_ANY, "qlen", " %up", q.qlen);
print_uint(PRINT_FP, NULL, " requeues %u", q.requeues);
}
if (xstats)
*xstats = tbs[TCA_STATS_APP] ? : NULL;
}
void print_tcstats_attr(FILE *fp, struct rtattr *tb[], char *prefix, struct rtattr **xstats)
{
SPRINT_BUF(b1);
if (tb[TCA_STATS2]) {
print_tcstats2_attr(fp, tb[TCA_STATS2], prefix, xstats);
if (xstats && NULL == *xstats)
goto compat_xstats;
return;
}
/* backward compatibility */
if (tb[TCA_STATS]) {
struct tc_stats st = {};
/* handle case where kernel returns more/less than we know about */
memcpy(&st, RTA_DATA(tb[TCA_STATS]), MIN(RTA_PAYLOAD(tb[TCA_STATS]), sizeof(st)));
fprintf(fp, "%sSent %llu bytes %u pkts (dropped %u, overlimits %u) ",
prefix, (unsigned long long)st.bytes, st.packets, st.drops,
st.overlimits);
if (st.bps || st.pps || st.qlen || st.backlog) {
fprintf(fp, "\n%s", prefix);
if (st.bps || st.pps) {
fprintf(fp, "rate ");
if (st.bps)
fprintf(fp, "%s ", sprint_rate(st.bps, b1));
if (st.pps)
fprintf(fp, "%upps ", st.pps);
}
if (st.qlen || st.backlog) {
fprintf(fp, "backlog ");
if (st.backlog)
fprintf(fp, "%s ", sprint_size(st.backlog, b1));
if (st.qlen)
fprintf(fp, "%up ", st.qlen);
}
}
}
compat_xstats:
if (tb[TCA_XSTATS] && xstats)
*xstats = tb[TCA_XSTATS];
}