iproute2/tc/q_taprio.c
Stephen Hemminger 8576afbb89 tc: make qdisc_util arg const
The callbacks in qdisc_util should not be modifying underlying
qdisc operations structure.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
2024-03-12 15:11:43 -07:00

655 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* q_taprio.c Time Aware Priority Scheduler
*
* Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
* Jesus Sanchez-Palencia <jesus.sanchez-palencia@intel.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <syslog.h>
#include <fcntl.h>
#include <inttypes.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include "utils.h"
#include "tc_util.h"
#include "list.h"
struct sched_entry {
struct list_head list;
uint32_t index;
uint32_t interval;
uint32_t gatemask;
uint8_t cmd;
};
static void explain(void)
{
fprintf(stderr,
"Usage: ... taprio clockid CLOCKID\n"
" [num_tc NUMBER] [map P0 P1 ...]\n"
" [queues COUNT@OFFSET COUNT@OFFSET COUNT@OFFSET ...]\n"
" [ [sched-entry index cmd gate-mask interval] ... ]\n"
" [base-time time] [txtime-delay delay]\n"
" [fp FP0 FP1 FP2 ...]\n"
"\n"
"CLOCKID must be a valid SYS-V id (i.e. CLOCK_TAI)\n");
}
static void explain_clockid(const char *val)
{
fprintf(stderr, "taprio: illegal value for \"clockid\": \"%s\".\n", val);
fprintf(stderr, "It must be a valid SYS-V id (i.e. CLOCK_TAI)\n");
}
static const char *entry_cmd_to_str(__u8 cmd)
{
switch (cmd) {
case TC_TAPRIO_CMD_SET_GATES:
return "S";
default:
return "Invalid";
}
}
static int str_to_entry_cmd(const char *str)
{
if (strcmp(str, "S") == 0)
return TC_TAPRIO_CMD_SET_GATES;
return -1;
}
static int add_sched_list(struct list_head *sched_entries, struct nlmsghdr *n)
{
struct sched_entry *e;
list_for_each_entry(e, sched_entries, list) {
struct rtattr *a;
a = addattr_nest(n, 1024, TCA_TAPRIO_SCHED_ENTRY);
addattr_l(n, 1024, TCA_TAPRIO_SCHED_ENTRY_CMD, &e->cmd, sizeof(e->cmd));
addattr_l(n, 1024, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, &e->gatemask, sizeof(e->gatemask));
addattr_l(n, 1024, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, &e->interval, sizeof(e->interval));
addattr_nest_end(n, a);
}
return 0;
}
static void explain_sched_entry(void)
{
fprintf(stderr, "Usage: ... taprio ... sched-entry <cmd> <gate mask> <interval>\n");
}
static struct sched_entry *create_entry(uint32_t gatemask, uint32_t interval, uint8_t cmd)
{
struct sched_entry *e;
e = calloc(1, sizeof(*e));
if (!e)
return NULL;
e->gatemask = gatemask;
e->interval = interval;
e->cmd = cmd;
return e;
}
static void add_tc_entries(struct nlmsghdr *n, __u32 max_sdu[TC_QOPT_MAX_QUEUE],
int num_max_sdu_entries, __u32 fp[TC_QOPT_MAX_QUEUE],
int num_fp_entries)
{
struct rtattr *l;
int num_tc;
__u32 tc;
num_tc = max(num_max_sdu_entries, num_fp_entries);
for (tc = 0; tc < num_tc; tc++) {
l = addattr_nest(n, 1024, TCA_TAPRIO_ATTR_TC_ENTRY | NLA_F_NESTED);
addattr_l(n, 1024, TCA_TAPRIO_TC_ENTRY_INDEX, &tc, sizeof(tc));
if (tc < num_max_sdu_entries) {
addattr_l(n, 1024, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
&max_sdu[tc], sizeof(max_sdu[tc]));
}
if (tc < num_fp_entries) {
addattr_l(n, 1024, TCA_TAPRIO_TC_ENTRY_FP, &fp[tc],
sizeof(fp[tc]));
}
addattr_nest_end(n, l);
}
}
static int taprio_parse_opt(const struct qdisc_util *qu, int argc,
char **argv, struct nlmsghdr *n, const char *dev)
{
__u32 max_sdu[TC_QOPT_MAX_QUEUE] = { };
__u32 fp[TC_QOPT_MAX_QUEUE] = { };
__s32 clockid = CLOCKID_INVALID;
struct tc_mqprio_qopt opt = { };
__s64 cycle_time_extension = 0;
struct list_head sched_entries;
bool have_tc_entries = false;
int num_max_sdu_entries = 0;
struct rtattr *tail, *l;
int num_fp_entries = 0;
__u32 taprio_flags = 0;
__u32 txtime_delay = 0;
__s64 cycle_time = 0;
__s64 base_time = 0;
int err, idx;
INIT_LIST_HEAD(&sched_entries);
while (argc > 0) {
idx = 0;
if (strcmp(*argv, "num_tc") == 0) {
NEXT_ARG();
if (get_u8(&opt.num_tc, *argv, 10)) {
fprintf(stderr, "Illegal \"num_tc\"\n");
return -1;
}
} else if (strcmp(*argv, "map") == 0) {
while (idx < TC_QOPT_MAX_QUEUE && NEXT_ARG_OK()) {
NEXT_ARG();
if (get_u8(&opt.prio_tc_map[idx], *argv, 10)) {
PREV_ARG();
break;
}
idx++;
}
for ( ; idx < TC_QOPT_MAX_QUEUE; idx++)
opt.prio_tc_map[idx] = 0;
} else if (strcmp(*argv, "queues") == 0) {
char *tmp, *tok;
while (idx < TC_QOPT_MAX_QUEUE && NEXT_ARG_OK()) {
NEXT_ARG();
tmp = strdup(*argv);
if (!tmp)
break;
tok = strtok(tmp, "@");
if (get_u16(&opt.count[idx], tok, 10)) {
free(tmp);
PREV_ARG();
break;
}
tok = strtok(NULL, "@");
if (get_u16(&opt.offset[idx], tok, 10)) {
free(tmp);
PREV_ARG();
break;
}
free(tmp);
idx++;
}
} else if (strcmp(*argv, "fp") == 0) {
while (idx < TC_QOPT_MAX_QUEUE && NEXT_ARG_OK()) {
NEXT_ARG();
if (strcmp(*argv, "E") == 0) {
fp[idx] = TC_FP_EXPRESS;
} else if (strcmp(*argv, "P") == 0) {
fp[idx] = TC_FP_PREEMPTIBLE;
} else {
PREV_ARG();
break;
}
num_fp_entries++;
idx++;
}
have_tc_entries = true;
} else if (strcmp(*argv, "max-sdu") == 0) {
while (idx < TC_QOPT_MAX_QUEUE && NEXT_ARG_OK()) {
NEXT_ARG();
if (get_u32(&max_sdu[idx], *argv, 10)) {
PREV_ARG();
break;
}
num_max_sdu_entries++;
idx++;
}
have_tc_entries = true;
} else if (strcmp(*argv, "sched-entry") == 0) {
uint32_t mask, interval;
struct sched_entry *e;
uint8_t cmd;
NEXT_ARG();
err = str_to_entry_cmd(*argv);
if (err < 0) {
explain_sched_entry();
return -1;
}
cmd = err;
NEXT_ARG();
if (get_u32(&mask, *argv, 16)) {
explain_sched_entry();
return -1;
}
NEXT_ARG();
if (get_u32(&interval, *argv, 0)) {
explain_sched_entry();
return -1;
}
e = create_entry(mask, interval, cmd);
if (!e) {
fprintf(stderr, "taprio: not enough memory for new schedule entry\n");
return -1;
}
list_add_tail(&e->list, &sched_entries);
} else if (strcmp(*argv, "base-time") == 0) {
NEXT_ARG();
if (get_s64(&base_time, *argv, 10)) {
PREV_ARG();
break;
}
} else if (strcmp(*argv, "cycle-time") == 0) {
NEXT_ARG();
if (cycle_time) {
fprintf(stderr, "taprio: duplicate \"cycle-time\" specification\n");
return -1;
}
if (get_s64(&cycle_time, *argv, 10)) {
PREV_ARG();
break;
}
} else if (strcmp(*argv, "cycle-time-extension") == 0) {
NEXT_ARG();
if (cycle_time_extension) {
fprintf(stderr, "taprio: duplicate \"cycle-time-extension\" specification\n");
return -1;
}
if (get_s64(&cycle_time_extension, *argv, 10)) {
PREV_ARG();
break;
}
} else if (strcmp(*argv, "clockid") == 0) {
NEXT_ARG();
if (clockid != CLOCKID_INVALID) {
fprintf(stderr, "taprio: duplicate \"clockid\" specification\n");
return -1;
}
if (get_clockid(&clockid, *argv)) {
explain_clockid(*argv);
return -1;
}
} else if (strcmp(*argv, "flags") == 0) {
NEXT_ARG();
if (taprio_flags) {
fprintf(stderr, "taprio: duplicate \"flags\" specification\n");
return -1;
}
if (get_u32(&taprio_flags, *argv, 0)) {
PREV_ARG();
return -1;
}
} else if (strcmp(*argv, "txtime-delay") == 0) {
NEXT_ARG();
if (txtime_delay != 0) {
fprintf(stderr, "taprio: duplicate \"txtime-delay\" specification\n");
return -1;
}
if (get_u32(&txtime_delay, *argv, 0)) {
PREV_ARG();
return -1;
}
} else if (strcmp(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "Unknown argument\n");
return -1;
}
argc--; argv++;
}
tail = NLMSG_TAIL(n);
addattr_l(n, 1024, TCA_OPTIONS, NULL, 0);
if (clockid != CLOCKID_INVALID)
addattr_l(n, 1024, TCA_TAPRIO_ATTR_SCHED_CLOCKID, &clockid, sizeof(clockid));
if (taprio_flags)
addattr_l(n, 1024, TCA_TAPRIO_ATTR_FLAGS, &taprio_flags, sizeof(taprio_flags));
if (opt.num_tc > 0)
addattr_l(n, 1024, TCA_TAPRIO_ATTR_PRIOMAP, &opt, sizeof(opt));
if (txtime_delay)
addattr_l(n, 1024, TCA_TAPRIO_ATTR_TXTIME_DELAY, &txtime_delay, sizeof(txtime_delay));
if (base_time)
addattr_l(n, 1024, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, &base_time, sizeof(base_time));
if (cycle_time)
addattr_l(n, 1024, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
&cycle_time, sizeof(cycle_time));
if (cycle_time_extension)
addattr_l(n, 1024, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
&cycle_time_extension, sizeof(cycle_time_extension));
if (have_tc_entries)
add_tc_entries(n, max_sdu, num_max_sdu_entries, fp, num_fp_entries);
l = addattr_nest(n, 1024, TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST | NLA_F_NESTED);
err = add_sched_list(&sched_entries, n);
if (err < 0) {
fprintf(stderr, "Could not add schedule to netlink message\n");
return -1;
}
addattr_nest_end(n, l);
tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail;
return 0;
}
static void print_sched_list(FILE *f, struct rtattr *list)
{
struct rtattr *item, *nla;
int rem;
rem = RTA_PAYLOAD(list);
open_json_array(PRINT_JSON, "schedule");
print_nl();
for (item = RTA_DATA(list); RTA_OK(item, rem); item = RTA_NEXT(item, rem)) {
struct rtattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1];
parse_rtattr_nested(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, item);
open_json_object(NULL);
nla = tb[TCA_TAPRIO_SCHED_ENTRY_INDEX];
if (nla) {
__u32 index = rta_getattr_u32(nla);
print_uint(PRINT_ANY, "index", "\tindex %u", index);
}
nla = tb[TCA_TAPRIO_SCHED_ENTRY_CMD];
if (nla) {
__u8 command = rta_getattr_u8(nla);
print_string(PRINT_ANY, "cmd", " cmd %s",
entry_cmd_to_str(command));
}
nla = tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK];
if (nla) {
__u32 gatemask = rta_getattr_u32(nla);
print_0xhex(PRINT_ANY, "gatemask", " gatemask %#llx",
gatemask);
}
nla = tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL];
if (nla) {
__u32 interval = rta_getattr_u32(nla);
print_uint(PRINT_ANY, "interval", " interval %u",
interval);
}
close_json_object();
print_nl();
}
close_json_array(PRINT_ANY, "");
}
static int print_schedule(FILE *f, struct rtattr **tb)
{
struct rtattr *nla;
nla = tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME];
if (nla) {
int64_t base_time = rta_getattr_s64(nla);
print_lluint(PRINT_ANY, "base_time", "\tbase-time %lld",
base_time);
}
nla = tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME];
if (nla) {
int64_t cycle_time = rta_getattr_s64(nla);
print_lluint(PRINT_ANY, "cycle_time", " cycle-time %lld",
cycle_time);
}
nla = tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION];
if (nla) {
int64_t cycle_time_extension = rta_getattr_s64(nla);
print_lluint(PRINT_ANY, "cycle_time_extension",
" cycle-time-extension %lld",
cycle_time_extension);
}
nla = tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST];
if (nla)
print_sched_list(f, nla);
return 0;
}
static void dump_tc_entry(struct rtattr *item,
__u32 max_sdu[TC_QOPT_MAX_QUEUE],
__u32 fp[TC_QOPT_MAX_QUEUE],
int *max_tc_max_sdu, int *max_tc_fp)
{
struct rtattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1];
__u32 tc, val = 0;
parse_rtattr_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, item);
if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
fprintf(stderr, "Missing tc entry index\n");
return;
}
tc = rta_getattr_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
/* Prevent array out of bounds access */
if (tc >= TC_QOPT_MAX_QUEUE) {
fprintf(stderr, "Unexpected tc entry index %d\n", tc);
return;
}
if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
val = rta_getattr_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
max_sdu[tc] = val;
if (*max_tc_max_sdu < (int)tc)
*max_tc_max_sdu = tc;
}
if (tb[TCA_TAPRIO_TC_ENTRY_FP]) {
val = rta_getattr_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
fp[tc] = val;
if (*max_tc_fp < (int)tc)
*max_tc_fp = tc;
}
}
static void dump_tc_entries(FILE *f, struct rtattr *opt)
{
__u32 max_sdu[TC_QOPT_MAX_QUEUE] = {};
__u32 fp[TC_QOPT_MAX_QUEUE] = {};
int max_tc_max_sdu = -1;
int max_tc_fp = -1;
struct rtattr *i;
int tc, rem;
rem = RTA_PAYLOAD(opt);
for (i = RTA_DATA(opt); RTA_OK(i, rem); i = RTA_NEXT(i, rem)) {
if (i->rta_type != (TCA_TAPRIO_ATTR_TC_ENTRY | NLA_F_NESTED))
continue;
dump_tc_entry(i, max_sdu, fp, &max_tc_max_sdu, &max_tc_fp);
}
if (max_tc_max_sdu >= 0) {
open_json_array(PRINT_ANY, "max-sdu");
for (tc = 0; tc <= max_tc_max_sdu; tc++)
print_uint(PRINT_ANY, NULL, " %u", max_sdu[tc]);
close_json_array(PRINT_ANY, "");
print_nl();
}
if (max_tc_fp >= 0) {
open_json_array(PRINT_ANY, "fp");
for (tc = 0; tc <= max_tc_fp; tc++) {
print_string(PRINT_ANY, NULL, " %s",
fp[tc] == TC_FP_PREEMPTIBLE ? "P" :
fp[tc] == TC_FP_EXPRESS ? "E" :
"?");
}
close_json_array(PRINT_ANY, "");
print_nl();
}
}
static int taprio_print_opt(const struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
struct rtattr *tb[TCA_TAPRIO_ATTR_MAX + 1];
struct tc_mqprio_qopt *qopt = 0;
int i;
if (opt == NULL)
return 0;
parse_rtattr_nested(tb, TCA_TAPRIO_ATTR_MAX, opt);
if (tb[TCA_TAPRIO_ATTR_PRIOMAP] == NULL)
return -1;
qopt = RTA_DATA(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
print_uint(PRINT_ANY, "tc", "tc %u ", qopt->num_tc);
open_json_array(PRINT_ANY, "map");
for (i = 0; i <= TC_PRIO_MAX; i++)
print_uint(PRINT_ANY, NULL, " %u", qopt->prio_tc_map[i]);
close_json_array(PRINT_ANY, "");
print_nl();
open_json_array(PRINT_ANY, "queues");
for (i = 0; i < qopt->num_tc; i++) {
open_json_object(NULL);
print_uint(PRINT_ANY, "offset", " offset %u", qopt->offset[i]);
print_uint(PRINT_ANY, "count", " count %u", qopt->count[i]);
close_json_object();
}
close_json_array(PRINT_ANY, "");
print_nl();
if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
__s32 clockid;
clockid = rta_getattr_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
print_string(PRINT_ANY, "clockid", "clockid %s",
get_clock_name(clockid));
}
if (tb[TCA_TAPRIO_ATTR_FLAGS]) {
__u32 flags;
flags = rta_getattr_u32(tb[TCA_TAPRIO_ATTR_FLAGS]);
print_0xhex(PRINT_ANY, "flags", " flags %#x", flags);
}
if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
__u32 txtime_delay;
txtime_delay = rta_getattr_s32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
print_uint(PRINT_ANY, "txtime_delay", " txtime delay %d", txtime_delay);
}
print_schedule(f, tb);
if (tb[TCA_TAPRIO_ATTR_ADMIN_SCHED]) {
struct rtattr *t[TCA_TAPRIO_ATTR_MAX + 1];
parse_rtattr_nested(t, TCA_TAPRIO_ATTR_MAX,
tb[TCA_TAPRIO_ATTR_ADMIN_SCHED]);
open_json_object("admin");
print_schedule(f, t);
close_json_object();
}
dump_tc_entries(f, opt);
return 0;
}
static int taprio_print_xstats(const struct qdisc_util *qu, FILE *f,
struct rtattr *xstats)
{
struct rtattr *tb[TCA_TAPRIO_OFFLOAD_STATS_MAX + 1], *nla;
if (!xstats)
return 0;
parse_rtattr_nested(tb, TCA_TAPRIO_OFFLOAD_STATS_MAX, xstats);
nla = tb[TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS];
if (nla)
print_lluint(PRINT_ANY, "window_drops", " window_drops %llu",
rta_getattr_u64(nla));
nla = tb[TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS];
if (nla)
print_lluint(PRINT_ANY, "tx_overruns", " tx_overruns %llu",
rta_getattr_u64(nla));
return 0;
}
struct qdisc_util taprio_qdisc_util = {
.id = "taprio",
.parse_qopt = taprio_parse_opt,
.print_qopt = taprio_print_opt,
.print_xstats = taprio_print_xstats,
};