iproute2/tc/f_flow.c
Serhey Popovych c14f9d92ee treewide: Use addattr_nest()/addattr_nest_end() to handle nested attributes
We have helper routines to support nested attribute addition into
netlink buffer: use them instead of open coding.

Use addattr_nest_compat()/addattr_nest_compat_end() where appropriate.

Signed-off-by: Serhey Popovych <serhe.popovych@gmail.com>
Signed-off-by: David Ahern <dsahern@gmail.com>
2018-02-02 15:01:09 -08:00

359 lines
8.4 KiB
C

/*
* f_flow.c Flow filter
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Patrick McHardy <kaber@trash.net>
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include "utils.h"
#include "tc_util.h"
#include "m_ematch.h"
static void explain(void)
{
fprintf(stderr,
"Usage: ... flow ...\n"
"\n"
" [mapping mode]: map key KEY [ OPS ] ...\n"
" [hashing mode]: hash keys KEY-LIST ... [ perturb SECS ]\n"
"\n"
" [ divisor NUM ] [ baseclass ID ] [ match EMATCH_TREE ]\n"
" [ action ACTION_SPEC ]\n"
"\n"
"KEY-LIST := [ KEY-LIST , ] KEY\n"
"KEY := [ src | dst | proto | proto-src | proto-dst | iif | priority |\n"
" mark | nfct | nfct-src | nfct-dst | nfct-proto-src |\n"
" nfct-proto-dst | rt-classid | sk-uid | sk-gid |\n"
" vlan-tag | rxhash ]\n"
"OPS := [ or NUM | and NUM | xor NUM | rshift NUM | addend NUM ]\n"
"ID := X:Y\n"
);
}
static const char *flow_keys[FLOW_KEY_MAX+1] = {
[FLOW_KEY_SRC] = "src",
[FLOW_KEY_DST] = "dst",
[FLOW_KEY_PROTO] = "proto",
[FLOW_KEY_PROTO_SRC] = "proto-src",
[FLOW_KEY_PROTO_DST] = "proto-dst",
[FLOW_KEY_IIF] = "iif",
[FLOW_KEY_PRIORITY] = "priority",
[FLOW_KEY_MARK] = "mark",
[FLOW_KEY_NFCT] = "nfct",
[FLOW_KEY_NFCT_SRC] = "nfct-src",
[FLOW_KEY_NFCT_DST] = "nfct-dst",
[FLOW_KEY_NFCT_PROTO_SRC] = "nfct-proto-src",
[FLOW_KEY_NFCT_PROTO_DST] = "nfct-proto-dst",
[FLOW_KEY_RTCLASSID] = "rt-classid",
[FLOW_KEY_SKUID] = "sk-uid",
[FLOW_KEY_SKGID] = "sk-gid",
[FLOW_KEY_VLAN_TAG] = "vlan-tag",
[FLOW_KEY_RXHASH] = "rxhash",
};
static int flow_parse_keys(__u32 *keys, __u32 *nkeys, char *argv)
{
char *s, *sep;
unsigned int i;
*keys = 0;
*nkeys = 0;
s = argv;
while (s != NULL) {
sep = strchr(s, ',');
if (sep)
*sep = '\0';
for (i = 0; i <= FLOW_KEY_MAX; i++) {
if (matches(s, flow_keys[i]) == 0) {
*keys |= 1 << i;
(*nkeys)++;
break;
}
}
if (i > FLOW_KEY_MAX) {
fprintf(stderr, "Unknown flow key \"%s\"\n", s);
return -1;
}
s = sep ? sep + 1 : NULL;
}
return 0;
}
static void transfer_bitop(__u32 *mask, __u32 *xor, __u32 m, __u32 x)
{
*xor = x ^ (*xor & m);
*mask &= m;
}
static int get_addend(__u32 *addend, char *argv, __u32 keys)
{
inet_prefix addr;
int sign = 0;
__u32 tmp;
if (*argv == '-') {
sign = 1;
argv++;
}
if (get_u32(&tmp, argv, 0) == 0)
goto out;
if (keys & (FLOW_KEY_SRC | FLOW_KEY_DST |
FLOW_KEY_NFCT_SRC | FLOW_KEY_NFCT_DST) &&
get_addr(&addr, argv, AF_UNSPEC) == 0) {
switch (addr.family) {
case AF_INET:
tmp = ntohl(addr.data[0]);
goto out;
case AF_INET6:
tmp = ntohl(addr.data[3]);
goto out;
}
}
return -1;
out:
if (sign)
tmp = -tmp;
*addend = tmp;
return 0;
}
static int flow_parse_opt(struct filter_util *fu, char *handle,
int argc, char **argv, struct nlmsghdr *n)
{
struct tcmsg *t = NLMSG_DATA(n);
struct rtattr *tail;
__u32 mask = ~0U, xor = 0;
__u32 keys = 0, nkeys = 0;
__u32 mode = FLOW_MODE_MAP;
__u32 tmp;
if (handle) {
if (get_u32(&t->tcm_handle, handle, 0)) {
fprintf(stderr, "Illegal \"handle\"\n");
return -1;
}
}
tail = addattr_nest(n, 4096, TCA_OPTIONS);
while (argc > 0) {
if (matches(*argv, "map") == 0) {
mode = FLOW_MODE_MAP;
} else if (matches(*argv, "hash") == 0) {
mode = FLOW_MODE_HASH;
} else if (matches(*argv, "keys") == 0) {
NEXT_ARG();
if (flow_parse_keys(&keys, &nkeys, *argv))
return -1;
addattr32(n, 4096, TCA_FLOW_KEYS, keys);
} else if (matches(*argv, "and") == 0) {
NEXT_ARG();
if (get_u32(&tmp, *argv, 0)) {
fprintf(stderr, "Illegal \"mask\"\n");
return -1;
}
transfer_bitop(&mask, &xor, tmp, 0);
} else if (matches(*argv, "or") == 0) {
NEXT_ARG();
if (get_u32(&tmp, *argv, 0)) {
fprintf(stderr, "Illegal \"or\"\n");
return -1;
}
transfer_bitop(&mask, &xor, ~tmp, tmp);
} else if (matches(*argv, "xor") == 0) {
NEXT_ARG();
if (get_u32(&tmp, *argv, 0)) {
fprintf(stderr, "Illegal \"xor\"\n");
return -1;
}
transfer_bitop(&mask, &xor, ~0, tmp);
} else if (matches(*argv, "rshift") == 0) {
NEXT_ARG();
if (get_u32(&tmp, *argv, 0)) {
fprintf(stderr, "Illegal \"rshift\"\n");
return -1;
}
addattr32(n, 4096, TCA_FLOW_RSHIFT, tmp);
} else if (matches(*argv, "addend") == 0) {
NEXT_ARG();
if (get_addend(&tmp, *argv, keys)) {
fprintf(stderr, "Illegal \"addend\"\n");
return -1;
}
addattr32(n, 4096, TCA_FLOW_ADDEND, tmp);
} else if (matches(*argv, "divisor") == 0) {
NEXT_ARG();
if (get_u32(&tmp, *argv, 0)) {
fprintf(stderr, "Illegal \"divisor\"\n");
return -1;
}
addattr32(n, 4096, TCA_FLOW_DIVISOR, tmp);
} else if (matches(*argv, "baseclass") == 0) {
NEXT_ARG();
if (get_tc_classid(&tmp, *argv) || TC_H_MIN(tmp) == 0) {
fprintf(stderr, "Illegal \"baseclass\"\n");
return -1;
}
addattr32(n, 4096, TCA_FLOW_BASECLASS, tmp);
} else if (matches(*argv, "perturb") == 0) {
NEXT_ARG();
if (get_u32(&tmp, *argv, 0)) {
fprintf(stderr, "Illegal \"perturb\"\n");
return -1;
}
addattr32(n, 4096, TCA_FLOW_PERTURB, tmp);
} else if (matches(*argv, "police") == 0) {
NEXT_ARG();
if (parse_police(&argc, &argv, TCA_FLOW_POLICE, n)) {
fprintf(stderr, "Illegal \"police\"\n");
return -1;
}
continue;
} else if (matches(*argv, "action") == 0) {
NEXT_ARG();
if (parse_action(&argc, &argv, TCA_FLOW_ACT, n)) {
fprintf(stderr, "Illegal \"action\"\n");
return -1;
}
continue;
} else if (matches(*argv, "match") == 0) {
NEXT_ARG();
if (parse_ematch(&argc, &argv, TCA_FLOW_EMATCHES, n)) {
fprintf(stderr, "Illegal \"ematch\"\n");
return -1;
}
continue;
} else if (matches(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "What is \"%s\"?\n", *argv);
explain();
return -1;
}
argv++, argc--;
}
if (nkeys > 1 && mode != FLOW_MODE_HASH) {
fprintf(stderr, "Invalid mode \"map\" for multiple keys\n");
return -1;
}
addattr32(n, 4096, TCA_FLOW_MODE, mode);
if (mask != ~0 || xor != 0) {
addattr32(n, 4096, TCA_FLOW_MASK, mask);
addattr32(n, 4096, TCA_FLOW_XOR, xor);
}
addattr_nest_end(n, tail);
return 0;
}
static int flow_print_opt(struct filter_util *fu, FILE *f, struct rtattr *opt,
__u32 handle)
{
struct rtattr *tb[TCA_FLOW_MAX+1];
SPRINT_BUF(b1);
unsigned int i;
__u32 mask = ~0, val = 0;
if (opt == NULL)
return -EINVAL;
parse_rtattr_nested(tb, TCA_FLOW_MAX, opt);
fprintf(f, "handle 0x%x ", handle);
if (tb[TCA_FLOW_MODE]) {
__u32 mode = rta_getattr_u32(tb[TCA_FLOW_MODE]);
switch (mode) {
case FLOW_MODE_MAP:
fprintf(f, "map ");
break;
case FLOW_MODE_HASH:
fprintf(f, "hash ");
break;
}
}
if (tb[TCA_FLOW_KEYS]) {
__u32 keymask = rta_getattr_u32(tb[TCA_FLOW_KEYS]);
char *sep = "";
fprintf(f, "keys ");
for (i = 0; i <= FLOW_KEY_MAX; i++) {
if (keymask & (1 << i)) {
fprintf(f, "%s%s", sep, flow_keys[i]);
sep = ",";
}
}
fprintf(f, " ");
}
if (tb[TCA_FLOW_MASK])
mask = rta_getattr_u32(tb[TCA_FLOW_MASK]);
if (tb[TCA_FLOW_XOR])
val = rta_getattr_u32(tb[TCA_FLOW_XOR]);
if (mask != ~0 || val != 0) {
__u32 or = (mask & val) ^ val;
__u32 xor = mask & val;
if (mask != ~0)
fprintf(f, "and 0x%.8x ", mask);
if (xor != 0)
fprintf(f, "xor 0x%.8x ", xor);
if (or != 0)
fprintf(f, "or 0x%.8x ", or);
}
if (tb[TCA_FLOW_RSHIFT])
fprintf(f, "rshift %u ",
rta_getattr_u32(tb[TCA_FLOW_RSHIFT]));
if (tb[TCA_FLOW_ADDEND])
fprintf(f, "addend 0x%x ",
rta_getattr_u32(tb[TCA_FLOW_ADDEND]));
if (tb[TCA_FLOW_DIVISOR])
fprintf(f, "divisor %u ",
rta_getattr_u32(tb[TCA_FLOW_DIVISOR]));
if (tb[TCA_FLOW_BASECLASS])
fprintf(f, "baseclass %s ",
sprint_tc_classid(rta_getattr_u32(tb[TCA_FLOW_BASECLASS]), b1));
if (tb[TCA_FLOW_PERTURB])
fprintf(f, "perturb %usec ",
rta_getattr_u32(tb[TCA_FLOW_PERTURB]));
if (tb[TCA_FLOW_EMATCHES])
print_ematch(f, tb[TCA_FLOW_EMATCHES]);
if (tb[TCA_FLOW_POLICE])
tc_print_police(f, tb[TCA_FLOW_POLICE]);
if (tb[TCA_FLOW_ACT]) {
fprintf(f, "\n");
tc_print_action(f, tb[TCA_FLOW_ACT], 0);
}
return 0;
}
struct filter_util flow_filter_util = {
.id = "flow",
.parse_fopt = flow_parse_opt,
.print_fopt = flow_print_opt,
};