iproute2/tc/q_hhf.c
Serhey Popovych c14f9d92ee treewide: Use addattr_nest()/addattr_nest_end() to handle nested attributes
We have helper routines to support nested attribute addition into
netlink buffer: use them instead of open coding.

Use addattr_nest_compat()/addattr_nest_compat_end() where appropriate.

Signed-off-by: Serhey Popovych <serhe.popovych@gmail.com>
Signed-off-by: David Ahern <dsahern@gmail.com>
2018-02-02 15:01:09 -08:00

200 lines
5.6 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* q_hhf.c Heavy-Hitter Filter (HHF)
*
* Copyright (C) 2013 Terry Lam <vtlam@google.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <string.h>
#include "utils.h"
#include "tc_util.h"
static void explain(void)
{
fprintf(stderr, "Usage: ... hhf [ limit PACKETS ] [ quantum BYTES]\n");
fprintf(stderr, " [ hh_limit NUMBER ]\n");
fprintf(stderr, " [ reset_timeout TIME ]\n");
fprintf(stderr, " [ admit_bytes BYTES ]\n");
fprintf(stderr, " [ evict_timeout TIME ]\n");
fprintf(stderr, " [ non_hh_weight NUMBER ]\n");
}
static int hhf_parse_opt(struct qdisc_util *qu, int argc, char **argv,
struct nlmsghdr *n, const char *dev)
{
unsigned int limit = 0;
unsigned int quantum = 0;
unsigned int hh_limit = 0;
unsigned int reset_timeout = 0;
unsigned int admit_bytes = 0;
unsigned int evict_timeout = 0;
unsigned int non_hh_weight = 0;
struct rtattr *tail;
while (argc > 0) {
if (strcmp(*argv, "limit") == 0) {
NEXT_ARG();
if (get_unsigned(&limit, *argv, 0)) {
fprintf(stderr, "Illegal \"limit\"\n");
return -1;
}
} else if (strcmp(*argv, "quantum") == 0) {
NEXT_ARG();
if (get_unsigned(&quantum, *argv, 0)) {
fprintf(stderr, "Illegal \"quantum\"\n");
return -1;
}
} else if (strcmp(*argv, "hh_limit") == 0) {
NEXT_ARG();
if (get_unsigned(&hh_limit, *argv, 0)) {
fprintf(stderr, "Illegal \"hh_limit\"\n");
return -1;
}
} else if (strcmp(*argv, "reset_timeout") == 0) {
NEXT_ARG();
if (get_time(&reset_timeout, *argv)) {
fprintf(stderr, "Illegal \"reset_timeout\"\n");
return -1;
}
} else if (strcmp(*argv, "admit_bytes") == 0) {
NEXT_ARG();
if (get_unsigned(&admit_bytes, *argv, 0)) {
fprintf(stderr, "Illegal \"admit_bytes\"\n");
return -1;
}
} else if (strcmp(*argv, "evict_timeout") == 0) {
NEXT_ARG();
if (get_time(&evict_timeout, *argv)) {
fprintf(stderr, "Illegal \"evict_timeout\"\n");
return -1;
}
} else if (strcmp(*argv, "non_hh_weight") == 0) {
NEXT_ARG();
if (get_unsigned(&non_hh_weight, *argv, 0)) {
fprintf(stderr, "Illegal \"non_hh_weight\"\n");
return -1;
}
} else if (strcmp(*argv, "help") == 0) {
explain();
return -1;
} else {
fprintf(stderr, "What is \"%s\"?\n", *argv);
explain();
return -1;
}
argc--; argv++;
}
tail = addattr_nest(n, 1024, TCA_OPTIONS);
if (limit)
addattr_l(n, 1024, TCA_HHF_BACKLOG_LIMIT, &limit,
sizeof(limit));
if (quantum)
addattr_l(n, 1024, TCA_HHF_QUANTUM, &quantum, sizeof(quantum));
if (hh_limit)
addattr_l(n, 1024, TCA_HHF_HH_FLOWS_LIMIT, &hh_limit,
sizeof(hh_limit));
if (reset_timeout)
addattr_l(n, 1024, TCA_HHF_RESET_TIMEOUT, &reset_timeout,
sizeof(reset_timeout));
if (admit_bytes)
addattr_l(n, 1024, TCA_HHF_ADMIT_BYTES, &admit_bytes,
sizeof(admit_bytes));
if (evict_timeout)
addattr_l(n, 1024, TCA_HHF_EVICT_TIMEOUT, &evict_timeout,
sizeof(evict_timeout));
if (non_hh_weight)
addattr_l(n, 1024, TCA_HHF_NON_HH_WEIGHT, &non_hh_weight,
sizeof(non_hh_weight));
addattr_nest_end(n, tail);
return 0;
}
static int hhf_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
struct rtattr *tb[TCA_HHF_MAX + 1];
unsigned int limit;
unsigned int quantum;
unsigned int hh_limit;
unsigned int reset_timeout;
unsigned int admit_bytes;
unsigned int evict_timeout;
unsigned int non_hh_weight;
SPRINT_BUF(b1);
if (opt == NULL)
return 0;
parse_rtattr_nested(tb, TCA_HHF_MAX, opt);
if (tb[TCA_HHF_BACKLOG_LIMIT] &&
RTA_PAYLOAD(tb[TCA_HHF_BACKLOG_LIMIT]) >= sizeof(__u32)) {
limit = rta_getattr_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
fprintf(f, "limit %up ", limit);
}
if (tb[TCA_HHF_QUANTUM] &&
RTA_PAYLOAD(tb[TCA_HHF_QUANTUM]) >= sizeof(__u32)) {
quantum = rta_getattr_u32(tb[TCA_HHF_QUANTUM]);
fprintf(f, "quantum %u ", quantum);
}
if (tb[TCA_HHF_HH_FLOWS_LIMIT] &&
RTA_PAYLOAD(tb[TCA_HHF_HH_FLOWS_LIMIT]) >= sizeof(__u32)) {
hh_limit = rta_getattr_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
fprintf(f, "hh_limit %u ", hh_limit);
}
if (tb[TCA_HHF_RESET_TIMEOUT] &&
RTA_PAYLOAD(tb[TCA_HHF_RESET_TIMEOUT]) >= sizeof(__u32)) {
reset_timeout = rta_getattr_u32(tb[TCA_HHF_RESET_TIMEOUT]);
fprintf(f, "reset_timeout %s ", sprint_time(reset_timeout, b1));
}
if (tb[TCA_HHF_ADMIT_BYTES] &&
RTA_PAYLOAD(tb[TCA_HHF_ADMIT_BYTES]) >= sizeof(__u32)) {
admit_bytes = rta_getattr_u32(tb[TCA_HHF_ADMIT_BYTES]);
fprintf(f, "admit_bytes %u ", admit_bytes);
}
if (tb[TCA_HHF_EVICT_TIMEOUT] &&
RTA_PAYLOAD(tb[TCA_HHF_EVICT_TIMEOUT]) >= sizeof(__u32)) {
evict_timeout = rta_getattr_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
fprintf(f, "evict_timeout %s ", sprint_time(evict_timeout, b1));
}
if (tb[TCA_HHF_NON_HH_WEIGHT] &&
RTA_PAYLOAD(tb[TCA_HHF_NON_HH_WEIGHT]) >= sizeof(__u32)) {
non_hh_weight = rta_getattr_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
fprintf(f, "non_hh_weight %u ", non_hh_weight);
}
return 0;
}
static int hhf_print_xstats(struct qdisc_util *qu, FILE *f,
struct rtattr *xstats)
{
struct tc_hhf_xstats *st;
if (xstats == NULL)
return 0;
if (RTA_PAYLOAD(xstats) < sizeof(*st))
return -1;
st = RTA_DATA(xstats);
fprintf(f, " drop_overlimit %u hh_overlimit %u tot_hh %u cur_hh %u",
st->drop_overlimit, st->hh_overlimit,
st->hh_tot_count, st->hh_cur_count);
return 0;
}
struct qdisc_util hhf_qdisc_util = {
.id = "hhf",
.parse_qopt = hhf_parse_opt,
.print_qopt = hhf_print_opt,
.print_xstats = hhf_print_xstats,
};