btrfs-progs/common/utils.c
David Sterba 8ea9a3e2c6 btrfs-progs: print a message when enqueued operation is waiting
The enqueue option should let the user know that the expected operation
hasn't started yet and that it's waiting for another one. Although the
exclusive operations can take long, the two reason should be
distinguished.

Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-01 03:22:29 +01:00

1361 lines
30 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
* Copyright (C) 2008 Morey Roof. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/sysinfo.h>
#include <sys/select.h>
#include <sys/stat.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <mntent.h>
#include <ctype.h>
#include <limits.h>
#include <strings.h>
#include "kernel-lib/list.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/volumes.h"
#include "common/utils.h"
#include "common/device-utils.h"
#include "common/path-utils.h"
#include "common/open-utils.h"
#include "common/sysfs-utils.h"
#include "common/messages.h"
#include "cmds/commands.h"
#include "mkfs/common.h"
static int rand_seed_initialized = 0;
static unsigned short rand_seed[3];
struct btrfs_config bconf;
struct pending_dir {
struct list_head list;
char name[PATH_MAX];
};
void btrfs_format_csum(u16 csum_type, const u8 *data, char *output)
{
int i;
int cur = 0;
const int csum_size = btrfs_csum_type_size(csum_type);
output[0] = '\0';
snprintf(output, BTRFS_CSUM_STRING_LEN, "0x");
cur += strlen("0x");
for (i = 0; i < csum_size; i++) {
snprintf(output + cur, BTRFS_CSUM_STRING_LEN - cur, "%02x",
data[i]);
cur += 2;
}
}
int get_df(int fd, struct btrfs_ioctl_space_args **sargs_ret)
{
u64 count = 0;
int ret;
struct btrfs_ioctl_space_args *sargs;
sargs = malloc(sizeof(struct btrfs_ioctl_space_args));
if (!sargs)
return -ENOMEM;
sargs->space_slots = 0;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
if (ret < 0) {
error("cannot get space info: %m");
free(sargs);
return -errno;
}
/* This really should never happen */
if (!sargs->total_spaces) {
free(sargs);
return -ENOENT;
}
count = sargs->total_spaces;
free(sargs);
sargs = malloc(sizeof(struct btrfs_ioctl_space_args) +
(count * sizeof(struct btrfs_ioctl_space_info)));
if (!sargs)
return -ENOMEM;
sargs->space_slots = count;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
if (ret < 0) {
error("cannot get space info with %llu slots: %m",
count);
free(sargs);
return -errno;
}
*sargs_ret = sargs;
return 0;
}
static u64 find_max_device_id(struct btrfs_ioctl_search_args *search_args,
int nr_items)
{
struct btrfs_dev_item *dev_item;
char *buf = search_args->buf;
buf += (nr_items - 1) * (sizeof(struct btrfs_ioctl_search_header)
+ sizeof(struct btrfs_dev_item));
buf += sizeof(struct btrfs_ioctl_search_header);
dev_item = (struct btrfs_dev_item *)buf;
return btrfs_stack_device_id(dev_item);
}
static int search_chunk_tree_for_fs_info(int fd,
struct btrfs_ioctl_fs_info_args *fi_args)
{
int ret;
int max_items;
u64 start_devid = 1;
struct btrfs_ioctl_search_args search_args;
struct btrfs_ioctl_search_key *search_key = &search_args.key;
fi_args->num_devices = 0;
max_items = BTRFS_SEARCH_ARGS_BUFSIZE
/ (sizeof(struct btrfs_ioctl_search_header)
+ sizeof(struct btrfs_dev_item));
search_key->tree_id = BTRFS_CHUNK_TREE_OBJECTID;
search_key->min_objectid = BTRFS_DEV_ITEMS_OBJECTID;
search_key->max_objectid = BTRFS_DEV_ITEMS_OBJECTID;
search_key->min_type = BTRFS_DEV_ITEM_KEY;
search_key->max_type = BTRFS_DEV_ITEM_KEY;
search_key->min_transid = 0;
search_key->max_transid = (u64)-1;
search_key->nr_items = max_items;
search_key->max_offset = (u64)-1;
again:
search_key->min_offset = start_devid;
ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &search_args);
if (ret < 0)
return -errno;
fi_args->num_devices += (u64)search_key->nr_items;
if (search_key->nr_items == max_items) {
start_devid = find_max_device_id(&search_args,
search_key->nr_items) + 1;
goto again;
}
/* Get the latest max_id to stay consistent with the num_devices */
if (search_key->nr_items == 0)
/*
* last tree_search returns an empty buf, use the devid of
* the last dev_item of the previous tree_search
*/
fi_args->max_id = start_devid - 1;
else
fi_args->max_id = find_max_device_id(&search_args,
search_key->nr_items);
return 0;
}
/*
* For a given path, fill in the ioctl fs_ and info_ args.
* If the path is a btrfs mountpoint, fill info for all devices.
* If the path is a btrfs device, fill in only that device.
*
* The path provided must be either on a mounted btrfs fs,
* or be a mounted btrfs device.
*
* Returns 0 on success, or a negative errno.
*/
int get_fs_info(const char *path, struct btrfs_ioctl_fs_info_args *fi_args,
struct btrfs_ioctl_dev_info_args **di_ret)
{
int fd = -1;
int ret = 0;
int ndevs = 0;
u64 last_devid = 0;
int replacing = 0;
struct btrfs_fs_devices *fs_devices_mnt = NULL;
struct btrfs_ioctl_dev_info_args *di_args;
struct btrfs_ioctl_dev_info_args tmp;
char mp[PATH_MAX];
DIR *dirstream = NULL;
memset(fi_args, 0, sizeof(*fi_args));
if (path_is_block_device(path) == 1) {
struct btrfs_super_block disk_super;
/* Ensure it's mounted, then set path to the mountpoint */
fd = open(path, O_RDONLY);
if (fd < 0) {
ret = -errno;
error("cannot open %s: %m", path);
goto out;
}
ret = check_mounted_where(fd, path, mp, sizeof(mp),
&fs_devices_mnt, SBREAD_DEFAULT, false);
if (!ret) {
ret = -EINVAL;
goto out;
}
if (ret < 0)
goto out;
path = mp;
/* Only fill in this one device */
fi_args->num_devices = 1;
ret = btrfs_read_dev_super(fd, &disk_super,
BTRFS_SUPER_INFO_OFFSET, 0);
if (ret < 0) {
ret = -EIO;
goto out;
}
last_devid = btrfs_stack_device_id(&disk_super.dev_item);
fi_args->max_id = last_devid;
memcpy(fi_args->fsid, fs_devices_mnt->fsid, BTRFS_FSID_SIZE);
close(fd);
}
/* at this point path must not be for a block device */
fd = open_file_or_dir(path, &dirstream);
if (fd < 0) {
ret = -errno;
goto out;
}
/* fill in fi_args if not just a single device */
if (fi_args->num_devices != 1) {
ret = ioctl(fd, BTRFS_IOC_FS_INFO, fi_args);
if (ret < 0) {
ret = -errno;
goto out;
}
/*
* The fs_args->num_devices does not include seed devices
*/
ret = search_chunk_tree_for_fs_info(fd, fi_args);
if (ret)
goto out;
/*
* search_chunk_tree_for_fs_info() will lacks the devid 0
* so manual probe for it here.
*/
ret = device_get_info(fd, 0, &tmp);
if (!ret) {
fi_args->num_devices++;
ndevs++;
replacing = 1;
if (last_devid == 0)
last_devid++;
}
}
if (!fi_args->num_devices)
goto out;
di_args = *di_ret = malloc((fi_args->num_devices) * sizeof(*di_args));
if (!di_args) {
ret = -errno;
goto out;
}
if (replacing)
memcpy(di_args, &tmp, sizeof(tmp));
for (; last_devid <= fi_args->max_id && ndevs < fi_args->num_devices;
last_devid++) {
ret = device_get_info(fd, last_devid, &di_args[ndevs]);
if (ret == -ENODEV)
continue;
if (ret)
goto out;
ndevs++;
}
/*
* only when the only dev we wanted to find is not there then
* let any error be returned
*/
if (fi_args->num_devices != 1) {
BUG_ON(ndevs == 0);
ret = 0;
}
out:
close_file_or_dir(fd, dirstream);
return ret;
}
int get_fsid_fd(int fd, u8 *fsid)
{
int ret;
struct btrfs_ioctl_fs_info_args args;
ret = ioctl(fd, BTRFS_IOC_FS_INFO, &args);
if (ret < 0)
return -errno;
memcpy(fsid, args.fsid, BTRFS_FSID_SIZE);
return 0;
}
int get_fsid(const char *path, u8 *fsid, int silent)
{
int ret;
int fd;
int flags = O_RDONLY;
struct stat st;
ret = stat(path, &st);
if (ret < 0) {
if (!silent)
error("failed to stat %s: %m", path);
return -errno;
}
/*
* Open in non-blocking mode in case that path is a fifo or a special
* character device where opening gets stuck (but is interruptible).
*/
if ((st.st_mode & S_IFMT) == S_IFCHR || (st.st_mode & S_IFMT) == S_IFIFO)
flags |= O_NONBLOCK;
fd = open(path, flags);
if (fd < 0) {
if (!silent)
error("failed to open %s: %m", path);
return -errno;
}
ret = get_fsid_fd(fd, fsid);
close(fd);
return ret;
}
int test_num_disk_vs_raid(u64 metadata_profile, u64 data_profile,
u64 dev_cnt, int mixed, int ssd)
{
u64 allowed;
u64 profile = metadata_profile | data_profile;
allowed = btrfs_bg_flags_for_device_num(dev_cnt);
if (dev_cnt > 1 && profile & BTRFS_BLOCK_GROUP_DUP) {
warning("DUP is not recommended on filesystem with multiple devices");
}
if (metadata_profile & ~allowed) {
error("unable to create FS with metadata profile %s "
"(have %llu devices but %d devices are required)",
btrfs_group_profile_str(metadata_profile), dev_cnt,
btrfs_bg_type_to_devs_min(metadata_profile));
return 1;
}
if (data_profile & ~allowed) {
error("ERROR: unable to create FS with data profile %s "
"(have %llu devices but %d devices are required)",
btrfs_group_profile_str(data_profile), dev_cnt,
btrfs_bg_type_to_devs_min(data_profile));
return 1;
}
if (dev_cnt == 3 && profile & BTRFS_BLOCK_GROUP_RAID6) {
warning("RAID6 is not recommended on filesystem with 3 devices only");
}
if (dev_cnt == 2 && profile & BTRFS_BLOCK_GROUP_RAID5) {
warning("RAID5 is not recommended on filesystem with 2 devices only");
}
warning_on(!mixed && (data_profile & BTRFS_BLOCK_GROUP_DUP) && ssd,
"DUP may not actually lead to 2 copies on the device, see manual page");
return 0;
}
/*
* This reads a line from the stdin and only returns non-zero if the
* first whitespace delimited token is a case insensitive match with yes
* or y.
*/
int ask_user(const char *question)
{
char buf[30] = {0,};
char *saveptr = NULL;
char *answer;
printf("%s [y/N]: ", question);
return fgets(buf, sizeof(buf) - 1, stdin) &&
(answer = strtok_r(buf, " \t\n\r", &saveptr)) &&
(!strcasecmp(answer, "yes") || !strcasecmp(answer, "y"));
}
/*
* Partial representation of a line in /proc/pid/mountinfo
*/
struct mnt_entry {
const char *root;
const char *path;
const char *options1;
const char *fstype;
const char *device;
const char *options2;
};
/*
* Find first occurrence of up an option string (as "option=") in @options,
* separated by comma. Return allocated string as "option=value"
*/
static char *find_option(const char *options, const char *option)
{
char *tmp, *ret;
tmp = strstr(options, option);
if (!tmp)
return NULL;
ret = strdup(tmp);
tmp = ret;
while (*tmp && *tmp != ',')
tmp++;
*tmp = 0;
return ret;
}
/* Match whitespace separator */
static bool is_sep(char c)
{
return c == ' ' || c == '\t';
}
/* Advance @line skipping over all non-separator chars */
static void skip_nonsep(char **line)
{
while (**line && !is_sep(**line))
(*line)++;
}
/* Advance @line skipping over all separator chars, setting them to nul char */
static void skip_sep(char **line)
{
while (**line && is_sep(**line)) {
**line = 0;
(*line)++;
}
}
static bool isoctal(char c)
{
return '0' <= c && c <= '7';
}
/*
* Validate complete escape sequence used for mangling special chars in paths,
* eg. \012 == 10 == 0xa == '\n'.
* Mandatory format: backslash and 3 octal digits.
*/
static bool valid_escape(const char *str)
{
if (*str == 0 || *str != '\\')
return false;
str++;
if (*str == 0 || is_sep(*str) || !isoctal(*str))
return false;
str++;
if (*str == 0 || is_sep(*str) || !isoctal(*str))
return false;
str++;
if (*str == 0 || is_sep(*str) || !isoctal(*str))
return false;
return true;
}
/*
* Read a path from @line, with potentially mangled special characters.
* - the input is changed in-place when unmangling is done
* - end of path is a space character (a valid space in the path is mangled)
* - line is advanced to the final separator or nul character
* - returned path is a valid string terminated by zero or whitespace separator
*/
static char *read_path(char **line)
{
char *ret = *line;
char *out = *line;
while (**line) {
if (is_sep(**line))
break;
if (valid_escape(*line)) {
char c;
(*line)++;
c = ((*(*line)++) & 0b111) << 6;
c |= ((*(*line)++) & 0b111) << 3;
c |= ((*(*line)++) & 0b111);
*out++ = c;
} else {
*out++ = *(*line)++;
}
}
/*
* Unmangled characters make the final string shorter, add the null
* terminator. Otherwise keep the line at the space separator so
* followup parsing can continue.
*/
if (out < *line)
*out = 0;
return ret;
}
/*
* Parse a line from /proc/pid/mountinfo
* Example:
272 265 0:49 /subvol /mnt/path rw,noatime shared:145 - btrfs /dev/sda1 rw,subvolid=5598,subvol=/subvol
0 1 2 3 4 5 6 7 8 9 10
* Fields related to paths and options are parsed, @line is changed in place,
* separators are replaced by nul char, paths could be unmangled.
*/
static void parse_mntinfo_line(char *line, struct mnt_entry *ent)
{
/* Skip 0 */
skip_nonsep(&line);
skip_sep(&line);
/* Skip 1 */
skip_nonsep(&line);
skip_sep(&line);
/* Skip 2 */
skip_nonsep(&line);
skip_sep(&line);
/* Read 3 */
ent->root = read_path(&line);
skip_sep(&line);
/* Read 4 */
ent->path = read_path(&line);
skip_sep(&line);
/* Read 5 */
ent->options1 = line;
skip_nonsep(&line);
skip_sep(&line);
/* Skip 6 */
skip_nonsep(&line);
skip_sep(&line);
/* Skip 7 */
skip_nonsep(&line);
skip_sep(&line);
/* Read 8 */
ent->fstype = line;
skip_nonsep(&line);
skip_sep(&line);
/* Read 9 */
ent->device = read_path(&line);
skip_sep(&line);
/* Read 10 */
ent->options2 = line;
skip_nonsep(&line);
skip_sep(&line);
}
/*
* Compare the subvolume passed with the pathname of the directory mounted in
* btrfs. The pathname inside btrfs is different from getmnt and friends, since
* it can detect bind mounts to content from the inside of the original mount.
*
* Example:
* # mount -o subvol=/vol /dev/sda2 /mnt
* # mount --bind /mnt/dir2 /othermnt
*
* # mounts
* ...
* /dev/sda2 on /mnt type btrfs (ro,relatime,ssd,space_cache,subvolid=256,subvol=/vol)
* /dev/sda2 on /othermnt type btrfs (ro,relatime,ssd,space_cache,subvolid=256,subvol=/vol)
*
* # cat /proc/self/mountinfo
*
* 38 30 0:32 /vol /mnt ro,relatime - btrfs /dev/sda2 ro,ssd,space_cache,subvolid=256,subvol=/vol
* 37 29 0:32 /vol/dir2 /othermnt ro,relatime - btrfs /dev/sda2 ro,ssd,space_cache,subvolid=256,subvol=/vol
*
* If we try to find a mount point only using subvol and subvolid from mount
* options we would get mislead to believe that /othermnt has the same content
* as /mnt.
*
* But, using mountinfo, we have the pathaname _inside_ the filesystem, so we
* can filter out the mount points with bind mounts which have different content
* from the original mounts, in this case the mount point with id 37.
*/
int find_mount_fsroot(const char *subvol, const char *subvolid, char **mount)
{
FILE *mnt;
char *buf = NULL;
int bs = 4096;
int line = 0;
int ret = 0;
bool found = false;
mnt = fopen("/proc/self/mountinfo", "r");
if (!mnt)
return -1;
buf = malloc(bs);
if (!buf) {
ret = -ENOMEM;
goto out;
}
do {
int ch;
ch = fgetc(mnt);
if (ch == -1)
break;
if (ch == '\n') {
struct mnt_entry ent;
char *opt;
const char *value;
buf[line] = 0;
parse_mntinfo_line(buf, &ent);
/* Skip unrelated mounts */
if (strcmp(ent.fstype, "btrfs") != 0)
goto nextline;
if (strlen(ent.root) != strlen(subvol))
goto nextline;
if (strcmp(ent.root, subvol) != 0)
goto nextline;
/*
* Match subvolume by id found in mountinfo and
* requested by the caller
*/
opt = find_option(ent.options2, "subvolid=");
if (!opt)
goto nextline;
value = opt + strlen("subvolid=");
if (strcmp(value, subvolid) != 0) {
free(opt);
goto nextline;
}
free(opt);
/*
* First match is in most cases the original mount, not
* a bind mount. In case there are no further bind
* mounts, return what we found in @mount. Any
* following mount that matches by path and subvolume
* id is a bind mount and we return the original mount.
*/
if (found)
goto out;
found = true;
*mount = strdup(ent.path);
ret = 0;
goto nextline;
}
/*
* Grow buffer if needed, there are 3 paths up to PATH_MAX and
* mount options are limited by page size. Often the overall
* line length does not exceed 256.
*/
if (line >= bs) {
char *tmp;
bs += 4096;
tmp = realloc(buf, bs);
if (!tmp) {
ret = -ENOMEM;
goto out;
}
buf = tmp;
}
buf[line++] = ch;
continue;
nextline:
line = 0;
} while (1);
out:
free(buf);
fclose(mnt);
return ret;
}
/*
* return 0 if a btrfs mount point is found
* return 1 if a mount point is found but not btrfs
* return <0 if something goes wrong
*/
int find_mount_root(const char *path, char **mount_root)
{
FILE *mnttab;
int fd;
struct mntent *ent;
int len;
int ret = 0;
int not_btrfs = 1;
int longest_matchlen = 0;
char *longest_match = NULL;
fd = open(path, O_RDONLY | O_NOATIME);
if (fd < 0)
return -errno;
close(fd);
mnttab = setmntent("/proc/self/mounts", "r");
if (!mnttab)
return -errno;
while ((ent = getmntent(mnttab))) {
if (path_is_in_dir(ent->mnt_dir, path)) {
len = strlen(ent->mnt_dir);
if (longest_matchlen <= len) {
free(longest_match);
longest_matchlen = len;
longest_match = strdup(ent->mnt_dir);
if (!longest_match) {
ret = -errno;
break;
}
not_btrfs = strcmp(ent->mnt_type, "btrfs");
}
}
}
endmntent(mnttab);
if (ret)
return ret;
if (!longest_match)
return -ENOENT;
if (not_btrfs) {
free(longest_match);
return 1;
}
ret = 0;
*mount_root = realpath(longest_match, NULL);
if (!*mount_root)
ret = -errno;
free(longest_match);
return ret;
}
int find_next_key(struct btrfs_path *path, struct btrfs_key *key)
{
int level;
for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
if (!path->nodes[level])
break;
if (path->slots[level] + 1 >=
btrfs_header_nritems(path->nodes[level]))
continue;
if (level == 0)
btrfs_item_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
else
btrfs_node_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
return 0;
}
return 1;
}
const char* btrfs_group_type_str(u64 flag)
{
u64 mask = BTRFS_BLOCK_GROUP_TYPE_MASK |
BTRFS_SPACE_INFO_GLOBAL_RSV;
switch (flag & mask) {
case BTRFS_BLOCK_GROUP_DATA:
return "Data";
case BTRFS_BLOCK_GROUP_SYSTEM:
return "System";
case BTRFS_BLOCK_GROUP_METADATA:
return "Metadata";
case BTRFS_BLOCK_GROUP_DATA|BTRFS_BLOCK_GROUP_METADATA:
return "Data+Metadata";
case BTRFS_SPACE_INFO_GLOBAL_RSV:
return "GlobalReserve";
default:
return "unknown";
}
}
const char* btrfs_group_profile_str(u64 flag)
{
int index;
flag &= ~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_RESERVED);
if (flag & ~BTRFS_BLOCK_GROUP_PROFILE_MASK)
return "UNKNOWN";
index = btrfs_bg_flags_to_raid_index(flag);
return btrfs_raid_array[index].upper_name;
}
u64 div_factor(u64 num, int factor)
{
if (factor == 10)
return num;
num *= factor;
num /= 10;
return num;
}
/*
* Get the length of the string converted from a u64 number.
*
* Result is equal to log10(num) + 1, but without the use of math library.
*/
int count_digits(u64 num)
{
int ret = 0;
if (num == 0)
return 1;
while (num > 0) {
ret++;
num /= 10;
}
return ret;
}
const char *subvol_strip_mountpoint(const char *mnt, const char *full_path)
{
int len = strlen(mnt);
if (!len)
return full_path;
if ((strncmp(mnt, full_path, len) != 0) || ((len > 1) && (full_path[len] != '/'))) {
error("not on mount point: %s", mnt);
exit(1);
}
if (mnt[len - 1] != '/')
len += 1;
return full_path + len;
}
/* Set the seed manually */
void init_rand_seed(u64 seed)
{
int i;
/* only use the last 48 bits */
for (i = 0; i < 3; i++) {
rand_seed[i] = (unsigned short)(seed ^ (unsigned short)(-1));
seed >>= 16;
}
rand_seed_initialized = 1;
}
static void __init_seed(void)
{
struct timeval tv;
int ret;
int fd;
if(rand_seed_initialized)
return;
/* Use urandom as primary seed source. */
fd = open("/dev/urandom", O_RDONLY);
if (fd >= 0) {
ret = read(fd, rand_seed, sizeof(rand_seed));
close(fd);
if (ret < sizeof(rand_seed))
goto fallback;
} else {
fallback:
/* Use time and pid as fallback seed */
warning("failed to read /dev/urandom, use time and pid as random seed");
gettimeofday(&tv, 0);
rand_seed[0] = getpid() ^ (tv.tv_sec & 0xFFFF);
rand_seed[1] = getppid() ^ (tv.tv_usec & 0xFFFF);
rand_seed[2] = (tv.tv_sec ^ tv.tv_usec) >> 16;
}
rand_seed_initialized = 1;
}
u32 rand_u32(void)
{
__init_seed();
/*
* Don't use nrand48, its range is [0,2^31) The highest bit will always
* be 0. Use jrand48 to include the highest bit.
*/
return (u32)jrand48(rand_seed);
}
/* Return random number in range [0, upper) */
unsigned int rand_range(unsigned int upper)
{
__init_seed();
/*
* Use the full 48bits to mod, which would be more uniformly
* distributed
*/
return (unsigned int)(jrand48(rand_seed) % upper);
}
int rand_int(void)
{
return (int)(rand_u32());
}
u64 rand_u64(void)
{
u64 ret = 0;
ret += rand_u32();
ret <<= 32;
ret += rand_u32();
return ret;
}
u16 rand_u16(void)
{
return (u16)(rand_u32());
}
u8 rand_u8(void)
{
return (u8)(rand_u32());
}
void btrfs_config_init(void)
{
bconf.output_format = CMD_FORMAT_TEXT;
bconf.verbose = BTRFS_BCONF_UNSET;
INIT_LIST_HEAD(&bconf.params);
}
void bconf_be_verbose(void)
{
if (bconf.verbose == BTRFS_BCONF_UNSET)
bconf.verbose = 1;
else
bconf.verbose++;
}
void bconf_be_quiet(void)
{
bconf.verbose = BTRFS_BCONF_QUIET;
}
void bconf_add_param(const char *key, const char *value)
{
struct config_param *param;
param = calloc(1, sizeof(*param));
if (!param)
return;
param->key = strdup(key);
if (value)
param->value = strdup(value);
list_add(&param->list, &bconf.params);
}
const char *bconf_param_value(const char *key)
{
struct config_param *param;
list_for_each_entry(param, &bconf.params, list) {
if (strcmp(key, param->key) == 0)
return param->value;
}
return NULL;
}
void bconf_save_param(const char *str)
{
char *tmp;
tmp = strchr(str, '=');
if (!tmp) {
bconf_add_param(str, NULL);
printf("Global param: %s\n", str);
} else {
*tmp = 0;
bconf_add_param(str, tmp + 1);
printf("Global param: %s=%s\n", str, tmp + 1);
*tmp = '=';
}
}
void bconf_set_dry_run(void)
{
pr_verbose(LOG_INFO, "Dry-run requested\n");
bconf.dry_run = 1;
}
bool bconf_is_dry_run(void)
{
return bconf.dry_run == 1;
}
/* Returns total size of main memory in bytes, -1UL if error. */
unsigned long total_memory(void)
{
struct sysinfo si;
if (sysinfo(&si) < 0) {
error("can't determine memory size");
return -1UL;
}
return si.totalram * si.mem_unit; /* bytes */
}
void print_device_info(struct btrfs_device *device, char *prefix)
{
if (prefix)
printf("%s", prefix);
printf("Device: id = %llu, name = %s\n",
device->devid, device->name);
}
void print_all_devices(struct list_head *devices)
{
struct btrfs_device *dev;
printf("All Devices:\n");
list_for_each_entry(dev, devices, dev_list)
print_device_info(dev, "\t");
printf("\n");
}
static int bit_count(u64 x)
{
int ret = 0;
while (x) {
if (x & 1)
ret++;
x >>= 1;
}
return ret;
}
static char *sprint_profiles(u64 profiles)
{
int i;
int maxlen = 1;
char *ptr;
if (bit_count(profiles) <= 1)
return NULL;
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
maxlen += strlen(btrfs_raid_array[i].lower_name) + 2;
ptr = calloc(1, maxlen);
if (!ptr)
return NULL;
if (profiles & BTRFS_AVAIL_ALLOC_BIT_SINGLE)
strcat(ptr, btrfs_raid_array[BTRFS_RAID_SINGLE].lower_name);
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
if (!(btrfs_raid_array[i].bg_flag & profiles))
continue;
if (ptr[0])
strcat(ptr, ", ");
strcat(ptr, btrfs_raid_array[i].lower_name);
}
return ptr;
}
static int btrfs_get_string_for_multiple_profiles(int fd, char **data_ret,
char **metadata_ret, char **mixed_ret, char **system_ret,
char **types_ret)
{
int ret;
int i;
struct btrfs_ioctl_space_args *sargs;
u64 data_profiles = 0;
u64 metadata_profiles = 0;
u64 system_profiles = 0;
u64 mixed_profiles = 0;
const u64 mixed_profile_fl = BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA;
ret = get_df(fd, &sargs);
if (ret < 0)
return -1;
for (i = 0; i < sargs->total_spaces; i++) {
u64 flags = sargs->spaces[i].flags;
if (!(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK))
flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
if ((flags & mixed_profile_fl) == mixed_profile_fl)
mixed_profiles |= flags;
else if (flags & BTRFS_BLOCK_GROUP_DATA)
data_profiles |= flags;
else if (flags & BTRFS_BLOCK_GROUP_METADATA)
metadata_profiles |= flags;
else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
system_profiles |= flags;
}
free(sargs);
data_profiles &= BTRFS_EXTENDED_PROFILE_MASK;
system_profiles &= BTRFS_EXTENDED_PROFILE_MASK;
mixed_profiles &= BTRFS_EXTENDED_PROFILE_MASK;
metadata_profiles &= BTRFS_EXTENDED_PROFILE_MASK;
*data_ret = sprint_profiles(data_profiles);
*metadata_ret = sprint_profiles(metadata_profiles);
*mixed_ret = sprint_profiles(mixed_profiles);
*system_ret = sprint_profiles(system_profiles);
if (types_ret) {
*types_ret = calloc(1, 64);
if (!*types_ret)
goto out;
if (*data_ret)
strcat(*types_ret, "data");
if (*metadata_ret) {
if ((*types_ret)[0])
strcat(*types_ret, ", ");
strcat(*types_ret, "metadata");
}
if (*mixed_ret) {
if ((*types_ret)[0])
strcat(*types_ret, ", ");
strcat(*types_ret, "data+metadata");
}
if (*system_ret) {
if ((*types_ret)[0])
strcat(*types_ret, ", ");
strcat(*types_ret, "system");
}
}
out:
return *data_ret || *metadata_ret || *mixed_ret || *system_ret;
}
/*
* Return string containing coma separated list of block group types that
* contain multiple profiles. The return value must be freed by the caller.
*/
char *btrfs_test_for_multiple_profiles(int fd)
{
char *data, *metadata, *system, *mixed, *types;
btrfs_get_string_for_multiple_profiles(fd, &data, &metadata, &mixed,
&system, &types);
free(data);
free(metadata);
free(mixed);
free(system);
return types;
}
int btrfs_warn_multiple_profiles(int fd)
{
int ret;
char *data_prof, *mixed_prof, *metadata_prof, *system_prof;
ret = btrfs_get_string_for_multiple_profiles(fd, &data_prof,
&metadata_prof, &mixed_prof, &system_prof, NULL);
if (ret != 1)
return ret;
warning("Multiple block group profiles detected, see 'man btrfs(5)'");
warning_on(!!data_prof, " Data: %s", data_prof);
warning_on(!!metadata_prof, " Metadata: %s", metadata_prof);
warning_on(!!mixed_prof, " Data+Metadata: %s", mixed_prof);
warning_on(!!system_prof, " System: %s", system_prof);
free(data_prof);
free(metadata_prof);
free(mixed_prof);
free(system_prof);
return 1;
}
void btrfs_warn_experimental(const char *str)
{
#if EXPERIMENTAL
warning("Experimental build with unstable or unfinished features");
warning_on(str != NULL, "%s\n", str);
#endif
}
static const char exclop_def[][16] = {
[BTRFS_EXCLOP_NONE] = "none",
[BTRFS_EXCLOP_BALANCE] = "balance",
[BTRFS_EXCLOP_BALANCE_PAUSED] = "balance paused",
[BTRFS_EXCLOP_DEV_ADD] = "device add",
[BTRFS_EXCLOP_DEV_REMOVE] = "device remove",
[BTRFS_EXCLOP_DEV_REPLACE] = "device replace",
[BTRFS_EXCLOP_RESIZE] = "resize",
[BTRFS_EXCLOP_SWAP_ACTIVATE] = "swap activate",
};
/*
* Read currently running exclusive operation from sysfs. If this is not
* available, return BTRFS_EXCLOP_UNKNOWN
*/
int get_fs_exclop(int fd)
{
int sysfs_fd;
char buf[32];
int ret;
int i;
sysfs_fd = sysfs_open_fsid_file(fd, "exclusive_operation");
if (sysfs_fd < 0)
return BTRFS_EXCLOP_UNKNOWN;
memset(buf, 0, sizeof(buf));
ret = sysfs_read_file(sysfs_fd, buf, sizeof(buf));
close(sysfs_fd);
if (ret <= 0)
return BTRFS_EXCLOP_UNKNOWN;
i = strlen(buf) - 1;
while (i > 0 && isspace(buf[i])) i--;
if (i > 0)
buf[i + 1] = 0;
for (i = 0; i < ARRAY_SIZE(exclop_def); i++) {
if (strcmp(exclop_def[i], buf) == 0)
return i;
}
return BTRFS_EXCLOP_UNKNOWN;
}
const char *get_fs_exclop_name(int op)
{
if (0 <= op && op <= ARRAY_SIZE(exclop_def))
return exclop_def[op];
return "UNKNOWN";
}
/*
* Check if there's another exclusive operation running and either return error
* or wait until there's none in case @enqueue is true. The timeout between
* checks is 1 minute as we get notification on the sysfs file when the
* operation finishes.
*
* Return:
* 0 - caller can continue, nothing running or the status is not available
* 1 - another operation running
* <0 - there was another error
*/
int check_running_fs_exclop(int fd, enum exclusive_operation start, bool enqueue)
{
int sysfs_fd;
int exclop;
int ret;
sysfs_fd = sysfs_open_fsid_file(fd, "exclusive_operation");
if (sysfs_fd < 0) {
if (errno == ENOENT)
return 0;
return -errno;
}
exclop = get_fs_exclop(fd);
if (exclop <= 0) {
ret = 0;
goto out;
}
/*
* Some combinations are compatible:
* - start device add when balance is paused (kernel 5.17)
*/
if (start == BTRFS_EXCLOP_DEV_ADD && exclop == BTRFS_EXCLOP_BALANCE_PAUSED) {
ret = 0;
goto out;
}
if (!enqueue) {
error(
"unable to start %s, another exclusive operation '%s' in progress",
get_fs_exclop_name(start),
get_fs_exclop_name(exclop));
ret = 1;
goto out;
} else {
pr_verbose(LOG_DEFAULT, "Waiting for another exclusive operation '%s' to finish ...",
get_fs_exclop_name(exclop));
fflush(stdout);
}
while (exclop > 0) {
fd_set fds;
struct timeval tv = { .tv_sec = 60, .tv_usec = 0 };
FD_ZERO(&fds);
FD_SET(sysfs_fd, &fds);
ret = select(sysfs_fd + 1, NULL, NULL, &fds, &tv);
if (ret < 0) {
ret = -errno;
break;
}
if (ret > 0) {
/*
* Notified before the timeout, check again before
* returning. In case there are more operations
* waiting, we want to reduce the chances to race so
* reuse the remaining time to randomize the order.
*/
tv.tv_sec /= 2;
ret = select(sysfs_fd + 1, NULL, NULL, &fds, &tv);
exclop = get_fs_exclop(fd);
if (exclop <= 0)
ret = 0;
}
}
pr_verbose(LOG_DEFAULT, " done\n");
out:
close(sysfs_fd);
return ret;
}