mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/kdave/btrfs-progs.git
synced 2024-12-14 06:33:21 +08:00
6519b4a5b4
Now sanitize_name and all callees do not depend on metadump_struct. Signed-off-by: David Sterba <dsterba@suse.com>
3017 lines
72 KiB
C
3017 lines
72 KiB
C
/*
|
|
* Copyright (C) 2008 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <pthread.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <dirent.h>
|
|
#include <zlib.h>
|
|
#include <getopt.h>
|
|
|
|
#include "kerncompat.h"
|
|
#include "crc32c.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "utils.h"
|
|
#include "volumes.h"
|
|
#include "extent_io.h"
|
|
#include "help.h"
|
|
#include "image/metadump.h"
|
|
#include "image/sanitize.h"
|
|
|
|
#define MAX_WORKER_THREADS (32)
|
|
|
|
struct async_work {
|
|
struct list_head list;
|
|
struct list_head ordered;
|
|
u64 start;
|
|
u64 size;
|
|
u8 *buffer;
|
|
size_t bufsize;
|
|
int error;
|
|
};
|
|
|
|
struct metadump_struct {
|
|
struct btrfs_root *root;
|
|
FILE *out;
|
|
|
|
union {
|
|
struct meta_cluster cluster;
|
|
char meta_cluster_bytes[BLOCK_SIZE];
|
|
};
|
|
|
|
pthread_t threads[MAX_WORKER_THREADS];
|
|
size_t num_threads;
|
|
pthread_mutex_t mutex;
|
|
pthread_cond_t cond;
|
|
struct rb_root name_tree;
|
|
|
|
struct list_head list;
|
|
struct list_head ordered;
|
|
size_t num_items;
|
|
size_t num_ready;
|
|
|
|
u64 pending_start;
|
|
u64 pending_size;
|
|
|
|
int compress_level;
|
|
int done;
|
|
int data;
|
|
enum sanitize_mode sanitize_names;
|
|
|
|
int error;
|
|
};
|
|
|
|
struct mdrestore_struct {
|
|
FILE *in;
|
|
FILE *out;
|
|
|
|
pthread_t threads[MAX_WORKER_THREADS];
|
|
size_t num_threads;
|
|
pthread_mutex_t mutex;
|
|
pthread_cond_t cond;
|
|
|
|
struct rb_root chunk_tree;
|
|
struct rb_root physical_tree;
|
|
struct list_head list;
|
|
struct list_head overlapping_chunks;
|
|
size_t num_items;
|
|
u32 nodesize;
|
|
u64 devid;
|
|
u64 alloced_chunks;
|
|
u64 last_physical_offset;
|
|
u8 uuid[BTRFS_UUID_SIZE];
|
|
u8 fsid[BTRFS_FSID_SIZE];
|
|
|
|
int compress_method;
|
|
int done;
|
|
int error;
|
|
int old_restore;
|
|
int fixup_offset;
|
|
int multi_devices;
|
|
int clear_space_cache;
|
|
struct btrfs_fs_info *info;
|
|
};
|
|
|
|
static int search_for_chunk_blocks(struct mdrestore_struct *mdres,
|
|
u64 search, u64 cluster_bytenr);
|
|
static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size);
|
|
|
|
static void csum_block(u8 *buf, size_t len)
|
|
{
|
|
u8 result[BTRFS_CRC32_SIZE];
|
|
u32 crc = ~(u32)0;
|
|
crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE);
|
|
btrfs_csum_final(crc, result);
|
|
memcpy(buf, result, BTRFS_CRC32_SIZE);
|
|
}
|
|
|
|
static int has_name(struct btrfs_key *key)
|
|
{
|
|
switch (key->type) {
|
|
case BTRFS_DIR_ITEM_KEY:
|
|
case BTRFS_DIR_INDEX_KEY:
|
|
case BTRFS_INODE_REF_KEY:
|
|
case BTRFS_INODE_EXTREF_KEY:
|
|
case BTRFS_XATTR_ITEM_KEY:
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static char *generate_garbage(u32 name_len)
|
|
{
|
|
char *buf = malloc(name_len);
|
|
int i;
|
|
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
for (i = 0; i < name_len; i++) {
|
|
char c = rand_range(94) + 33;
|
|
|
|
if (c == '/')
|
|
c++;
|
|
buf[i] = c;
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
static int name_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
|
|
{
|
|
struct name *entry = rb_entry(a, struct name, n);
|
|
struct name *ins = rb_entry(b, struct name, n);
|
|
u32 len;
|
|
|
|
len = min(ins->len, entry->len);
|
|
return memcmp(ins->val, entry->val, len);
|
|
}
|
|
|
|
static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
|
|
{
|
|
struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l);
|
|
struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l);
|
|
|
|
if (fuzz && ins->logical >= entry->logical &&
|
|
ins->logical < entry->logical + entry->bytes)
|
|
return 0;
|
|
|
|
if (ins->logical < entry->logical)
|
|
return -1;
|
|
else if (ins->logical > entry->logical)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
|
|
{
|
|
struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p);
|
|
struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p);
|
|
|
|
if (fuzz && ins->physical >= entry->physical &&
|
|
ins->physical < entry->physical + entry->bytes)
|
|
return 0;
|
|
|
|
if (fuzz && entry->physical >= ins->physical &&
|
|
entry->physical < ins->physical + ins->bytes)
|
|
return 0;
|
|
|
|
if (ins->physical < entry->physical)
|
|
return -1;
|
|
else if (ins->physical > entry->physical)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void tree_insert(struct rb_root *root, struct rb_node *ins,
|
|
int (*cmp)(struct rb_node *a, struct rb_node *b,
|
|
int fuzz))
|
|
{
|
|
struct rb_node ** p = &root->rb_node;
|
|
struct rb_node * parent = NULL;
|
|
int dir;
|
|
|
|
while(*p) {
|
|
parent = *p;
|
|
|
|
dir = cmp(*p, ins, 1);
|
|
if (dir < 0)
|
|
p = &(*p)->rb_left;
|
|
else if (dir > 0)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
rb_link_node(ins, parent, p);
|
|
rb_insert_color(ins, root);
|
|
}
|
|
|
|
static struct rb_node *tree_search(struct rb_root *root,
|
|
struct rb_node *search,
|
|
int (*cmp)(struct rb_node *a,
|
|
struct rb_node *b, int fuzz),
|
|
int fuzz)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
int dir;
|
|
|
|
while (n) {
|
|
dir = cmp(n, search, fuzz);
|
|
if (dir < 0)
|
|
n = n->rb_left;
|
|
else if (dir > 0)
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical,
|
|
u64 *size, u64 *physical_dup)
|
|
{
|
|
struct fs_chunk *fs_chunk;
|
|
struct rb_node *entry;
|
|
struct fs_chunk search;
|
|
u64 offset;
|
|
|
|
if (logical == BTRFS_SUPER_INFO_OFFSET)
|
|
return logical;
|
|
|
|
search.logical = logical;
|
|
entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1);
|
|
if (!entry) {
|
|
if (mdres->in != stdin)
|
|
warning("cannot find a chunk, using logical");
|
|
return logical;
|
|
}
|
|
fs_chunk = rb_entry(entry, struct fs_chunk, l);
|
|
if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical)
|
|
BUG();
|
|
offset = search.logical - fs_chunk->logical;
|
|
|
|
if (physical_dup) {
|
|
/* Only in dup case, physical_dup is not equal to 0 */
|
|
if (fs_chunk->physical_dup)
|
|
*physical_dup = fs_chunk->physical_dup + offset;
|
|
else
|
|
*physical_dup = 0;
|
|
}
|
|
|
|
*size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical);
|
|
return fs_chunk->physical + offset;
|
|
}
|
|
|
|
/*
|
|
* Reverse CRC-32C table
|
|
*/
|
|
static const u32 crc32c_rev_table[256] = {
|
|
0x00000000L,0x05EC76F1L,0x0BD8EDE2L,0x0E349B13L,
|
|
0x17B1DBC4L,0x125DAD35L,0x1C693626L,0x198540D7L,
|
|
0x2F63B788L,0x2A8FC179L,0x24BB5A6AL,0x21572C9BL,
|
|
0x38D26C4CL,0x3D3E1ABDL,0x330A81AEL,0x36E6F75FL,
|
|
0x5EC76F10L,0x5B2B19E1L,0x551F82F2L,0x50F3F403L,
|
|
0x4976B4D4L,0x4C9AC225L,0x42AE5936L,0x47422FC7L,
|
|
0x71A4D898L,0x7448AE69L,0x7A7C357AL,0x7F90438BL,
|
|
0x6615035CL,0x63F975ADL,0x6DCDEEBEL,0x6821984FL,
|
|
0xBD8EDE20L,0xB862A8D1L,0xB65633C2L,0xB3BA4533L,
|
|
0xAA3F05E4L,0xAFD37315L,0xA1E7E806L,0xA40B9EF7L,
|
|
0x92ED69A8L,0x97011F59L,0x9935844AL,0x9CD9F2BBL,
|
|
0x855CB26CL,0x80B0C49DL,0x8E845F8EL,0x8B68297FL,
|
|
0xE349B130L,0xE6A5C7C1L,0xE8915CD2L,0xED7D2A23L,
|
|
0xF4F86AF4L,0xF1141C05L,0xFF208716L,0xFACCF1E7L,
|
|
0xCC2A06B8L,0xC9C67049L,0xC7F2EB5AL,0xC21E9DABL,
|
|
0xDB9BDD7CL,0xDE77AB8DL,0xD043309EL,0xD5AF466FL,
|
|
0x7EF1CAB1L,0x7B1DBC40L,0x75292753L,0x70C551A2L,
|
|
0x69401175L,0x6CAC6784L,0x6298FC97L,0x67748A66L,
|
|
0x51927D39L,0x547E0BC8L,0x5A4A90DBL,0x5FA6E62AL,
|
|
0x4623A6FDL,0x43CFD00CL,0x4DFB4B1FL,0x48173DEEL,
|
|
0x2036A5A1L,0x25DAD350L,0x2BEE4843L,0x2E023EB2L,
|
|
0x37877E65L,0x326B0894L,0x3C5F9387L,0x39B3E576L,
|
|
0x0F551229L,0x0AB964D8L,0x048DFFCBL,0x0161893AL,
|
|
0x18E4C9EDL,0x1D08BF1CL,0x133C240FL,0x16D052FEL,
|
|
0xC37F1491L,0xC6936260L,0xC8A7F973L,0xCD4B8F82L,
|
|
0xD4CECF55L,0xD122B9A4L,0xDF1622B7L,0xDAFA5446L,
|
|
0xEC1CA319L,0xE9F0D5E8L,0xE7C44EFBL,0xE228380AL,
|
|
0xFBAD78DDL,0xFE410E2CL,0xF075953FL,0xF599E3CEL,
|
|
0x9DB87B81L,0x98540D70L,0x96609663L,0x938CE092L,
|
|
0x8A09A045L,0x8FE5D6B4L,0x81D14DA7L,0x843D3B56L,
|
|
0xB2DBCC09L,0xB737BAF8L,0xB90321EBL,0xBCEF571AL,
|
|
0xA56A17CDL,0xA086613CL,0xAEB2FA2FL,0xAB5E8CDEL,
|
|
0xFDE39562L,0xF80FE393L,0xF63B7880L,0xF3D70E71L,
|
|
0xEA524EA6L,0xEFBE3857L,0xE18AA344L,0xE466D5B5L,
|
|
0xD28022EAL,0xD76C541BL,0xD958CF08L,0xDCB4B9F9L,
|
|
0xC531F92EL,0xC0DD8FDFL,0xCEE914CCL,0xCB05623DL,
|
|
0xA324FA72L,0xA6C88C83L,0xA8FC1790L,0xAD106161L,
|
|
0xB49521B6L,0xB1795747L,0xBF4DCC54L,0xBAA1BAA5L,
|
|
0x8C474DFAL,0x89AB3B0BL,0x879FA018L,0x8273D6E9L,
|
|
0x9BF6963EL,0x9E1AE0CFL,0x902E7BDCL,0x95C20D2DL,
|
|
0x406D4B42L,0x45813DB3L,0x4BB5A6A0L,0x4E59D051L,
|
|
0x57DC9086L,0x5230E677L,0x5C047D64L,0x59E80B95L,
|
|
0x6F0EFCCAL,0x6AE28A3BL,0x64D61128L,0x613A67D9L,
|
|
0x78BF270EL,0x7D5351FFL,0x7367CAECL,0x768BBC1DL,
|
|
0x1EAA2452L,0x1B4652A3L,0x1572C9B0L,0x109EBF41L,
|
|
0x091BFF96L,0x0CF78967L,0x02C31274L,0x072F6485L,
|
|
0x31C993DAL,0x3425E52BL,0x3A117E38L,0x3FFD08C9L,
|
|
0x2678481EL,0x23943EEFL,0x2DA0A5FCL,0x284CD30DL,
|
|
0x83125FD3L,0x86FE2922L,0x88CAB231L,0x8D26C4C0L,
|
|
0x94A38417L,0x914FF2E6L,0x9F7B69F5L,0x9A971F04L,
|
|
0xAC71E85BL,0xA99D9EAAL,0xA7A905B9L,0xA2457348L,
|
|
0xBBC0339FL,0xBE2C456EL,0xB018DE7DL,0xB5F4A88CL,
|
|
0xDDD530C3L,0xD8394632L,0xD60DDD21L,0xD3E1ABD0L,
|
|
0xCA64EB07L,0xCF889DF6L,0xC1BC06E5L,0xC4507014L,
|
|
0xF2B6874BL,0xF75AF1BAL,0xF96E6AA9L,0xFC821C58L,
|
|
0xE5075C8FL,0xE0EB2A7EL,0xEEDFB16DL,0xEB33C79CL,
|
|
0x3E9C81F3L,0x3B70F702L,0x35446C11L,0x30A81AE0L,
|
|
0x292D5A37L,0x2CC12CC6L,0x22F5B7D5L,0x2719C124L,
|
|
0x11FF367BL,0x1413408AL,0x1A27DB99L,0x1FCBAD68L,
|
|
0x064EEDBFL,0x03A29B4EL,0x0D96005DL,0x087A76ACL,
|
|
0x605BEEE3L,0x65B79812L,0x6B830301L,0x6E6F75F0L,
|
|
0x77EA3527L,0x720643D6L,0x7C32D8C5L,0x79DEAE34L,
|
|
0x4F38596BL,0x4AD42F9AL,0x44E0B489L,0x410CC278L,
|
|
0x588982AFL,0x5D65F45EL,0x53516F4DL,0x56BD19BCL
|
|
};
|
|
|
|
/*
|
|
* Calculate a 4-byte suffix to match desired CRC32C
|
|
*
|
|
* @current_crc: CRC32C checksum of all bytes before the suffix
|
|
* @desired_crc: the checksum that we want to get after adding the suffix
|
|
*
|
|
* Outputs: @suffix: pointer to where the suffix will be written (4-bytes)
|
|
*/
|
|
static void find_collision_calc_suffix(unsigned long current_crc,
|
|
unsigned long desired_crc,
|
|
char *suffix)
|
|
{
|
|
int i;
|
|
|
|
for(i = 3; i >= 0; i--) {
|
|
desired_crc = (desired_crc << 8)
|
|
^ crc32c_rev_table[desired_crc >> 24 & 0xFF]
|
|
^ ((current_crc >> i * 8) & 0xFF);
|
|
}
|
|
for (i = 0; i < 4; i++)
|
|
suffix[i] = (desired_crc >> i * 8) & 0xFF;
|
|
}
|
|
|
|
/*
|
|
* Check if suffix is valid according to our file name conventions
|
|
*/
|
|
static int find_collision_is_suffix_valid(const char *suffix)
|
|
{
|
|
int i;
|
|
char c;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
c = suffix[i];
|
|
if (c < ' ' || c > 126 || c == '/')
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int find_collision_reverse_crc32c(struct name *val, u32 name_len)
|
|
{
|
|
unsigned long checksum;
|
|
unsigned long current_checksum;
|
|
int found = 0;
|
|
int i;
|
|
|
|
/* There are no same length collisions of 4 or less bytes */
|
|
if (name_len <= 4)
|
|
return 0;
|
|
checksum = crc32c(~1, val->val, name_len);
|
|
name_len -= 4;
|
|
memset(val->sub, ' ', name_len);
|
|
i = 0;
|
|
while (1) {
|
|
current_checksum = crc32c(~1, val->sub, name_len);
|
|
find_collision_calc_suffix(current_checksum,
|
|
checksum,
|
|
val->sub + name_len);
|
|
if (find_collision_is_suffix_valid(val->sub + name_len) &&
|
|
memcmp(val->sub, val->val, val->len)) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
|
|
if (val->sub[i] == 126) {
|
|
do {
|
|
i++;
|
|
if (i >= name_len)
|
|
break;
|
|
} while (val->sub[i] == 126);
|
|
|
|
if (i >= name_len)
|
|
break;
|
|
val->sub[i]++;
|
|
if (val->sub[i] == '/')
|
|
val->sub[i]++;
|
|
memset(val->sub, ' ', i);
|
|
i = 0;
|
|
continue;
|
|
} else {
|
|
val->sub[i]++;
|
|
if (val->sub[i] == '/')
|
|
val->sub[i]++;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static char *find_collision(struct rb_root *name_tree, char *name,
|
|
u32 name_len)
|
|
{
|
|
struct name *val;
|
|
struct rb_node *entry;
|
|
struct name tmp;
|
|
int found;
|
|
int i;
|
|
|
|
tmp.val = name;
|
|
tmp.len = name_len;
|
|
entry = tree_search(name_tree, &tmp.n, name_cmp, 0);
|
|
if (entry) {
|
|
val = rb_entry(entry, struct name, n);
|
|
free(name);
|
|
return val->sub;
|
|
}
|
|
|
|
val = malloc(sizeof(struct name));
|
|
if (!val) {
|
|
error("cannot sanitize name, not enough memory");
|
|
free(name);
|
|
return NULL;
|
|
}
|
|
|
|
memset(val, 0, sizeof(*val));
|
|
|
|
val->val = name;
|
|
val->len = name_len;
|
|
val->sub = malloc(name_len);
|
|
if (!val->sub) {
|
|
error("cannot sanitize name, not enough memory");
|
|
free(val);
|
|
free(name);
|
|
return NULL;
|
|
}
|
|
|
|
found = find_collision_reverse_crc32c(val, name_len);
|
|
|
|
if (!found) {
|
|
warning(
|
|
"cannot find a hash collision for '%.*s', generating garbage, it won't match indexes",
|
|
val->len, val->val);
|
|
for (i = 0; i < name_len; i++) {
|
|
char c = rand_range(94) + 33;
|
|
|
|
if (c == '/')
|
|
c++;
|
|
val->sub[i] = c;
|
|
}
|
|
}
|
|
|
|
tree_insert(name_tree, &val->n, name_cmp);
|
|
return val->sub;
|
|
}
|
|
|
|
static void sanitize_dir_item(enum sanitize_mode sanitize,
|
|
struct rb_root *name_tree, struct extent_buffer *eb, int slot)
|
|
{
|
|
struct btrfs_dir_item *dir_item;
|
|
char *buf;
|
|
char *garbage;
|
|
unsigned long name_ptr;
|
|
u32 total_len;
|
|
u32 cur = 0;
|
|
u32 this_len;
|
|
u32 name_len;
|
|
int free_garbage = (sanitize == SANITIZE_NAMES);
|
|
|
|
dir_item = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
|
|
total_len = btrfs_item_size_nr(eb, slot);
|
|
while (cur < total_len) {
|
|
this_len = sizeof(*dir_item) +
|
|
btrfs_dir_name_len(eb, dir_item) +
|
|
btrfs_dir_data_len(eb, dir_item);
|
|
name_ptr = (unsigned long)(dir_item + 1);
|
|
name_len = btrfs_dir_name_len(eb, dir_item);
|
|
|
|
if (sanitize == SANITIZE_COLLISIONS) {
|
|
buf = malloc(name_len);
|
|
if (!buf) {
|
|
error("cannot sanitize name, not enough memory");
|
|
return;
|
|
}
|
|
read_extent_buffer(eb, buf, name_ptr, name_len);
|
|
garbage = find_collision(name_tree, buf, name_len);
|
|
} else {
|
|
garbage = generate_garbage(name_len);
|
|
}
|
|
if (!garbage) {
|
|
error("cannot sanitize name, not enough memory");
|
|
return;
|
|
}
|
|
write_extent_buffer(eb, garbage, name_ptr, name_len);
|
|
cur += this_len;
|
|
dir_item = (struct btrfs_dir_item *)((char *)dir_item +
|
|
this_len);
|
|
if (free_garbage)
|
|
free(garbage);
|
|
}
|
|
}
|
|
|
|
static void sanitize_inode_ref(enum sanitize_mode sanitize,
|
|
struct rb_root *name_tree, struct extent_buffer *eb, int slot,
|
|
int ext)
|
|
{
|
|
struct btrfs_inode_extref *extref;
|
|
struct btrfs_inode_ref *ref;
|
|
char *garbage, *buf;
|
|
unsigned long ptr;
|
|
unsigned long name_ptr;
|
|
u32 item_size;
|
|
u32 cur_offset = 0;
|
|
int len;
|
|
int free_garbage = (sanitize == SANITIZE_NAMES);
|
|
|
|
item_size = btrfs_item_size_nr(eb, slot);
|
|
ptr = btrfs_item_ptr_offset(eb, slot);
|
|
while (cur_offset < item_size) {
|
|
if (ext) {
|
|
extref = (struct btrfs_inode_extref *)(ptr +
|
|
cur_offset);
|
|
name_ptr = (unsigned long)(&extref->name);
|
|
len = btrfs_inode_extref_name_len(eb, extref);
|
|
cur_offset += sizeof(*extref);
|
|
} else {
|
|
ref = (struct btrfs_inode_ref *)(ptr + cur_offset);
|
|
len = btrfs_inode_ref_name_len(eb, ref);
|
|
name_ptr = (unsigned long)(ref + 1);
|
|
cur_offset += sizeof(*ref);
|
|
}
|
|
cur_offset += len;
|
|
|
|
if (sanitize == SANITIZE_COLLISIONS) {
|
|
buf = malloc(len);
|
|
if (!buf) {
|
|
error("cannot sanitize name, not enough memory");
|
|
return;
|
|
}
|
|
read_extent_buffer(eb, buf, name_ptr, len);
|
|
garbage = find_collision(name_tree, buf, len);
|
|
} else {
|
|
garbage = generate_garbage(len);
|
|
}
|
|
|
|
if (!garbage) {
|
|
error("cannot sanitize name, not enough memory");
|
|
return;
|
|
}
|
|
write_extent_buffer(eb, garbage, name_ptr, len);
|
|
if (free_garbage)
|
|
free(garbage);
|
|
}
|
|
}
|
|
|
|
static void sanitize_xattr(struct extent_buffer *eb, int slot)
|
|
{
|
|
struct btrfs_dir_item *dir_item;
|
|
unsigned long data_ptr;
|
|
u32 data_len;
|
|
|
|
dir_item = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
|
|
data_len = btrfs_dir_data_len(eb, dir_item);
|
|
|
|
data_ptr = (unsigned long)((char *)(dir_item + 1) +
|
|
btrfs_dir_name_len(eb, dir_item));
|
|
memset_extent_buffer(eb, 0, data_ptr, data_len);
|
|
}
|
|
|
|
static void sanitize_name(enum sanitize_mode sanitize, struct rb_root *name_tree,
|
|
u8 *dst, struct extent_buffer *src, struct btrfs_key *key,
|
|
int slot)
|
|
{
|
|
struct extent_buffer *eb;
|
|
|
|
eb = alloc_dummy_eb(src->start, src->len);
|
|
if (!eb) {
|
|
error("cannot sanitize name, not enough memory");
|
|
return;
|
|
}
|
|
|
|
memcpy(eb->data, src->data, src->len);
|
|
|
|
switch (key->type) {
|
|
case BTRFS_DIR_ITEM_KEY:
|
|
case BTRFS_DIR_INDEX_KEY:
|
|
sanitize_dir_item(sanitize, name_tree, eb, slot);
|
|
break;
|
|
case BTRFS_INODE_REF_KEY:
|
|
sanitize_inode_ref(sanitize, name_tree, eb, slot, 0);
|
|
break;
|
|
case BTRFS_INODE_EXTREF_KEY:
|
|
sanitize_inode_ref(sanitize, name_tree, eb, slot, 1);
|
|
break;
|
|
case BTRFS_XATTR_ITEM_KEY:
|
|
sanitize_xattr(eb, slot);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
memcpy(dst, eb->data, eb->len);
|
|
free(eb);
|
|
}
|
|
|
|
/*
|
|
* zero inline extents and csum items
|
|
*/
|
|
static void zero_items(struct metadump_struct *md, u8 *dst,
|
|
struct extent_buffer *src)
|
|
{
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_item *item;
|
|
struct btrfs_key key;
|
|
u32 nritems = btrfs_header_nritems(src);
|
|
size_t size;
|
|
unsigned long ptr;
|
|
int i, extent_type;
|
|
|
|
for (i = 0; i < nritems; i++) {
|
|
item = btrfs_item_nr(i);
|
|
btrfs_item_key_to_cpu(src, &key, i);
|
|
if (key.type == BTRFS_CSUM_ITEM_KEY) {
|
|
size = btrfs_item_size_nr(src, i);
|
|
memset(dst + btrfs_leaf_data(src) +
|
|
btrfs_item_offset_nr(src, i), 0, size);
|
|
continue;
|
|
}
|
|
|
|
if (md->sanitize_names && has_name(&key)) {
|
|
sanitize_name(md->sanitize_names, &md->name_tree, dst,
|
|
src, &key, i);
|
|
continue;
|
|
}
|
|
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
|
|
fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(src, fi);
|
|
if (extent_type != BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
|
|
ptr = btrfs_file_extent_inline_start(fi);
|
|
size = btrfs_file_extent_inline_item_len(src, item);
|
|
memset(dst + ptr, 0, size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* copy buffer and zero useless data in the buffer
|
|
*/
|
|
static void copy_buffer(struct metadump_struct *md, u8 *dst,
|
|
struct extent_buffer *src)
|
|
{
|
|
int level;
|
|
size_t size;
|
|
u32 nritems;
|
|
|
|
memcpy(dst, src->data, src->len);
|
|
if (src->start == BTRFS_SUPER_INFO_OFFSET)
|
|
return;
|
|
|
|
level = btrfs_header_level(src);
|
|
nritems = btrfs_header_nritems(src);
|
|
|
|
if (nritems == 0) {
|
|
size = sizeof(struct btrfs_header);
|
|
memset(dst + size, 0, src->len - size);
|
|
} else if (level == 0) {
|
|
size = btrfs_leaf_data(src) +
|
|
btrfs_item_offset_nr(src, nritems - 1) -
|
|
btrfs_item_nr_offset(nritems);
|
|
memset(dst + btrfs_item_nr_offset(nritems), 0, size);
|
|
zero_items(md, dst, src);
|
|
} else {
|
|
size = offsetof(struct btrfs_node, ptrs) +
|
|
sizeof(struct btrfs_key_ptr) * nritems;
|
|
memset(dst + size, 0, src->len - size);
|
|
}
|
|
csum_block(dst, src->len);
|
|
}
|
|
|
|
static void *dump_worker(void *data)
|
|
{
|
|
struct metadump_struct *md = (struct metadump_struct *)data;
|
|
struct async_work *async;
|
|
int ret;
|
|
|
|
while (1) {
|
|
pthread_mutex_lock(&md->mutex);
|
|
while (list_empty(&md->list)) {
|
|
if (md->done) {
|
|
pthread_mutex_unlock(&md->mutex);
|
|
goto out;
|
|
}
|
|
pthread_cond_wait(&md->cond, &md->mutex);
|
|
}
|
|
async = list_entry(md->list.next, struct async_work, list);
|
|
list_del_init(&async->list);
|
|
pthread_mutex_unlock(&md->mutex);
|
|
|
|
if (md->compress_level > 0) {
|
|
u8 *orig = async->buffer;
|
|
|
|
async->bufsize = compressBound(async->size);
|
|
async->buffer = malloc(async->bufsize);
|
|
if (!async->buffer) {
|
|
error("not enough memory for async buffer");
|
|
pthread_mutex_lock(&md->mutex);
|
|
if (!md->error)
|
|
md->error = -ENOMEM;
|
|
pthread_mutex_unlock(&md->mutex);
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
ret = compress2(async->buffer,
|
|
(unsigned long *)&async->bufsize,
|
|
orig, async->size, md->compress_level);
|
|
|
|
if (ret != Z_OK)
|
|
async->error = 1;
|
|
|
|
free(orig);
|
|
}
|
|
|
|
pthread_mutex_lock(&md->mutex);
|
|
md->num_ready++;
|
|
pthread_mutex_unlock(&md->mutex);
|
|
}
|
|
out:
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
static void meta_cluster_init(struct metadump_struct *md, u64 start)
|
|
{
|
|
struct meta_cluster_header *header;
|
|
|
|
md->num_items = 0;
|
|
md->num_ready = 0;
|
|
header = &md->cluster.header;
|
|
header->magic = cpu_to_le64(HEADER_MAGIC);
|
|
header->bytenr = cpu_to_le64(start);
|
|
header->nritems = cpu_to_le32(0);
|
|
header->compress = md->compress_level > 0 ?
|
|
COMPRESS_ZLIB : COMPRESS_NONE;
|
|
}
|
|
|
|
static void metadump_destroy(struct metadump_struct *md, int num_threads)
|
|
{
|
|
int i;
|
|
struct rb_node *n;
|
|
|
|
pthread_mutex_lock(&md->mutex);
|
|
md->done = 1;
|
|
pthread_cond_broadcast(&md->cond);
|
|
pthread_mutex_unlock(&md->mutex);
|
|
|
|
for (i = 0; i < num_threads; i++)
|
|
pthread_join(md->threads[i], NULL);
|
|
|
|
pthread_cond_destroy(&md->cond);
|
|
pthread_mutex_destroy(&md->mutex);
|
|
|
|
while ((n = rb_first(&md->name_tree))) {
|
|
struct name *name;
|
|
|
|
name = rb_entry(n, struct name, n);
|
|
rb_erase(n, &md->name_tree);
|
|
free(name->val);
|
|
free(name->sub);
|
|
free(name);
|
|
}
|
|
}
|
|
|
|
static int metadump_init(struct metadump_struct *md, struct btrfs_root *root,
|
|
FILE *out, int num_threads, int compress_level,
|
|
enum sanitize_mode sanitize_names)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
memset(md, 0, sizeof(*md));
|
|
INIT_LIST_HEAD(&md->list);
|
|
INIT_LIST_HEAD(&md->ordered);
|
|
md->root = root;
|
|
md->out = out;
|
|
md->pending_start = (u64)-1;
|
|
md->compress_level = compress_level;
|
|
md->sanitize_names = sanitize_names;
|
|
if (sanitize_names == SANITIZE_COLLISIONS)
|
|
crc32c_optimization_init();
|
|
|
|
md->name_tree.rb_node = NULL;
|
|
md->num_threads = num_threads;
|
|
pthread_cond_init(&md->cond, NULL);
|
|
pthread_mutex_init(&md->mutex, NULL);
|
|
meta_cluster_init(md, 0);
|
|
|
|
if (!num_threads)
|
|
return 0;
|
|
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_create(md->threads + i, NULL, dump_worker, md);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (ret)
|
|
metadump_destroy(md, i + 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int write_zero(FILE *out, size_t size)
|
|
{
|
|
static char zero[BLOCK_SIZE];
|
|
return fwrite(zero, size, 1, out);
|
|
}
|
|
|
|
static int write_buffers(struct metadump_struct *md, u64 *next)
|
|
{
|
|
struct meta_cluster_header *header = &md->cluster.header;
|
|
struct meta_cluster_item *item;
|
|
struct async_work *async;
|
|
u64 bytenr = 0;
|
|
u32 nritems = 0;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
if (list_empty(&md->ordered))
|
|
goto out;
|
|
|
|
/* wait until all buffers are compressed */
|
|
while (!err && md->num_items > md->num_ready) {
|
|
struct timespec ts = {
|
|
.tv_sec = 0,
|
|
.tv_nsec = 10000000,
|
|
};
|
|
pthread_mutex_unlock(&md->mutex);
|
|
nanosleep(&ts, NULL);
|
|
pthread_mutex_lock(&md->mutex);
|
|
err = md->error;
|
|
}
|
|
|
|
if (err) {
|
|
error("one of the threads failed: %s", strerror(-err));
|
|
goto out;
|
|
}
|
|
|
|
/* setup and write index block */
|
|
list_for_each_entry(async, &md->ordered, ordered) {
|
|
item = &md->cluster.items[nritems];
|
|
item->bytenr = cpu_to_le64(async->start);
|
|
item->size = cpu_to_le32(async->bufsize);
|
|
nritems++;
|
|
}
|
|
header->nritems = cpu_to_le32(nritems);
|
|
|
|
ret = fwrite(&md->cluster, BLOCK_SIZE, 1, md->out);
|
|
if (ret != 1) {
|
|
error("unable to write out cluster: %s", strerror(errno));
|
|
return -errno;
|
|
}
|
|
|
|
/* write buffers */
|
|
bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE;
|
|
while (!list_empty(&md->ordered)) {
|
|
async = list_entry(md->ordered.next, struct async_work,
|
|
ordered);
|
|
list_del_init(&async->ordered);
|
|
|
|
bytenr += async->bufsize;
|
|
if (!err)
|
|
ret = fwrite(async->buffer, async->bufsize, 1,
|
|
md->out);
|
|
if (ret != 1) {
|
|
error("unable to write out cluster: %s",
|
|
strerror(errno));
|
|
err = -errno;
|
|
ret = 0;
|
|
}
|
|
|
|
free(async->buffer);
|
|
free(async);
|
|
}
|
|
|
|
/* zero unused space in the last block */
|
|
if (!err && bytenr & BLOCK_MASK) {
|
|
size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
|
|
|
|
bytenr += size;
|
|
ret = write_zero(md->out, size);
|
|
if (ret != 1) {
|
|
error("unable to zero out buffer: %s",
|
|
strerror(errno));
|
|
err = -errno;
|
|
}
|
|
}
|
|
out:
|
|
*next = bytenr;
|
|
return err;
|
|
}
|
|
|
|
static int read_data_extent(struct metadump_struct *md,
|
|
struct async_work *async)
|
|
{
|
|
struct btrfs_root *root = md->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 bytes_left = async->size;
|
|
u64 logical = async->start;
|
|
u64 offset = 0;
|
|
u64 read_len;
|
|
int num_copies;
|
|
int cur_mirror;
|
|
int ret;
|
|
|
|
num_copies = btrfs_num_copies(root->fs_info, logical, bytes_left);
|
|
|
|
/* Try our best to read data, just like read_tree_block() */
|
|
for (cur_mirror = 0; cur_mirror < num_copies; cur_mirror++) {
|
|
while (bytes_left) {
|
|
read_len = bytes_left;
|
|
ret = read_extent_data(fs_info,
|
|
(char *)(async->buffer + offset),
|
|
logical, &read_len, cur_mirror);
|
|
if (ret < 0)
|
|
break;
|
|
offset += read_len;
|
|
logical += read_len;
|
|
bytes_left -= read_len;
|
|
}
|
|
}
|
|
if (bytes_left)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static int get_dev_fd(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_device *dev;
|
|
|
|
dev = list_first_entry(&root->fs_info->fs_devices->devices,
|
|
struct btrfs_device, dev_list);
|
|
return dev->fd;
|
|
}
|
|
|
|
static int flush_pending(struct metadump_struct *md, int done)
|
|
{
|
|
struct async_work *async = NULL;
|
|
struct extent_buffer *eb;
|
|
u64 start = 0;
|
|
u64 size;
|
|
size_t offset;
|
|
int ret = 0;
|
|
|
|
if (md->pending_size) {
|
|
async = calloc(1, sizeof(*async));
|
|
if (!async)
|
|
return -ENOMEM;
|
|
|
|
async->start = md->pending_start;
|
|
async->size = md->pending_size;
|
|
async->bufsize = async->size;
|
|
async->buffer = malloc(async->bufsize);
|
|
if (!async->buffer) {
|
|
free(async);
|
|
return -ENOMEM;
|
|
}
|
|
offset = 0;
|
|
start = async->start;
|
|
size = async->size;
|
|
|
|
if (md->data) {
|
|
ret = read_data_extent(md, async);
|
|
if (ret) {
|
|
free(async->buffer);
|
|
free(async);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Balance can make the mapping not cover the super block, so
|
|
* just copy directly from one of the devices.
|
|
*/
|
|
if (start == BTRFS_SUPER_INFO_OFFSET) {
|
|
int fd = get_dev_fd(md->root);
|
|
|
|
ret = pread64(fd, async->buffer, size, start);
|
|
if (ret < size) {
|
|
free(async->buffer);
|
|
free(async);
|
|
error("unable to read superblock at %llu: %s",
|
|
(unsigned long long)start,
|
|
strerror(errno));
|
|
return -errno;
|
|
}
|
|
size = 0;
|
|
ret = 0;
|
|
}
|
|
|
|
while (!md->data && size > 0) {
|
|
u64 this_read = min((u64)md->root->fs_info->nodesize,
|
|
size);
|
|
|
|
eb = read_tree_block(md->root->fs_info, start, 0);
|
|
if (!extent_buffer_uptodate(eb)) {
|
|
free(async->buffer);
|
|
free(async);
|
|
error("unable to read metadata block %llu",
|
|
(unsigned long long)start);
|
|
return -EIO;
|
|
}
|
|
copy_buffer(md, async->buffer + offset, eb);
|
|
free_extent_buffer(eb);
|
|
start += this_read;
|
|
offset += this_read;
|
|
size -= this_read;
|
|
}
|
|
|
|
md->pending_start = (u64)-1;
|
|
md->pending_size = 0;
|
|
} else if (!done) {
|
|
return 0;
|
|
}
|
|
|
|
pthread_mutex_lock(&md->mutex);
|
|
if (async) {
|
|
list_add_tail(&async->ordered, &md->ordered);
|
|
md->num_items++;
|
|
if (md->compress_level > 0) {
|
|
list_add_tail(&async->list, &md->list);
|
|
pthread_cond_signal(&md->cond);
|
|
} else {
|
|
md->num_ready++;
|
|
}
|
|
}
|
|
if (md->num_items >= ITEMS_PER_CLUSTER || done) {
|
|
ret = write_buffers(md, &start);
|
|
if (ret)
|
|
error("unable to write buffers: %s", strerror(-ret));
|
|
else
|
|
meta_cluster_init(md, start);
|
|
}
|
|
pthread_mutex_unlock(&md->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int add_extent(u64 start, u64 size, struct metadump_struct *md,
|
|
int data)
|
|
{
|
|
int ret;
|
|
if (md->data != data ||
|
|
md->pending_size + size > MAX_PENDING_SIZE ||
|
|
md->pending_start + md->pending_size != start) {
|
|
ret = flush_pending(md, 0);
|
|
if (ret)
|
|
return ret;
|
|
md->pending_start = start;
|
|
}
|
|
readahead_tree_block(md->root->fs_info, start, 0);
|
|
md->pending_size += size;
|
|
md->data = data;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
static int is_tree_block(struct btrfs_root *extent_root,
|
|
struct btrfs_path *path, u64 bytenr)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
u64 ref_objectid;
|
|
int ret;
|
|
|
|
leaf = path->nodes[0];
|
|
while (1) {
|
|
struct btrfs_extent_ref_v0 *ref_item;
|
|
path->slots[0]++;
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(extent_root, path);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != bytenr)
|
|
break;
|
|
if (key.type != BTRFS_EXTENT_REF_V0_KEY)
|
|
continue;
|
|
ref_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
ref_objectid = btrfs_ref_objectid_v0(leaf, ref_item);
|
|
if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID)
|
|
return 1;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb,
|
|
struct metadump_struct *metadump, int root_tree)
|
|
{
|
|
struct extent_buffer *tmp;
|
|
struct btrfs_root_item *ri;
|
|
struct btrfs_key key;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 bytenr;
|
|
int level;
|
|
int nritems = 0;
|
|
int i = 0;
|
|
int ret;
|
|
|
|
ret = add_extent(btrfs_header_bytenr(eb), fs_info->nodesize,
|
|
metadump, 0);
|
|
if (ret) {
|
|
error("unable to add metadata block %llu: %d",
|
|
btrfs_header_bytenr(eb), ret);
|
|
return ret;
|
|
}
|
|
|
|
if (btrfs_header_level(eb) == 0 && !root_tree)
|
|
return 0;
|
|
|
|
level = btrfs_header_level(eb);
|
|
nritems = btrfs_header_nritems(eb);
|
|
for (i = 0; i < nritems; i++) {
|
|
if (level == 0) {
|
|
btrfs_item_key_to_cpu(eb, &key, i);
|
|
if (key.type != BTRFS_ROOT_ITEM_KEY)
|
|
continue;
|
|
ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
|
|
bytenr = btrfs_disk_root_bytenr(eb, ri);
|
|
tmp = read_tree_block(fs_info, bytenr, 0);
|
|
if (!extent_buffer_uptodate(tmp)) {
|
|
error("unable to read log root block");
|
|
return -EIO;
|
|
}
|
|
ret = copy_tree_blocks(root, tmp, metadump, 0);
|
|
free_extent_buffer(tmp);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
bytenr = btrfs_node_blockptr(eb, i);
|
|
tmp = read_tree_block(fs_info, bytenr, 0);
|
|
if (!extent_buffer_uptodate(tmp)) {
|
|
error("unable to read log root block");
|
|
return -EIO;
|
|
}
|
|
ret = copy_tree_blocks(root, tmp, metadump, root_tree);
|
|
free_extent_buffer(tmp);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_log_trees(struct btrfs_root *root,
|
|
struct metadump_struct *metadump)
|
|
{
|
|
u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy);
|
|
|
|
if (blocknr == 0)
|
|
return 0;
|
|
|
|
if (!root->fs_info->log_root_tree ||
|
|
!root->fs_info->log_root_tree->node) {
|
|
error("unable to copy tree log, it has not been setup");
|
|
return -EIO;
|
|
}
|
|
|
|
return copy_tree_blocks(root, root->fs_info->log_root_tree->node,
|
|
metadump, 1);
|
|
}
|
|
|
|
static int copy_space_cache(struct btrfs_root *root,
|
|
struct metadump_struct *metadump,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
u64 bytenr, num_bytes;
|
|
int ret;
|
|
|
|
root = root->fs_info->tree_root;
|
|
|
|
key.objectid = 0;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
error("free space inode not found: %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
while (1) {
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
error("cannot go to next leaf %d", ret);
|
|
return ret;
|
|
}
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(leaf, fi) !=
|
|
BTRFS_FILE_EXTENT_REG) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
ret = add_extent(bytenr, num_bytes, metadump, 1);
|
|
if (ret) {
|
|
error("unable to add space cache blocks %d", ret);
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_from_extent_tree(struct metadump_struct *metadump,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_root *extent_root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_key key;
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
int ret;
|
|
|
|
extent_root = metadump->root->fs_info->extent_root;
|
|
bytenr = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE;
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
error("extent root not found: %d", ret);
|
|
return ret;
|
|
}
|
|
ret = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
while (1) {
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(extent_root, path);
|
|
if (ret < 0) {
|
|
error("cannot go to next leaf %d", ret);
|
|
break;
|
|
}
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid < bytenr ||
|
|
(key.type != BTRFS_EXTENT_ITEM_KEY &&
|
|
key.type != BTRFS_METADATA_ITEM_KEY)) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
bytenr = key.objectid;
|
|
if (key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
num_bytes = extent_root->fs_info->nodesize;
|
|
} else {
|
|
num_bytes = key.offset;
|
|
}
|
|
|
|
if (num_bytes == 0) {
|
|
error("extent length 0 at bytenr %llu key type %d",
|
|
(unsigned long long)bytenr, key.type);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) {
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
if (btrfs_extent_flags(leaf, ei) &
|
|
BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
ret = add_extent(bytenr, num_bytes, metadump,
|
|
0);
|
|
if (ret) {
|
|
error("unable to add block %llu: %d",
|
|
(unsigned long long)bytenr, ret);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
ret = is_tree_block(extent_root, path, bytenr);
|
|
if (ret < 0) {
|
|
error("failed to check tree block %llu: %d",
|
|
(unsigned long long)bytenr, ret);
|
|
break;
|
|
}
|
|
|
|
if (ret) {
|
|
ret = add_extent(bytenr, num_bytes, metadump,
|
|
0);
|
|
if (ret) {
|
|
error("unable to add block %llu: %d",
|
|
(unsigned long long)bytenr, ret);
|
|
break;
|
|
}
|
|
}
|
|
ret = 0;
|
|
#else
|
|
error(
|
|
"either extent tree is corrupted or you haven't built with V0 support");
|
|
ret = -EIO;
|
|
break;
|
|
#endif
|
|
}
|
|
bytenr += num_bytes;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int create_metadump(const char *input, FILE *out, int num_threads,
|
|
int compress_level, enum sanitize_mode sanitize,
|
|
int walk_trees)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_path path;
|
|
struct metadump_struct metadump;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
root = open_ctree(input, 0, 0);
|
|
if (!root) {
|
|
error("open ctree failed");
|
|
return -EIO;
|
|
}
|
|
|
|
ret = metadump_init(&metadump, root, out, num_threads,
|
|
compress_level, sanitize);
|
|
if (ret) {
|
|
error("failed to initialize metadump: %d", ret);
|
|
close_ctree(root);
|
|
return ret;
|
|
}
|
|
|
|
ret = add_extent(BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE,
|
|
&metadump, 0);
|
|
if (ret) {
|
|
error("unable to add metadata: %d", ret);
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_init_path(&path);
|
|
|
|
if (walk_trees) {
|
|
ret = copy_tree_blocks(root, root->fs_info->chunk_root->node,
|
|
&metadump, 1);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
ret = copy_tree_blocks(root, root->fs_info->tree_root->node,
|
|
&metadump, 1);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
} else {
|
|
ret = copy_from_extent_tree(&metadump, &path);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = copy_log_trees(root, &metadump);
|
|
if (ret) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
ret = copy_space_cache(root, &metadump, &path);
|
|
out:
|
|
ret = flush_pending(&metadump, 1);
|
|
if (ret) {
|
|
if (!err)
|
|
err = ret;
|
|
error("failed to flush pending data: %d", ret);
|
|
}
|
|
|
|
metadump_destroy(&metadump, num_threads);
|
|
|
|
btrfs_release_path(&path);
|
|
ret = close_ctree(root);
|
|
return err ? err : ret;
|
|
}
|
|
|
|
static void update_super_old(u8 *buffer)
|
|
{
|
|
struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_disk_key *key;
|
|
u32 sectorsize = btrfs_super_sectorsize(super);
|
|
u64 flags = btrfs_super_flags(super);
|
|
|
|
flags |= BTRFS_SUPER_FLAG_METADUMP;
|
|
btrfs_set_super_flags(super, flags);
|
|
|
|
key = (struct btrfs_disk_key *)(super->sys_chunk_array);
|
|
chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
|
|
sizeof(struct btrfs_disk_key));
|
|
|
|
btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
|
|
btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
|
|
btrfs_set_disk_key_offset(key, 0);
|
|
|
|
btrfs_set_stack_chunk_length(chunk, (u64)-1);
|
|
btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
|
|
btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
|
|
btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
|
|
btrfs_set_stack_chunk_io_align(chunk, sectorsize);
|
|
btrfs_set_stack_chunk_io_width(chunk, sectorsize);
|
|
btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
|
|
btrfs_set_stack_chunk_num_stripes(chunk, 1);
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
|
|
chunk->stripe.devid = super->dev_item.devid;
|
|
btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
|
|
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
|
|
btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
|
|
csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
|
|
}
|
|
|
|
static int update_super(struct mdrestore_struct *mdres, u8 *buffer)
|
|
{
|
|
struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_key key;
|
|
u64 flags = btrfs_super_flags(super);
|
|
u32 new_array_size = 0;
|
|
u32 array_size;
|
|
u32 cur = 0;
|
|
u8 *ptr, *write_ptr;
|
|
int old_num_stripes;
|
|
|
|
write_ptr = ptr = super->sys_chunk_array;
|
|
array_size = btrfs_super_sys_array_size(super);
|
|
|
|
while (cur < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)ptr;
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
new_array_size += sizeof(*disk_key);
|
|
memmove(write_ptr, ptr, sizeof(*disk_key));
|
|
|
|
write_ptr += sizeof(*disk_key);
|
|
ptr += sizeof(*disk_key);
|
|
cur += sizeof(*disk_key);
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
u64 type, physical, physical_dup, size = 0;
|
|
|
|
chunk = (struct btrfs_chunk *)ptr;
|
|
old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
|
|
chunk = (struct btrfs_chunk *)write_ptr;
|
|
|
|
memmove(write_ptr, ptr, sizeof(*chunk));
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
|
|
type = btrfs_stack_chunk_type(chunk);
|
|
if (type & BTRFS_BLOCK_GROUP_DUP) {
|
|
new_array_size += sizeof(struct btrfs_stripe);
|
|
write_ptr += sizeof(struct btrfs_stripe);
|
|
} else {
|
|
btrfs_set_stack_chunk_num_stripes(chunk, 1);
|
|
btrfs_set_stack_chunk_type(chunk,
|
|
BTRFS_BLOCK_GROUP_SYSTEM);
|
|
}
|
|
chunk->stripe.devid = super->dev_item.devid;
|
|
physical = logical_to_physical(mdres, key.offset,
|
|
&size, &physical_dup);
|
|
if (size != (u64)-1)
|
|
btrfs_set_stack_stripe_offset(&chunk->stripe,
|
|
physical);
|
|
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
new_array_size += sizeof(*chunk);
|
|
} else {
|
|
error("bogus key in the sys array %d", key.type);
|
|
return -EIO;
|
|
}
|
|
write_ptr += sizeof(*chunk);
|
|
ptr += btrfs_chunk_item_size(old_num_stripes);
|
|
cur += btrfs_chunk_item_size(old_num_stripes);
|
|
}
|
|
|
|
if (mdres->clear_space_cache)
|
|
btrfs_set_super_cache_generation(super, 0);
|
|
|
|
flags |= BTRFS_SUPER_FLAG_METADUMP_V2;
|
|
btrfs_set_super_flags(super, flags);
|
|
btrfs_set_super_sys_array_size(super, new_array_size);
|
|
btrfs_set_super_num_devices(super, 1);
|
|
csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
|
|
{
|
|
struct extent_buffer *eb;
|
|
|
|
eb = calloc(1, sizeof(struct extent_buffer) + size);
|
|
if (!eb)
|
|
return NULL;
|
|
|
|
eb->start = bytenr;
|
|
eb->len = size;
|
|
return eb;
|
|
}
|
|
|
|
static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
|
|
{
|
|
struct btrfs_item *item;
|
|
u32 nritems;
|
|
u32 old_size;
|
|
u32 old_data_start;
|
|
u32 size_diff;
|
|
u32 data_end;
|
|
int i;
|
|
|
|
old_size = btrfs_item_size_nr(eb, slot);
|
|
if (old_size == new_size)
|
|
return;
|
|
|
|
nritems = btrfs_header_nritems(eb);
|
|
data_end = btrfs_item_offset_nr(eb, nritems - 1);
|
|
|
|
old_data_start = btrfs_item_offset_nr(eb, slot);
|
|
size_diff = old_size - new_size;
|
|
|
|
for (i = slot; i < nritems; i++) {
|
|
u32 ioff;
|
|
item = btrfs_item_nr(i);
|
|
ioff = btrfs_item_offset(eb, item);
|
|
btrfs_set_item_offset(eb, item, ioff + size_diff);
|
|
}
|
|
|
|
memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff,
|
|
btrfs_leaf_data(eb) + data_end,
|
|
old_data_start + new_size - data_end);
|
|
item = btrfs_item_nr(slot);
|
|
btrfs_set_item_size(eb, item, new_size);
|
|
}
|
|
|
|
static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
|
|
struct async_work *async, u8 *buffer,
|
|
size_t size)
|
|
{
|
|
struct extent_buffer *eb;
|
|
size_t size_left = size;
|
|
u64 bytenr = async->start;
|
|
int i;
|
|
|
|
if (size_left % mdres->nodesize)
|
|
return 0;
|
|
|
|
eb = alloc_dummy_eb(bytenr, mdres->nodesize);
|
|
if (!eb)
|
|
return -ENOMEM;
|
|
|
|
while (size_left) {
|
|
eb->start = bytenr;
|
|
memcpy(eb->data, buffer, mdres->nodesize);
|
|
|
|
if (btrfs_header_bytenr(eb) != bytenr)
|
|
break;
|
|
if (memcmp(mdres->fsid,
|
|
eb->data + offsetof(struct btrfs_header, fsid),
|
|
BTRFS_FSID_SIZE))
|
|
break;
|
|
|
|
if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
|
|
goto next;
|
|
|
|
if (btrfs_header_level(eb) != 0)
|
|
goto next;
|
|
|
|
for (i = 0; i < btrfs_header_nritems(eb); i++) {
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_key key;
|
|
u64 type, physical, physical_dup, size = (u64)-1;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, i);
|
|
if (key.type != BTRFS_CHUNK_ITEM_KEY)
|
|
continue;
|
|
|
|
size = 0;
|
|
physical = logical_to_physical(mdres, key.offset,
|
|
&size, &physical_dup);
|
|
|
|
if (!physical_dup)
|
|
truncate_item(eb, i, sizeof(*chunk));
|
|
chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);
|
|
|
|
|
|
/* Zero out the RAID profile */
|
|
type = btrfs_chunk_type(eb, chunk);
|
|
type &= (BTRFS_BLOCK_GROUP_DATA |
|
|
BTRFS_BLOCK_GROUP_SYSTEM |
|
|
BTRFS_BLOCK_GROUP_METADATA |
|
|
BTRFS_BLOCK_GROUP_DUP);
|
|
btrfs_set_chunk_type(eb, chunk, type);
|
|
|
|
if (!physical_dup)
|
|
btrfs_set_chunk_num_stripes(eb, chunk, 1);
|
|
btrfs_set_chunk_sub_stripes(eb, chunk, 0);
|
|
btrfs_set_stripe_devid_nr(eb, chunk, 0, mdres->devid);
|
|
if (size != (u64)-1)
|
|
btrfs_set_stripe_offset_nr(eb, chunk, 0,
|
|
physical);
|
|
/* update stripe 2 offset */
|
|
if (physical_dup)
|
|
btrfs_set_stripe_offset_nr(eb, chunk, 1,
|
|
physical_dup);
|
|
|
|
write_extent_buffer(eb, mdres->uuid,
|
|
(unsigned long)btrfs_stripe_dev_uuid_nr(
|
|
chunk, 0),
|
|
BTRFS_UUID_SIZE);
|
|
}
|
|
memcpy(buffer, eb->data, eb->len);
|
|
csum_block(buffer, eb->len);
|
|
next:
|
|
size_left -= mdres->nodesize;
|
|
buffer += mdres->nodesize;
|
|
bytenr += mdres->nodesize;
|
|
}
|
|
|
|
free(eb);
|
|
return 0;
|
|
}
|
|
|
|
static void write_backup_supers(int fd, u8 *buf)
|
|
{
|
|
struct btrfs_super_block *super = (struct btrfs_super_block *)buf;
|
|
struct stat st;
|
|
u64 size;
|
|
u64 bytenr;
|
|
int i;
|
|
int ret;
|
|
|
|
if (fstat(fd, &st)) {
|
|
error(
|
|
"cannot stat restore point, won't be able to write backup supers: %s",
|
|
strerror(errno));
|
|
return;
|
|
}
|
|
|
|
size = btrfs_device_size(fd, &st);
|
|
|
|
for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE > size)
|
|
break;
|
|
btrfs_set_super_bytenr(super, bytenr);
|
|
csum_block(buf, BTRFS_SUPER_INFO_SIZE);
|
|
ret = pwrite64(fd, buf, BTRFS_SUPER_INFO_SIZE, bytenr);
|
|
if (ret < BTRFS_SUPER_INFO_SIZE) {
|
|
if (ret < 0)
|
|
error(
|
|
"problem writing out backup super block %d: %s",
|
|
i, strerror(errno));
|
|
else
|
|
error("short write writing out backup super block");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *restore_worker(void *data)
|
|
{
|
|
struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
|
|
struct async_work *async;
|
|
size_t size;
|
|
u8 *buffer;
|
|
u8 *outbuf;
|
|
int outfd;
|
|
int ret;
|
|
int compress_size = MAX_PENDING_SIZE * 4;
|
|
|
|
outfd = fileno(mdres->out);
|
|
buffer = malloc(compress_size);
|
|
if (!buffer) {
|
|
error("not enough memory for restore worker buffer");
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
if (!mdres->error)
|
|
mdres->error = -ENOMEM;
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
while (1) {
|
|
u64 bytenr, physical_dup;
|
|
off_t offset = 0;
|
|
int err = 0;
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
while (!mdres->nodesize || list_empty(&mdres->list)) {
|
|
if (mdres->done) {
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
goto out;
|
|
}
|
|
pthread_cond_wait(&mdres->cond, &mdres->mutex);
|
|
}
|
|
async = list_entry(mdres->list.next, struct async_work, list);
|
|
list_del_init(&async->list);
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
size = compress_size;
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
ret = uncompress(buffer, (unsigned long *)&size,
|
|
async->buffer, async->bufsize);
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
if (ret != Z_OK) {
|
|
error("decompression failed with %d", ret);
|
|
err = -EIO;
|
|
}
|
|
outbuf = buffer;
|
|
} else {
|
|
outbuf = async->buffer;
|
|
size = async->bufsize;
|
|
}
|
|
|
|
if (!mdres->multi_devices) {
|
|
if (async->start == BTRFS_SUPER_INFO_OFFSET) {
|
|
if (mdres->old_restore) {
|
|
update_super_old(outbuf);
|
|
} else {
|
|
ret = update_super(mdres, outbuf);
|
|
if (ret)
|
|
err = ret;
|
|
}
|
|
} else if (!mdres->old_restore) {
|
|
ret = fixup_chunk_tree_block(mdres, async, outbuf, size);
|
|
if (ret)
|
|
err = ret;
|
|
}
|
|
}
|
|
|
|
if (!mdres->fixup_offset) {
|
|
while (size) {
|
|
u64 chunk_size = size;
|
|
physical_dup = 0;
|
|
if (!mdres->multi_devices && !mdres->old_restore)
|
|
bytenr = logical_to_physical(mdres,
|
|
async->start + offset,
|
|
&chunk_size,
|
|
&physical_dup);
|
|
else
|
|
bytenr = async->start + offset;
|
|
|
|
ret = pwrite64(outfd, outbuf+offset, chunk_size,
|
|
bytenr);
|
|
if (ret != chunk_size)
|
|
goto error;
|
|
|
|
if (physical_dup)
|
|
ret = pwrite64(outfd, outbuf+offset,
|
|
chunk_size,
|
|
physical_dup);
|
|
if (ret != chunk_size)
|
|
goto error;
|
|
|
|
size -= chunk_size;
|
|
offset += chunk_size;
|
|
continue;
|
|
|
|
error:
|
|
if (ret < 0) {
|
|
error("unable to write to device: %s",
|
|
strerror(errno));
|
|
err = errno;
|
|
} else {
|
|
error("short write");
|
|
err = -EIO;
|
|
}
|
|
}
|
|
} else if (async->start != BTRFS_SUPER_INFO_OFFSET) {
|
|
ret = write_data_to_disk(mdres->info, outbuf, async->start, size, 0);
|
|
if (ret) {
|
|
error("failed to write data");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
/* backup super blocks are already there at fixup_offset stage */
|
|
if (!mdres->multi_devices && async->start == BTRFS_SUPER_INFO_OFFSET)
|
|
write_backup_supers(outfd, outbuf);
|
|
|
|
if (err && !mdres->error)
|
|
mdres->error = err;
|
|
mdres->num_items--;
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
|
|
free(async->buffer);
|
|
free(async);
|
|
}
|
|
out:
|
|
free(buffer);
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads)
|
|
{
|
|
struct rb_node *n;
|
|
int i;
|
|
|
|
while ((n = rb_first(&mdres->chunk_tree))) {
|
|
struct fs_chunk *entry;
|
|
|
|
entry = rb_entry(n, struct fs_chunk, l);
|
|
rb_erase(n, &mdres->chunk_tree);
|
|
rb_erase(&entry->p, &mdres->physical_tree);
|
|
free(entry);
|
|
}
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
mdres->done = 1;
|
|
pthread_cond_broadcast(&mdres->cond);
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
|
|
for (i = 0; i < num_threads; i++)
|
|
pthread_join(mdres->threads[i], NULL);
|
|
|
|
pthread_cond_destroy(&mdres->cond);
|
|
pthread_mutex_destroy(&mdres->mutex);
|
|
}
|
|
|
|
static int mdrestore_init(struct mdrestore_struct *mdres,
|
|
FILE *in, FILE *out, int old_restore,
|
|
int num_threads, int fixup_offset,
|
|
struct btrfs_fs_info *info, int multi_devices)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
memset(mdres, 0, sizeof(*mdres));
|
|
pthread_cond_init(&mdres->cond, NULL);
|
|
pthread_mutex_init(&mdres->mutex, NULL);
|
|
INIT_LIST_HEAD(&mdres->list);
|
|
INIT_LIST_HEAD(&mdres->overlapping_chunks);
|
|
mdres->in = in;
|
|
mdres->out = out;
|
|
mdres->old_restore = old_restore;
|
|
mdres->chunk_tree.rb_node = NULL;
|
|
mdres->fixup_offset = fixup_offset;
|
|
mdres->info = info;
|
|
mdres->multi_devices = multi_devices;
|
|
mdres->clear_space_cache = 0;
|
|
mdres->last_physical_offset = 0;
|
|
mdres->alloced_chunks = 0;
|
|
|
|
if (!num_threads)
|
|
return 0;
|
|
|
|
mdres->num_threads = num_threads;
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_create(&mdres->threads[i], NULL, restore_worker,
|
|
mdres);
|
|
if (ret) {
|
|
/* pthread_create returns errno directly */
|
|
ret = -ret;
|
|
break;
|
|
}
|
|
}
|
|
if (ret)
|
|
mdrestore_destroy(mdres, i + 1);
|
|
return ret;
|
|
}
|
|
|
|
static int fill_mdres_info(struct mdrestore_struct *mdres,
|
|
struct async_work *async)
|
|
{
|
|
struct btrfs_super_block *super;
|
|
u8 *buffer = NULL;
|
|
u8 *outbuf;
|
|
int ret;
|
|
|
|
/* We've already been initialized */
|
|
if (mdres->nodesize)
|
|
return 0;
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
size_t size = MAX_PENDING_SIZE * 2;
|
|
|
|
buffer = malloc(MAX_PENDING_SIZE * 2);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
ret = uncompress(buffer, (unsigned long *)&size,
|
|
async->buffer, async->bufsize);
|
|
if (ret != Z_OK) {
|
|
error("decompression failed with %d", ret);
|
|
free(buffer);
|
|
return -EIO;
|
|
}
|
|
outbuf = buffer;
|
|
} else {
|
|
outbuf = async->buffer;
|
|
}
|
|
|
|
super = (struct btrfs_super_block *)outbuf;
|
|
mdres->nodesize = btrfs_super_nodesize(super);
|
|
memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
|
|
memcpy(mdres->uuid, super->dev_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
mdres->devid = le64_to_cpu(super->dev_item.devid);
|
|
free(buffer);
|
|
return 0;
|
|
}
|
|
|
|
static int add_cluster(struct meta_cluster *cluster,
|
|
struct mdrestore_struct *mdres, u64 *next)
|
|
{
|
|
struct meta_cluster_item *item;
|
|
struct meta_cluster_header *header = &cluster->header;
|
|
struct async_work *async;
|
|
u64 bytenr;
|
|
u32 i, nritems;
|
|
int ret;
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
mdres->compress_method = header->compress;
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
|
|
bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE;
|
|
nritems = le32_to_cpu(header->nritems);
|
|
for (i = 0; i < nritems; i++) {
|
|
item = &cluster->items[i];
|
|
async = calloc(1, sizeof(*async));
|
|
if (!async) {
|
|
error("not enough memory for async data");
|
|
return -ENOMEM;
|
|
}
|
|
async->start = le64_to_cpu(item->bytenr);
|
|
async->bufsize = le32_to_cpu(item->size);
|
|
async->buffer = malloc(async->bufsize);
|
|
if (!async->buffer) {
|
|
error("not enough memory for async buffer");
|
|
free(async);
|
|
return -ENOMEM;
|
|
}
|
|
ret = fread(async->buffer, async->bufsize, 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("unable to read buffer: %s", strerror(errno));
|
|
free(async->buffer);
|
|
free(async);
|
|
return -EIO;
|
|
}
|
|
bytenr += async->bufsize;
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
if (async->start == BTRFS_SUPER_INFO_OFFSET) {
|
|
ret = fill_mdres_info(mdres, async);
|
|
if (ret) {
|
|
error("unable to set up restore state");
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
free(async->buffer);
|
|
free(async);
|
|
return ret;
|
|
}
|
|
}
|
|
list_add_tail(&async->list, &mdres->list);
|
|
mdres->num_items++;
|
|
pthread_cond_signal(&mdres->cond);
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
}
|
|
if (bytenr & BLOCK_MASK) {
|
|
char buffer[BLOCK_MASK];
|
|
size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
|
|
|
|
bytenr += size;
|
|
ret = fread(buffer, size, 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("failed to read buffer: %s", strerror(errno));
|
|
return -EIO;
|
|
}
|
|
}
|
|
*next = bytenr;
|
|
return 0;
|
|
}
|
|
|
|
static int wait_for_worker(struct mdrestore_struct *mdres)
|
|
{
|
|
int ret = 0;
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
ret = mdres->error;
|
|
while (!ret && mdres->num_items > 0) {
|
|
struct timespec ts = {
|
|
.tv_sec = 0,
|
|
.tv_nsec = 10000000,
|
|
};
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
nanosleep(&ts, NULL);
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
ret = mdres->error;
|
|
}
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer,
|
|
u64 bytenr, u64 item_bytenr, u32 bufsize,
|
|
u64 cluster_bytenr)
|
|
{
|
|
struct extent_buffer *eb;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
eb = alloc_dummy_eb(bytenr, mdres->nodesize);
|
|
if (!eb) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
while (item_bytenr != bytenr) {
|
|
buffer += mdres->nodesize;
|
|
item_bytenr += mdres->nodesize;
|
|
}
|
|
|
|
memcpy(eb->data, buffer, mdres->nodesize);
|
|
if (btrfs_header_bytenr(eb) != bytenr) {
|
|
error("eb bytenr does not match found bytenr: %llu != %llu",
|
|
(unsigned long long)btrfs_header_bytenr(eb),
|
|
(unsigned long long)bytenr);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid),
|
|
BTRFS_FSID_SIZE)) {
|
|
error("filesystem UUID of eb %llu does not match",
|
|
(unsigned long long)bytenr);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) {
|
|
error("wrong eb %llu owner %llu",
|
|
(unsigned long long)bytenr,
|
|
(unsigned long long)btrfs_header_owner(eb));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < btrfs_header_nritems(eb); i++) {
|
|
struct btrfs_chunk *chunk;
|
|
struct fs_chunk *fs_chunk;
|
|
struct btrfs_key key;
|
|
u64 type;
|
|
|
|
if (btrfs_header_level(eb)) {
|
|
u64 blockptr = btrfs_node_blockptr(eb, i);
|
|
|
|
ret = search_for_chunk_blocks(mdres, blockptr,
|
|
cluster_bytenr);
|
|
if (ret)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
/* Yay a leaf! We loves leafs! */
|
|
btrfs_item_key_to_cpu(eb, &key, i);
|
|
if (key.type != BTRFS_CHUNK_ITEM_KEY)
|
|
continue;
|
|
|
|
fs_chunk = malloc(sizeof(struct fs_chunk));
|
|
if (!fs_chunk) {
|
|
error("not enough memory to allocate chunk");
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
memset(fs_chunk, 0, sizeof(*fs_chunk));
|
|
chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);
|
|
|
|
fs_chunk->logical = key.offset;
|
|
fs_chunk->physical = btrfs_stripe_offset_nr(eb, chunk, 0);
|
|
fs_chunk->bytes = btrfs_chunk_length(eb, chunk);
|
|
INIT_LIST_HEAD(&fs_chunk->list);
|
|
if (tree_search(&mdres->physical_tree, &fs_chunk->p,
|
|
physical_cmp, 1) != NULL)
|
|
list_add(&fs_chunk->list, &mdres->overlapping_chunks);
|
|
else
|
|
tree_insert(&mdres->physical_tree, &fs_chunk->p,
|
|
physical_cmp);
|
|
|
|
type = btrfs_chunk_type(eb, chunk);
|
|
if (type & BTRFS_BLOCK_GROUP_DUP) {
|
|
fs_chunk->physical_dup =
|
|
btrfs_stripe_offset_nr(eb, chunk, 1);
|
|
}
|
|
|
|
if (fs_chunk->physical_dup + fs_chunk->bytes >
|
|
mdres->last_physical_offset)
|
|
mdres->last_physical_offset = fs_chunk->physical_dup +
|
|
fs_chunk->bytes;
|
|
else if (fs_chunk->physical + fs_chunk->bytes >
|
|
mdres->last_physical_offset)
|
|
mdres->last_physical_offset = fs_chunk->physical +
|
|
fs_chunk->bytes;
|
|
mdres->alloced_chunks += fs_chunk->bytes;
|
|
/* in dup case, fs_chunk->bytes should add twice */
|
|
if (fs_chunk->physical_dup)
|
|
mdres->alloced_chunks += fs_chunk->bytes;
|
|
tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp);
|
|
}
|
|
out:
|
|
free(eb);
|
|
return ret;
|
|
}
|
|
|
|
/* If you have to ask you aren't worthy */
|
|
static int search_for_chunk_blocks(struct mdrestore_struct *mdres,
|
|
u64 search, u64 cluster_bytenr)
|
|
{
|
|
struct meta_cluster *cluster;
|
|
struct meta_cluster_header *header;
|
|
struct meta_cluster_item *item;
|
|
u64 current_cluster = cluster_bytenr, bytenr;
|
|
u64 item_bytenr;
|
|
u32 bufsize, nritems, i;
|
|
u32 max_size = MAX_PENDING_SIZE * 2;
|
|
u8 *buffer, *tmp = NULL;
|
|
int ret = 0;
|
|
|
|
cluster = malloc(BLOCK_SIZE);
|
|
if (!cluster) {
|
|
error("not enough memory for cluster");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
buffer = malloc(max_size);
|
|
if (!buffer) {
|
|
error("not enough memory for buffer");
|
|
free(cluster);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
tmp = malloc(max_size);
|
|
if (!tmp) {
|
|
error("not enough memory for buffer");
|
|
free(cluster);
|
|
free(buffer);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
bytenr = current_cluster;
|
|
while (1) {
|
|
if (fseek(mdres->in, current_cluster, SEEK_SET)) {
|
|
error("seek failed: %s", strerror(errno));
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
|
|
if (ret == 0) {
|
|
if (cluster_bytenr != 0) {
|
|
cluster_bytenr = 0;
|
|
current_cluster = 0;
|
|
bytenr = 0;
|
|
continue;
|
|
}
|
|
error(
|
|
"unknown state after reading cluster at %llu, probably corrupted data",
|
|
cluster_bytenr);
|
|
ret = -EIO;
|
|
break;
|
|
} else if (ret < 0) {
|
|
error("unable to read image at %llu: %s",
|
|
(unsigned long long)cluster_bytenr,
|
|
strerror(errno));
|
|
break;
|
|
}
|
|
ret = 0;
|
|
|
|
header = &cluster->header;
|
|
if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
|
|
le64_to_cpu(header->bytenr) != current_cluster) {
|
|
error("bad header in metadump image");
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
bytenr += BLOCK_SIZE;
|
|
nritems = le32_to_cpu(header->nritems);
|
|
for (i = 0; i < nritems; i++) {
|
|
size_t size;
|
|
|
|
item = &cluster->items[i];
|
|
bufsize = le32_to_cpu(item->size);
|
|
item_bytenr = le64_to_cpu(item->bytenr);
|
|
|
|
if (bufsize > max_size) {
|
|
error("item %u too big: %u > %u", i, bufsize,
|
|
max_size);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
ret = fread(tmp, bufsize, 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("read error: %s", strerror(errno));
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
size = max_size;
|
|
ret = uncompress(buffer,
|
|
(unsigned long *)&size, tmp,
|
|
bufsize);
|
|
if (ret != Z_OK) {
|
|
error("decompression failed with %d",
|
|
ret);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
} else {
|
|
ret = fread(buffer, bufsize, 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("read error: %s",
|
|
strerror(errno));
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
size = bufsize;
|
|
}
|
|
ret = 0;
|
|
|
|
if (item_bytenr <= search &&
|
|
item_bytenr + size > search) {
|
|
ret = read_chunk_block(mdres, buffer, search,
|
|
item_bytenr, size,
|
|
current_cluster);
|
|
if (!ret)
|
|
ret = 1;
|
|
break;
|
|
}
|
|
bytenr += bufsize;
|
|
}
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (bytenr & BLOCK_MASK)
|
|
bytenr += BLOCK_SIZE - (bytenr & BLOCK_MASK);
|
|
current_cluster = bytenr;
|
|
}
|
|
|
|
free(tmp);
|
|
free(buffer);
|
|
free(cluster);
|
|
return ret;
|
|
}
|
|
|
|
static int build_chunk_tree(struct mdrestore_struct *mdres,
|
|
struct meta_cluster *cluster)
|
|
{
|
|
struct btrfs_super_block *super;
|
|
struct meta_cluster_header *header;
|
|
struct meta_cluster_item *item = NULL;
|
|
u64 chunk_root_bytenr = 0;
|
|
u32 i, nritems;
|
|
u64 bytenr = 0;
|
|
u8 *buffer;
|
|
int ret;
|
|
|
|
/* We can't seek with stdin so don't bother doing this */
|
|
if (mdres->in == stdin)
|
|
return 0;
|
|
|
|
ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
|
|
if (ret <= 0) {
|
|
error("unable to read cluster: %s", strerror(errno));
|
|
return -EIO;
|
|
}
|
|
ret = 0;
|
|
|
|
header = &cluster->header;
|
|
if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
|
|
le64_to_cpu(header->bytenr) != 0) {
|
|
error("bad header in metadump image");
|
|
return -EIO;
|
|
}
|
|
|
|
bytenr += BLOCK_SIZE;
|
|
mdres->compress_method = header->compress;
|
|
nritems = le32_to_cpu(header->nritems);
|
|
for (i = 0; i < nritems; i++) {
|
|
item = &cluster->items[i];
|
|
|
|
if (le64_to_cpu(item->bytenr) == BTRFS_SUPER_INFO_OFFSET)
|
|
break;
|
|
bytenr += le32_to_cpu(item->size);
|
|
if (fseek(mdres->in, le32_to_cpu(item->size), SEEK_CUR)) {
|
|
error("seek failed: %s", strerror(errno));
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
if (!item || le64_to_cpu(item->bytenr) != BTRFS_SUPER_INFO_OFFSET) {
|
|
error("did not find superblock at %llu",
|
|
le64_to_cpu(item->bytenr));
|
|
return -EINVAL;
|
|
}
|
|
|
|
buffer = malloc(le32_to_cpu(item->size));
|
|
if (!buffer) {
|
|
error("not enough memory to allocate buffer");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = fread(buffer, le32_to_cpu(item->size), 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("unable to read buffer: %s", strerror(errno));
|
|
free(buffer);
|
|
return -EIO;
|
|
}
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
size_t size = MAX_PENDING_SIZE * 2;
|
|
u8 *tmp;
|
|
|
|
tmp = malloc(MAX_PENDING_SIZE * 2);
|
|
if (!tmp) {
|
|
free(buffer);
|
|
return -ENOMEM;
|
|
}
|
|
ret = uncompress(tmp, (unsigned long *)&size,
|
|
buffer, le32_to_cpu(item->size));
|
|
if (ret != Z_OK) {
|
|
error("decompression failed with %d", ret);
|
|
free(buffer);
|
|
free(tmp);
|
|
return -EIO;
|
|
}
|
|
free(buffer);
|
|
buffer = tmp;
|
|
}
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
super = (struct btrfs_super_block *)buffer;
|
|
chunk_root_bytenr = btrfs_super_chunk_root(super);
|
|
mdres->nodesize = btrfs_super_nodesize(super);
|
|
memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
|
|
memcpy(mdres->uuid, super->dev_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
mdres->devid = le64_to_cpu(super->dev_item.devid);
|
|
free(buffer);
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
|
|
return search_for_chunk_blocks(mdres, chunk_root_bytenr, 0);
|
|
}
|
|
|
|
static int range_contains_super(u64 physical, u64 bytes)
|
|
{
|
|
u64 super_bytenr;
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
super_bytenr = btrfs_sb_offset(i);
|
|
if (super_bytenr >= physical &&
|
|
super_bytenr < physical + bytes)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void remap_overlapping_chunks(struct mdrestore_struct *mdres)
|
|
{
|
|
struct fs_chunk *fs_chunk;
|
|
|
|
while (!list_empty(&mdres->overlapping_chunks)) {
|
|
fs_chunk = list_first_entry(&mdres->overlapping_chunks,
|
|
struct fs_chunk, list);
|
|
list_del_init(&fs_chunk->list);
|
|
if (range_contains_super(fs_chunk->physical,
|
|
fs_chunk->bytes)) {
|
|
warning(
|
|
"remapping a chunk that had a super mirror inside of it, clearing space cache so we don't end up with corruption");
|
|
mdres->clear_space_cache = 1;
|
|
}
|
|
fs_chunk->physical = mdres->last_physical_offset;
|
|
tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp);
|
|
mdres->last_physical_offset += fs_chunk->bytes;
|
|
}
|
|
}
|
|
|
|
static int fixup_devices(struct btrfs_fs_info *fs_info,
|
|
struct mdrestore_struct *mdres, off_t dev_size)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct btrfs_path path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *root = fs_info->chunk_root;
|
|
struct btrfs_key key;
|
|
u64 devid, cur_devid;
|
|
int ret;
|
|
|
|
trans = btrfs_start_transaction(fs_info->tree_root, 1);
|
|
if (IS_ERR(trans)) {
|
|
error("cannot starting transaction %ld", PTR_ERR(trans));
|
|
return PTR_ERR(trans);
|
|
}
|
|
|
|
dev_item = &fs_info->super_copy->dev_item;
|
|
|
|
devid = btrfs_stack_device_id(dev_item);
|
|
|
|
btrfs_set_stack_device_total_bytes(dev_item, dev_size);
|
|
btrfs_set_stack_device_bytes_used(dev_item, mdres->alloced_chunks);
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
btrfs_init_path(&path);
|
|
|
|
again:
|
|
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
|
|
if (ret < 0) {
|
|
error("search failed: %d", ret);
|
|
exit(1);
|
|
}
|
|
|
|
while (1) {
|
|
leaf = path.nodes[0];
|
|
if (path.slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, &path);
|
|
if (ret < 0) {
|
|
error("cannot go to next leaf %d", ret);
|
|
exit(1);
|
|
}
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
leaf = path.nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
|
|
if (key.type > BTRFS_DEV_ITEM_KEY)
|
|
break;
|
|
if (key.type != BTRFS_DEV_ITEM_KEY) {
|
|
path.slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
dev_item = btrfs_item_ptr(leaf, path.slots[0],
|
|
struct btrfs_dev_item);
|
|
cur_devid = btrfs_device_id(leaf, dev_item);
|
|
if (devid != cur_devid) {
|
|
ret = btrfs_del_item(trans, root, &path);
|
|
if (ret) {
|
|
error("cannot delete item: %d", ret);
|
|
exit(1);
|
|
}
|
|
btrfs_release_path(&path);
|
|
goto again;
|
|
}
|
|
|
|
btrfs_set_device_total_bytes(leaf, dev_item, dev_size);
|
|
btrfs_set_device_bytes_used(leaf, dev_item,
|
|
mdres->alloced_chunks);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
path.slots[0]++;
|
|
}
|
|
|
|
btrfs_release_path(&path);
|
|
ret = btrfs_commit_transaction(trans, fs_info->tree_root);
|
|
if (ret) {
|
|
error("unable to commit transaction: %d", ret);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int restore_metadump(const char *input, FILE *out, int old_restore,
|
|
int num_threads, int fixup_offset,
|
|
const char *target, int multi_devices)
|
|
{
|
|
struct meta_cluster *cluster = NULL;
|
|
struct meta_cluster_header *header;
|
|
struct mdrestore_struct mdrestore;
|
|
struct btrfs_fs_info *info = NULL;
|
|
u64 bytenr = 0;
|
|
FILE *in = NULL;
|
|
int ret = 0;
|
|
|
|
if (!strcmp(input, "-")) {
|
|
in = stdin;
|
|
} else {
|
|
in = fopen(input, "r");
|
|
if (!in) {
|
|
error("unable to open metadump image: %s",
|
|
strerror(errno));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* NOTE: open with write mode */
|
|
if (fixup_offset) {
|
|
info = open_ctree_fs_info(target, 0, 0, 0,
|
|
OPEN_CTREE_WRITES |
|
|
OPEN_CTREE_RESTORE |
|
|
OPEN_CTREE_PARTIAL);
|
|
if (!info) {
|
|
error("open ctree failed");
|
|
ret = -EIO;
|
|
goto failed_open;
|
|
}
|
|
}
|
|
|
|
cluster = malloc(BLOCK_SIZE);
|
|
if (!cluster) {
|
|
error("not enough memory for cluster");
|
|
ret = -ENOMEM;
|
|
goto failed_info;
|
|
}
|
|
|
|
ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads,
|
|
fixup_offset, info, multi_devices);
|
|
if (ret) {
|
|
error("failed to initialize metadata restore state: %d", ret);
|
|
goto failed_cluster;
|
|
}
|
|
|
|
if (!multi_devices && !old_restore) {
|
|
ret = build_chunk_tree(&mdrestore, cluster);
|
|
if (ret)
|
|
goto out;
|
|
if (!list_empty(&mdrestore.overlapping_chunks))
|
|
remap_overlapping_chunks(&mdrestore);
|
|
}
|
|
|
|
if (in != stdin && fseek(in, 0, SEEK_SET)) {
|
|
error("seek failed: %s", strerror(errno));
|
|
goto out;
|
|
}
|
|
|
|
while (!mdrestore.error) {
|
|
ret = fread(cluster, BLOCK_SIZE, 1, in);
|
|
if (!ret)
|
|
break;
|
|
|
|
header = &cluster->header;
|
|
if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
|
|
le64_to_cpu(header->bytenr) != bytenr) {
|
|
error("bad header in metadump image");
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
ret = add_cluster(cluster, &mdrestore, &bytenr);
|
|
if (ret) {
|
|
error("failed to add cluster: %d", ret);
|
|
break;
|
|
}
|
|
}
|
|
ret = wait_for_worker(&mdrestore);
|
|
|
|
if (!ret && !multi_devices && !old_restore) {
|
|
struct btrfs_root *root;
|
|
struct stat st;
|
|
|
|
root = open_ctree_fd(fileno(out), target, 0,
|
|
OPEN_CTREE_PARTIAL |
|
|
OPEN_CTREE_WRITES |
|
|
OPEN_CTREE_NO_DEVICES);
|
|
if (!root) {
|
|
error("open ctree failed in %s", target);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
info = root->fs_info;
|
|
|
|
if (stat(target, &st)) {
|
|
error("stat %s failed: %s", target, strerror(errno));
|
|
close_ctree(info->chunk_root);
|
|
free(cluster);
|
|
return 1;
|
|
}
|
|
|
|
ret = fixup_devices(info, &mdrestore, st.st_size);
|
|
close_ctree(info->chunk_root);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
out:
|
|
mdrestore_destroy(&mdrestore, num_threads);
|
|
failed_cluster:
|
|
free(cluster);
|
|
failed_info:
|
|
if (fixup_offset && info)
|
|
close_ctree(info->chunk_root);
|
|
failed_open:
|
|
if (in != stdin)
|
|
fclose(in);
|
|
return ret;
|
|
}
|
|
|
|
static int update_disk_super_on_device(struct btrfs_fs_info *info,
|
|
const char *other_dev, u64 cur_devid)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_path path;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct btrfs_super_block *disk_super;
|
|
char dev_uuid[BTRFS_UUID_SIZE];
|
|
char fs_uuid[BTRFS_UUID_SIZE];
|
|
u64 devid, type, io_align, io_width;
|
|
u64 sector_size, total_bytes, bytes_used;
|
|
char buf[BTRFS_SUPER_INFO_SIZE];
|
|
int fp = -1;
|
|
int ret;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = cur_devid;
|
|
|
|
btrfs_init_path(&path);
|
|
ret = btrfs_search_slot(NULL, info->chunk_root, &key, &path, 0, 0);
|
|
if (ret) {
|
|
error("search key failed: %d", ret);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path.nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path.slots[0],
|
|
struct btrfs_dev_item);
|
|
|
|
devid = btrfs_device_id(leaf, dev_item);
|
|
if (devid != cur_devid) {
|
|
error("devid mismatch: %llu != %llu",
|
|
(unsigned long long)devid,
|
|
(unsigned long long)cur_devid);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
type = btrfs_device_type(leaf, dev_item);
|
|
io_align = btrfs_device_io_align(leaf, dev_item);
|
|
io_width = btrfs_device_io_width(leaf, dev_item);
|
|
sector_size = btrfs_device_sector_size(leaf, dev_item);
|
|
total_bytes = btrfs_device_total_bytes(leaf, dev_item);
|
|
bytes_used = btrfs_device_bytes_used(leaf, dev_item);
|
|
read_extent_buffer(leaf, dev_uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE);
|
|
read_extent_buffer(leaf, fs_uuid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE);
|
|
|
|
btrfs_release_path(&path);
|
|
|
|
printf("update disk super on %s devid=%llu\n", other_dev, devid);
|
|
|
|
/* update other devices' super block */
|
|
fp = open(other_dev, O_CREAT | O_RDWR, 0600);
|
|
if (fp < 0) {
|
|
error("could not open %s: %s", other_dev, strerror(errno));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(buf, info->super_copy, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
disk_super = (struct btrfs_super_block *)buf;
|
|
dev_item = &disk_super->dev_item;
|
|
|
|
btrfs_set_stack_device_type(dev_item, type);
|
|
btrfs_set_stack_device_id(dev_item, devid);
|
|
btrfs_set_stack_device_total_bytes(dev_item, total_bytes);
|
|
btrfs_set_stack_device_bytes_used(dev_item, bytes_used);
|
|
btrfs_set_stack_device_io_align(dev_item, io_align);
|
|
btrfs_set_stack_device_io_width(dev_item, io_width);
|
|
btrfs_set_stack_device_sector_size(dev_item, sector_size);
|
|
memcpy(dev_item->uuid, dev_uuid, BTRFS_UUID_SIZE);
|
|
memcpy(dev_item->fsid, fs_uuid, BTRFS_UUID_SIZE);
|
|
csum_block((u8 *)buf, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
ret = pwrite64(fp, buf, BTRFS_SUPER_INFO_SIZE, BTRFS_SUPER_INFO_OFFSET);
|
|
if (ret != BTRFS_SUPER_INFO_SIZE) {
|
|
if (ret < 0)
|
|
error("cannot write superblock: %s", strerror(ret));
|
|
else
|
|
error("cannot write superblock");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
write_backup_supers(fp, (u8 *)buf);
|
|
|
|
out:
|
|
if (fp != -1)
|
|
close(fp);
|
|
return ret;
|
|
}
|
|
|
|
static void print_usage(int ret)
|
|
{
|
|
printf("usage: btrfs-image [options] source target\n");
|
|
printf("\t-r \trestore metadump image\n");
|
|
printf("\t-c value\tcompression level (0 ~ 9)\n");
|
|
printf("\t-t value\tnumber of threads (1 ~ 32)\n");
|
|
printf("\t-o \tdon't mess with the chunk tree when restoring\n");
|
|
printf("\t-s \tsanitize file names, use once to just use garbage, use twice if you want crc collisions\n");
|
|
printf("\t-w \twalk all trees instead of using extent tree, do this if your extent tree is broken\n");
|
|
printf("\t-m \trestore for multiple devices\n");
|
|
printf("\n");
|
|
printf("\tIn the dump mode, source is the btrfs device and target is the output file (use '-' for stdout).\n");
|
|
printf("\tIn the restore mode, source is the dumped image and target is the btrfs device/file.\n");
|
|
exit(ret);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
char *source;
|
|
char *target;
|
|
u64 num_threads = 0;
|
|
u64 compress_level = 0;
|
|
int create = 1;
|
|
int old_restore = 0;
|
|
int walk_trees = 0;
|
|
int multi_devices = 0;
|
|
int ret;
|
|
enum sanitize_mode sanitize = SANITIZE_NONE;
|
|
int dev_cnt = 0;
|
|
int usage_error = 0;
|
|
FILE *out;
|
|
|
|
while (1) {
|
|
static const struct option long_options[] = {
|
|
{ "help", no_argument, NULL, GETOPT_VAL_HELP},
|
|
{ NULL, 0, NULL, 0 }
|
|
};
|
|
int c = getopt_long(argc, argv, "rc:t:oswm", long_options, NULL);
|
|
if (c < 0)
|
|
break;
|
|
switch (c) {
|
|
case 'r':
|
|
create = 0;
|
|
break;
|
|
case 't':
|
|
num_threads = arg_strtou64(optarg);
|
|
if (num_threads > MAX_WORKER_THREADS) {
|
|
error("number of threads out of range: %llu > %d",
|
|
(unsigned long long)num_threads,
|
|
MAX_WORKER_THREADS);
|
|
return 1;
|
|
}
|
|
break;
|
|
case 'c':
|
|
compress_level = arg_strtou64(optarg);
|
|
if (compress_level > 9) {
|
|
error("compression level out of range: %llu",
|
|
(unsigned long long)compress_level);
|
|
return 1;
|
|
}
|
|
break;
|
|
case 'o':
|
|
old_restore = 1;
|
|
break;
|
|
case 's':
|
|
if (sanitize == SANITIZE_NONE)
|
|
sanitize = SANITIZE_NAMES;
|
|
else if (sanitize == SANITIZE_NAMES)
|
|
sanitize = SANITIZE_COLLISIONS;
|
|
break;
|
|
case 'w':
|
|
walk_trees = 1;
|
|
break;
|
|
case 'm':
|
|
create = 0;
|
|
multi_devices = 1;
|
|
break;
|
|
case GETOPT_VAL_HELP:
|
|
default:
|
|
print_usage(c != GETOPT_VAL_HELP);
|
|
}
|
|
}
|
|
|
|
set_argv0(argv);
|
|
if (check_argc_min(argc - optind, 2))
|
|
print_usage(1);
|
|
|
|
dev_cnt = argc - optind - 1;
|
|
|
|
if (create) {
|
|
if (old_restore) {
|
|
error(
|
|
"create and restore cannot be used at the same time");
|
|
usage_error++;
|
|
}
|
|
} else {
|
|
if (walk_trees || sanitize != SANITIZE_NONE || compress_level) {
|
|
error(
|
|
"useing -w, -s, -c options for restore makes no sense");
|
|
usage_error++;
|
|
}
|
|
if (multi_devices && dev_cnt < 2) {
|
|
error("not enough devices specified for -m option");
|
|
usage_error++;
|
|
}
|
|
if (!multi_devices && dev_cnt != 1) {
|
|
error("accepts only 1 device without -m option");
|
|
usage_error++;
|
|
}
|
|
}
|
|
|
|
if (usage_error)
|
|
print_usage(1);
|
|
|
|
source = argv[optind];
|
|
target = argv[optind + 1];
|
|
|
|
if (create && !strcmp(target, "-")) {
|
|
out = stdout;
|
|
} else {
|
|
out = fopen(target, "w+");
|
|
if (!out) {
|
|
error("unable to create target file %s", target);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (compress_level > 0 || create == 0) {
|
|
if (num_threads == 0) {
|
|
long tmp = sysconf(_SC_NPROCESSORS_ONLN);
|
|
|
|
if (tmp <= 0)
|
|
tmp = 1;
|
|
num_threads = tmp;
|
|
}
|
|
} else {
|
|
num_threads = 0;
|
|
}
|
|
|
|
if (create) {
|
|
ret = check_mounted(source);
|
|
if (ret < 0) {
|
|
warning("unable to check mount status of: %s",
|
|
strerror(-ret));
|
|
} else if (ret) {
|
|
warning("%s already mounted, results may be inaccurate",
|
|
source);
|
|
}
|
|
|
|
ret = create_metadump(source, out, num_threads,
|
|
compress_level, sanitize, walk_trees);
|
|
} else {
|
|
ret = restore_metadump(source, out, old_restore, num_threads,
|
|
0, target, multi_devices);
|
|
}
|
|
if (ret) {
|
|
error("%s failed: %s", (create) ? "create" : "restore",
|
|
strerror(errno));
|
|
goto out;
|
|
}
|
|
|
|
/* extended support for multiple devices */
|
|
if (!create && multi_devices) {
|
|
struct btrfs_fs_info *info;
|
|
u64 total_devs;
|
|
int i;
|
|
|
|
info = open_ctree_fs_info(target, 0, 0, 0,
|
|
OPEN_CTREE_PARTIAL |
|
|
OPEN_CTREE_RESTORE);
|
|
if (!info) {
|
|
error("open ctree failed at %s", target);
|
|
return 1;
|
|
}
|
|
|
|
total_devs = btrfs_super_num_devices(info->super_copy);
|
|
if (total_devs != dev_cnt) {
|
|
error("it needs %llu devices but has only %d",
|
|
total_devs, dev_cnt);
|
|
close_ctree(info->chunk_root);
|
|
goto out;
|
|
}
|
|
|
|
/* update super block on other disks */
|
|
for (i = 2; i <= dev_cnt; i++) {
|
|
ret = update_disk_super_on_device(info,
|
|
argv[optind + i], (u64)i);
|
|
if (ret) {
|
|
error("update disk superblock failed devid %d: %d",
|
|
i, ret);
|
|
close_ctree(info->chunk_root);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
close_ctree(info->chunk_root);
|
|
|
|
/* fix metadata block to map correct chunk */
|
|
ret = restore_metadump(source, out, 0, num_threads, 1,
|
|
target, 1);
|
|
if (ret) {
|
|
error("unable to fixup metadump: %d", ret);
|
|
exit(1);
|
|
}
|
|
}
|
|
out:
|
|
if (out == stdout) {
|
|
fflush(out);
|
|
} else {
|
|
fclose(out);
|
|
if (ret && create) {
|
|
int unlink_ret;
|
|
|
|
unlink_ret = unlink(target);
|
|
if (unlink_ret)
|
|
error("unlink output file %s failed: %s",
|
|
target, strerror(errno));
|
|
}
|
|
}
|
|
|
|
btrfs_close_all_devices();
|
|
|
|
return !!ret;
|
|
}
|