btrfs-progs/mkfs.c
Luca Bruno 3fb5c031fe Add -V|--version to mkfs.btrfs argument parser
mkfs.btrfs now prints its version when invoked with -V|--version
and exits without error.

All other mkfs.* tools provide this feature and follow this
implicit argument naming convention, as it is commonly used to
check for helper tools presence.

The corrisponding manual already mentions this option, no need to
touch it.

Signed-off-by: Luca Bruno <lucab@debian.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-03 12:15:40 -04:00

533 lines
13 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#define _XOPEN_SOURCE 500
#define _GNU_SOURCE
#ifndef __CHECKER__
#include <sys/ioctl.h>
#include <sys/mount.h>
#include "ioctl.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <getopt.h>
#include <uuid/uuid.h>
#include <linux/fs.h>
#include <ctype.h>
#include "kerncompat.h"
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "transaction.h"
#include "utils.h"
#include "version.h"
static u64 parse_size(char *s)
{
int len = strlen(s);
char c;
u64 mult = 1;
if (!isdigit(s[len - 1])) {
c = tolower(s[len - 1]);
switch (c) {
case 'g':
mult *= 1024;
case 'm':
mult *= 1024;
case 'k':
mult *= 1024;
case 'b':
break;
default:
fprintf(stderr, "Unknown size descriptor %c\n", c);
exit(1);
}
s[len - 1] = '\0';
}
return atol(s) * mult;
}
static int make_root_dir(struct btrfs_root *root)
{
struct btrfs_trans_handle *trans;
struct btrfs_key location;
u64 bytes_used;
u64 chunk_start = 0;
u64 chunk_size = 0;
int ret;
trans = btrfs_start_transaction(root, 1);
bytes_used = btrfs_super_bytes_used(&root->fs_info->super_copy);
root->fs_info->system_allocs = 1;
ret = btrfs_make_block_group(trans, root, bytes_used,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
0, BTRFS_MKFS_SYSTEM_GROUP_SIZE);
BUG_ON(ret);
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_METADATA);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
root->fs_info->system_allocs = 0;
btrfs_commit_transaction(trans, root);
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_DATA);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_DATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
ret = btrfs_make_root_dir(trans, root->fs_info->tree_root,
BTRFS_ROOT_TREE_DIR_OBJECTID);
if (ret)
goto err;
ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID);
if (ret)
goto err;
memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location));
location.offset = (u64)-1;
ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
"default", 7,
btrfs_super_root_dir(&root->fs_info->super_copy),
&location, BTRFS_FT_DIR, 0);
if (ret)
goto err;
ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
"default", 7, location.objectid,
BTRFS_ROOT_TREE_DIR_OBJECTID, 0);
if (ret)
goto err;
btrfs_commit_transaction(trans, root);
err:
return ret;
}
static int recow_roots(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
struct extent_buffer *tmp;
struct btrfs_fs_info *info = root->fs_info;
ret = __btrfs_cow_block(trans, info->fs_root, info->fs_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->tree_root, info->tree_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->extent_root,
info->extent_root->node, NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->chunk_root, info->chunk_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->dev_root, info->dev_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
return 0;
}
static int create_one_raid_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type)
{
u64 chunk_start;
u64 chunk_size;
int ret;
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size, type);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
return ret;
}
static int create_raid_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 data_profile,
u64 metadata_profile)
{
u64 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy);
u64 allowed;
int ret;
if (num_devices == 1)
allowed = BTRFS_BLOCK_GROUP_DUP;
else if (num_devices >= 4) {
allowed = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10;
} else
allowed = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1;
if (allowed & metadata_profile) {
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_SYSTEM |
(allowed & metadata_profile));
BUG_ON(ret);
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_METADATA |
(allowed & metadata_profile));
BUG_ON(ret);
ret = recow_roots(trans, root);
BUG_ON(ret);
}
if (num_devices > 1 && (allowed & data_profile)) {
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_DATA |
(allowed & data_profile));
BUG_ON(ret);
}
return 0;
}
static int create_data_reloc_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_key location;
struct btrfs_root_item root_item;
struct extent_buffer *tmp;
u64 objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
int ret;
ret = btrfs_copy_root(trans, root, root->node, &tmp, objectid);
BUG_ON(ret);
memcpy(&root_item, &root->root_item, sizeof(root_item));
btrfs_set_root_bytenr(&root_item, tmp->start);
btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
btrfs_set_root_generation(&root_item, trans->transid);
free_extent_buffer(tmp);
location.objectid = objectid;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = trans->transid;
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
&location, &root_item);
BUG_ON(ret);
return 0;
}
static void print_usage(void)
{
fprintf(stderr, "usage: mkfs.btrfs [options] dev [ dev ... ]\n");
fprintf(stderr, "options:\n");
fprintf(stderr, "\t -A --alloc-start the offset to start the FS\n");
fprintf(stderr, "\t -b --byte-count total number of bytes in the FS\n");
fprintf(stderr, "\t -d --data data profile, raid0, raid1, raid10 or single\n");
fprintf(stderr, "\t -l --leafsize size of btree leaves\n");
fprintf(stderr, "\t -L --label set a label\n");
fprintf(stderr, "\t -m --metadata metadata profile, values like data profile\n");
fprintf(stderr, "\t -n --nodesize size of btree nodes\n");
fprintf(stderr, "\t -s --sectorsize min block allocation\n");
fprintf(stderr, "%s\n", BTRFS_BUILD_VERSION);
exit(1);
}
static void print_version(void)
{
fprintf(stderr, "mkfs.btrfs, part of %s\n", BTRFS_BUILD_VERSION);
exit(0);
}
static u64 parse_profile(char *s)
{
if (strcmp(s, "raid0") == 0) {
return BTRFS_BLOCK_GROUP_RAID0;
} else if (strcmp(s, "raid1") == 0) {
return BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP;
} else if (strcmp(s, "raid10") == 0) {
return BTRFS_BLOCK_GROUP_RAID10 | BTRFS_BLOCK_GROUP_DUP;
} else if (strcmp(s, "single") == 0) {
return 0;
} else {
fprintf(stderr, "Unknown option %s\n", s);
print_usage();
}
return 0;
}
static char *parse_label(char *input)
{
int i;
int len = strlen(input);
if (len > BTRFS_LABEL_SIZE) {
fprintf(stderr, "Label %s is too long (max %d)\n", input,
BTRFS_LABEL_SIZE);
exit(1);
}
for (i = 0; i < len; i++) {
if (input[i] == '/' || input[i] == '\\') {
fprintf(stderr, "invalid label %s\n", input);
exit(1);
}
}
return strdup(input);
}
static struct option long_options[] = {
{ "alloc-start", 1, NULL, 'A'},
{ "byte-count", 1, NULL, 'b' },
{ "leafsize", 1, NULL, 'l' },
{ "label", 1, NULL, 'L'},
{ "metadata", 1, NULL, 'm' },
{ "nodesize", 1, NULL, 'n' },
{ "sectorsize", 1, NULL, 's' },
{ "data", 1, NULL, 'd' },
{ "version", 0, NULL, 'V' },
{ 0, 0, 0, 0}
};
int main(int ac, char **av)
{
char *file;
struct btrfs_root *root;
struct btrfs_trans_handle *trans;
char *label = NULL;
char *first_file;
u64 block_count = 0;
u64 dev_block_count = 0;
u64 blocks[7];
u64 alloc_start = 0;
u64 metadata_profile = BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP;
u64 data_profile = BTRFS_BLOCK_GROUP_RAID0;
u32 leafsize = getpagesize();
u32 sectorsize = 4096;
u32 nodesize = leafsize;
u32 stripesize = 4096;
int zero_end = 1;
int option_index = 0;
int fd;
int first_fd;
int ret;
int i;
while(1) {
int c;
c = getopt_long(ac, av, "A:b:l:n:s:m:d:L:V", long_options,
&option_index);
if (c < 0)
break;
switch(c) {
case 'A':
alloc_start = parse_size(optarg);
break;
case 'd':
data_profile = parse_profile(optarg);
break;
case 'l':
leafsize = parse_size(optarg);
break;
case 'L':
label = parse_label(optarg);
break;
case 'm':
metadata_profile = parse_profile(optarg);
break;
case 'n':
nodesize = parse_size(optarg);
break;
case 's':
sectorsize = parse_size(optarg);
break;
case 'b':
block_count = parse_size(optarg);
if (block_count < 256*1024*1024) {
fprintf(stderr, "File system size "
"%llu bytes is too small, "
"256M is required at least\n",
block_count);
exit(1);
}
zero_end = 0;
break;
case 'V':
print_version();
break;
default:
print_usage();
}
}
sectorsize = max(sectorsize, (u32)getpagesize());
if (leafsize < sectorsize || (leafsize & (sectorsize - 1))) {
fprintf(stderr, "Illegal leafsize %u\n", leafsize);
exit(1);
}
if (nodesize < sectorsize || (nodesize & (sectorsize - 1))) {
fprintf(stderr, "Illegal nodesize %u\n", nodesize);
exit(1);
}
ac = ac - optind;
if (ac == 0)
print_usage();
printf("\nWARNING! - %s IS EXPERIMENTAL\n", BTRFS_BUILD_VERSION);
printf("WARNING! - see http://btrfs.wiki.kernel.org before using\n\n");
file = av[optind++];
ret = check_mounted(file);
if (ret < 0) {
fprintf(stderr, "error checking %s mount status\n", file);
exit(1);
}
if (ret == 1) {
fprintf(stderr, "%s is mounted\n", file);
exit(1);
}
ac--;
fd = open(file, O_RDWR);
if (fd < 0) {
fprintf(stderr, "unable to open %s\n", file);
exit(1);
}
first_fd = fd;
first_file = file;
ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count);
if (block_count == 0)
block_count = dev_block_count;
blocks[0] = BTRFS_SUPER_INFO_OFFSET;
for (i = 1; i < 7; i++) {
blocks[i] = BTRFS_SUPER_INFO_OFFSET + 1024 * 1024 +
leafsize * i;
}
ret = make_btrfs(fd, file, label, blocks, block_count,
nodesize, leafsize,
sectorsize, stripesize);
if (ret) {
fprintf(stderr, "error during mkfs %d\n", ret);
exit(1);
}
root = open_ctree(file, 0, O_RDWR);
root->fs_info->alloc_start = alloc_start;
ret = make_root_dir(root);
if (ret) {
fprintf(stderr, "failed to setup the root directory\n");
exit(1);
}
trans = btrfs_start_transaction(root, 1);
if (ac == 0)
goto raid_groups;
btrfs_register_one_device(file);
if (!root) {
fprintf(stderr, "ctree init failed\n");
return -1;
}
zero_end = 1;
while(ac-- > 0) {
file = av[optind++];
ret = check_mounted(file);
if (ret < 0) {
fprintf(stderr, "error checking %s mount status\n",
file);
exit(1);
}
if (ret == 1) {
fprintf(stderr, "%s is mounted\n", file);
exit(1);
}
fd = open(file, O_RDWR);
if (fd < 0) {
fprintf(stderr, "unable to open %s\n", file);
exit(1);
}
ret = btrfs_device_already_in_root(root, fd,
BTRFS_SUPER_INFO_OFFSET);
if (ret) {
fprintf(stderr, "skipping duplicate device %s in FS\n",
file);
close(fd);
continue;
}
ret = btrfs_prepare_device(fd, file, zero_end,
&dev_block_count);
BUG_ON(ret);
ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count,
sectorsize, sectorsize, sectorsize);
BUG_ON(ret);
btrfs_register_one_device(file);
}
raid_groups:
ret = create_raid_groups(trans, root, data_profile,
metadata_profile);
BUG_ON(ret);
ret = create_data_reloc_tree(trans, root);
BUG_ON(ret);
printf("fs created label %s on %s\n\tnodesize %u leafsize %u "
"sectorsize %u size %s\n",
label, first_file, nodesize, leafsize, sectorsize,
pretty_sizes(btrfs_super_total_bytes(&root->fs_info->super_copy)));
printf("%s\n", BTRFS_BUILD_VERSION);
btrfs_commit_transaction(trans, root);
ret = close_ctree(root);
BUG_ON(ret);
free(label);
return 0;
}